
What hackers learn that the rest of us don’t

Sergey Bratus

May 17, 2008

1 Hacker community’s growing impact

The hacker community has developed a set of approaches to computer tech-
nologies, in particular, to analysis, reverse engineering, testing and modify-
ing software and hardware, that considerably differ from those of both IT
industry and traditional academia1. Over the last few years we have seen
the impact of the hacker culture grow significantly: exploits that used to
be disclosed only on mailing lists and in “underground” magazines are now
published in books2, while publishers like Syngress and No Starch Press pro-
duced entire tracks of “hacker” books differing in style and substance from
the accepted formats (and some others jumped on the bandwagon, offering a
slew of books with “Hacker” or “Hacking” in the titles, some of which actual
hackers sneer at); classic hacker tools made their way into academic curric-
ula and industrial training3; consulting services of companies established by
hackers are highly sought after.

Some idea about the value contributed by the hacker community to IT se-
curity industry can be obtained from the commercial success (and admissions
prices) of the BlackHat and similar conferences where hackers present their
results to the industry. In academia, a number of researchers and institu-
tions recognized this value as well (see, e.g., Gregory Conti, “Why Computer
Scientists Should Attend Hacker Conferences” 4; also, consider the fact that

1A number of groups in academia shares and has influenced elements of the hacker
culture. However, these are exception rather than the rule.

2e.g., “The Shellcoder’s Handbook” by Koziol at al.
3e.g., the SANS Institute courses, http://sans.org
4CACM,June2006,http://www.rumint.org/gregconti/publications/20050301

CACM HackingConferences Conti.pdf

1



the U.S. Naval Postgraduate School sent its team to the “Capture the Flag”
tournament at Defcon, and won it in 20045). More significantly, important
features have made their way into mainstream software after being designed,
implemented, and tested in the hacker community. Examples include canary-
based stack overflow protection (StackGuard) and executable memory page
protection through x86 segmentation (OpenWall, PaX).

1.1 Concerning the word “hacker”

When first used to describe a group of people interacting with computers, the
word “hacker” had strong laudatory connotations of deep knowledge driven
by insatiable curiosity6. Unfortunately, its original meaning became diluted
and perverted through decades of media misuse. These days, one needs to be
wary when speaking about hackers to unfamiliar audiences – some listeners
might assume one is referring to online extortionists or credit card thieves
and suchlike. Such usage, alas, persists despite numerous attempts by those
in the know to point out the wrong uses of the word.

In this paper, instead of adding another explanation of what we do not
mean when we say “hacker”, we invite the reader to contemplate the following
four hypothetical headlines:

1. Locksmith burgles bank’s safe.

2. Policeman shoots neighbor.

3. Doctor poisons co-worker.

4. Hacker steals private information.

We treat all three as examples of the same general situation: “someone
with special training and tools misuses them”. Note, however, that
(1)–(3) hardly make us fear and distrust locksmiths, doctors, or the police in
general despite their obviously higher capabilities for causing certain kinds
of harm.

5http://searchsecurity.techtarget.com/originalContent/0,289142,sid14\
gci1000503,00.html

6See, for example, “The New Hacker’s Dictionary”, http://www.ccil.org/jargon/,
or Steven Levy’s book “Hackers”.

2



1.2 White hats and gray hats vs black hats

An important note is in order: under the “hacker community” we primarily
mean the so-called “white hat” and “gray hat” communities. Under “white
hats” we mean hackers ethically opposed to abuse of computer systems, and
under “gray hats” – those who may run afoul of existing laws7, but are
motivated to warn the vulnerable and minimize damage. “Black hats” act for
personal gain and without regard for possible damage. For further discussion
of these terms and their different uses we refer the reader to Wikipedia’s
article on hacker.

White and gray hats publish their research in security–related public
venues and e–zines; we note that publishing such materials has made a sig-
nificant contribution to the improvement of consumer and business computer
environments, and has been historically opposed by the “black hats”, whose
efficiency and ease of operation is significantly reduced by these publications
— Praemonitus praemunitus. We also include in this definition a number of
industrial and academic computer security research groups that are aware of
the hacker culture, recognize the value of its contributions, and use elements
of the “hacker” approach in their work.

Hacker knowledge and methods are no longer limited to the select few, and
the hacker culture will undoubtedly continue to attract more participants,
including students and developers. Therefore the leaders of industry and
academia need to acquire a better understanding of that culture, and be
aware of its values, and its unique strengths and weaknesses, whether they
would like to benefit from the contributions of hackers or defend themselves
from the malicious “bad apples” who reject the hacker ethics.

We are going to examine the differences that distinguish the hacker expe-
rience from that of most of the traditionally trained programmers, and show
how they contribute to the overall improvement of the state of the art in
practical computer security.

7Many kinds of unauthorized computer uses are harmful and ill-advised. At best they
are public nuisances, and at worst should constitute crimes. However, lawmaking is not
immune to the influence of vested interests or to ill-informed political agendas. With the
advent of laws such as the DMCA and its further-reaching state counterparts, and in the
face of initiatives to ban broadly defined “hacker tools”, we should remember that even
well-known academic researchers have been subjected to threats of criminal prosecution.
Unfortunately, laws are not exactly made in heaven, but are enthusiastically interpreted
in hell.

3



2 The “hacker methodology”

Before trying to elucidate the essentials of hacker modus operandi, let us
summarize the trends in the industry and academia that are, on the one
hand, in direct conflict with it, and, on the other hand, create the wealth
of weaknesses and vulnerabilities that provides the hackers of all hat colors
with a rich ecology to exploit.

The economics of insecure software and hardware has been widely dis-
cussed before. Attempting a brief summary of those observations we note
that the typical developer is likely to experience much of the following.

• Developers are under pressure to follow standard solutions8, “the path
of least resistance” to “just making it work”; as long as “it works”,
detailed understanding is often considered optional.

• As a result, they may not realize the effects of deviating from the above,
intended or unintended.

• Developers tend to be implicitly trained away from exploring the un-
derlying API, because the extra time investment rarely pays.

• They are often offered a limited view of the API, with few or hardly
any details about its implementation.

• They are de-facto trained to ignore or avoid infrequent border cases,
and may not understand their effect.

• Developers may be explicitly directed to ignore specific problems, as
being the domain of other developers9.

• Developers must often comply with lack of tools for examining the state
of the system, let alone changing it outside of the API.

In a typical academic setting, similar pressures exists in the area of cur-
riculum development. The growing number of topics puts considerable lim-
itations on student time that can be allocated for any specific one. As a

8We note that in some quarters what used to be called a program is now called a
solution. Nomen omen?

9In private communication, a major vendor has been quoted to me as advising the
customers that security of their product was the customers’ responsibility. The customers
were expected to “run it behind a firewall”.

4



result, instructors carefully plan their teaching environments to minimize
the probability that the student will be distracted from the task seen as the
purpose of the exercise, such as by encountering a complicated border case.
For example, it is common practice to create “wrapper” libraries that isolate
the students from the unwanted complexity. Also, in OS courses the likely
time cost of interacting with real hardware is offset by using software emu-
lations (in operating systems courses the emulator is often that of simplified
imaginary hardware).

Often this leads to unrealistic teaching environments that impart very
little of the real world’s actual complexity, creating false expectations in
students and causing problems when they join the ranks of industrial devel-
opers10.

Even if this danger of oversimplification is avoided, the students are
still implicitly trained to follow the prescribed patterns without exploration
(again, the necessary time investment does not pay) or understanding of the
effects of deviating from them. Some topics, perceived as too complicated
to explain, simply fall by the wayside (e.g., for OS courses: linking and
loading, binary file formats and OS support mechanisms for debugging and
tracing, as we illustrate below) and are characteristically repeated in books
that deal with computer security, despite clearly belonging elsewhere in the
curriculum.

Frustration created by these trends is one of the driving forces behind the
hacker culture, which eschews the “path of least resistance” and concentrates
on fully understanding the underlying standards and systems, complete with
their border cases and vendor implementation differences.

In particular, we can distinguish the following tendencies.

• Hackers tends to treat special and border cases of standards as essential,
and invest significant amounts of time into reading the appropriate
documentation (which is not a good survival skill for most industrial
or curricular tasks).

• Hackers insist on understanding the implementation of the underlying
API and exploring it to confirm the claims of documentation.

10I once came across a CS introductory sequence that heavily stressed the use of a
particular integrated development environment together with an input-output library de-
signed to hide most of the standard system interaction and I/O complexity. Students who
had little independent programming experience prior to this sequence, described their first
internships as truly harrowing.

5



• Hackers second-guess, as a matter of course, the implementer’s logic
(this is one of the reasons for preferring developer-addressed RFC to
other forms of documentation).

• Hackers reflect on and explore the effects of deviating from the path of
standard tutorials.

• Hackers insist on tools for examining the full state of the system across
interface layers, and for modifying these states bypassing the standard
development API. If these are lacking, developing them is seen as a top
priority.

These tendencies largely define the ways in which the hackers learn and
work, and have produced an impressive array of tools, frameworks and ex-
ploits.

For example, the overwhelming majority of programmers have to deal
with linking (and, every once in a while, with obscure linking errors), and
every Linux UNIX distribution nowadays relies on dynamic linking. Yet the
linking mechanisms and the corresponding parts of the binary file formats
are hardly covered in the standard CS curriculum, and just about the only
available book that goes into sufficient depth to cover this topic is M. Levine’s
“Linkers and Loaders”. Programmers learn to interpret and fix the errors, as
well as to avoid situations that create them, but they usually remain in the
dark about the actual mechanisms that cause them, whereas hacker publica-
tions explain these mechanisms11 in much technical detail, and provide tools
for examining and manipulating them, such as ELFsh12.

It is worth noting that although many aspects of the programmers’ daily
activity are directly affected by the design of the binary file format “insides”,
the knowledge of these is considered somewhat esoteric. Clearly, hackers
who studied this have an advantage over the typical traditionally trained
programmers.

C++ offers another example. Countless Object Oriented programming
books explain the concepts of overloading and inheritance, both in abstract
terms and on specific examples, using a variety of pedagogical techniques.
Nevertheless, students find themselves at a loss often enough when asked to
predict the outcome of mixing overloaded and virtual functions, let alone the

11E.g., a number of articles in Phrack 51, 54, 56, 59, 61
12http://elfsh.asgardlabs.org/

6



effects of multiple inheritance with both virtual and non-virtual functions
present. Indeed, a whole culture of job interview puzzles has sprung up
around such “trick questions”. A hacker interested in the topic would likely
start with the implementation of these mechanisms (name mangling used by
compilers and linkers, and vtables13 ), after which the answers become clear,
if not trivial.

The interest in internal workings of various programming language mech-
anisms is characteristic of the hacker approach. To the best of my knowledge,
a hacker is likely to learn about calling conventions and stack layouts, excep-
tion handling mechanisms such as stack unwinding and setjmp/longjmp, and
the basics of syscall implementations much earlier than the average student,
and often they do so right in beginning of their own programming career.
This gives them a different “set of tricks” that their peers who follow a more
traditional curriculum are not even aware of.

Another example of a tool ubiquitously used but rarely fully understood
is the debugger. Almost all programmers have used one, yet understanding
of the underlying operating system and hardware features is relatively rare,
and the number of available books covering the subject is in low digits14 Yet
a wealth of information on the subject was available to hackers for a long
time, e.g., on the legendary Fravia’s reverse engineering site; nowadays, the
best resource to find out about the finer points of debuggers is the OpenRCE
site15. Hackers had a clear advantage in this area – in fact, the industry
has eventually learned from them and borrowed many anti-debugging and
so-called content protection tricks developed by the hacker community16

3 The “hacker” curriculum

As we pointed out above, a number of topics in the education of a typical
hacker is either missing from the standard Computer Science curriculum, or
is presented in a radically different fashion. In particular, tools for injecting
arbitrary data (usually prepared and formatted by several layers of APIs) into

13Described, e.g., in Phrack 58#8
14The 1996 book “How Debuggers Work: Algorithms, Data Structures, and Architec-

ture” by Jonathan B. Rosenberg has been recently complemented by the “Hacker Disas-
sembling” and “Hacker Debugging” in the “Uncovered” series by Kris Kaspersky.

15http://openrce.org
16Such borrowing can be ill-advised, as the recent case of the “Sony Rootkit” has shown:

http://en.wikipedia.org/wiki/2005 Sony BMG CD copy protection scandal

7



the studied environment are indispensable and make an early appearance
in the hacker track; by the same token, examining the low-level state of
the system (“uncooked” even by development kits) is considered essential.
For example, when learning networking, a hacker is likely to immediately
encounter tools based on the libpcap and libnet libraries for capturing and
constructing raw packets respectively; the view of OS networking provided
by hacker tutorials is a cross-cut of the implementation details of the entire
stack, together with tools for affecting it on every level17.

We are going to illustrate the above points with the example of the
“Phrack” hacker e-zine, and discuss its education potential in the standard
CS curriculum. We chose “Phrack” because of its long history and its repu-
tation within the hacking community. It also enjoys the distinction of being
amply quoted by academic security publications18.

While gathering material for a computer security course, I realized that
most of the background material necessary to understand modern vulner-
abilities and exploits was either conspicuously absent from the traditional
CS curriculum or relegated to obscure footnotes generally ignored by the
students. I was able to find some of the necessary material in a number of
a recently published books such as “Exploiting Software” by McGraw and
Hoglund, “Shellcoder’s Handbook” by Koziol et al. Yet, as my recommended
book list grew beyond ten items, I had to look for a different source to fill
the gaps.

The electronic hacker magazine Phrack (http://phrack.org), dedicated
to disclosing new exploitation techniques, provided an excellent selection of
short articles with hands-on introductions to the missing background topics.
These topics ranged from loading and relocation of binaries, dynamic linking,
binary file formats, OS support for tracing and other debugging, memory al-
location schemes, and IP stack implementations to common features of mod-
ern hardware hardly ever discussed in computer architecture courses (where
they were apparently sacrificed in favor of hammering home various kinds

17See the recently published books “Building Open Source Network Security Tools:
Components and Techniques” by Mike Schiffman, and “Hack the Stack: Using Snort and
Ethereal to Master the 8 Layers of an Insecure Network” by Michael Gregg for examples of
this approach, which has become the de-facto hacker standard long before it was codified
in these and other books on the subject.

18In particular, the article “Smashing the stack for fun and profit” by Aleph One in
Phrack vol. 7 issue 49 (1996) has become a standard reference for that type of attacks.

8



of RISC-vs-CISC arguments19). For a number of years Phrack has compre-
hensively covered the emerging exploitation methods from stack smashing,
integer overflows, return-to-libraries, format string, and heap manipulation
to GPS jamming and esoteric hardware faults. Its range of coverage of net-
work issues is equally diverse.

I found that Phrack’s short and to the point introductions to these topics
were often the students’ first encounter with the respective subjects. Despite
their daily use, these topics were never a part of the students’ awareness of
their computing environment. From the attacker’s point of view, this is the
best of possible worlds: an attack vector that the defender is not even aware
of is the most effective.

It is no coincidence that both Phrack articles and the best of recently
published books on the fundamentals of computer security have to start
with general exposition of a number of “mundane” technical topics in OS
and networking. This situation suggests that these topics are being unduly
overlooked in the present curriculum. Indeed, it is hardly possible to se-
cure systems without awareness of how they really work and how their basic
mechanisms are implemented. Concentrating on only a few links in the chain
is never enough for the defender.

I found that Phrack and similar resources also helped the students to
develop the hacking approach to exploring or second-guessing the logic of
the respective implementations – a key attacker skill. The main obstacle
towards developing the hacking approach was that the students’ attitude,
apparently conditioned by their previous programming experience, was that
of a developer rather than a tester, a reverse engineer, or an attacker. In
a nutshell, a developer is rewarded for sticking to tried-and-true recipes of
making things work and avoiding non-standard and non-portable features,
generally learns to trust API and interface documentation, etc. In short, de-
velopers intentionally confine themselves to working within narrowed models
of computing environments, for better productivity or compatibility, whereas
in reality such confines do not exist or can be bent by the attacker.

The role of this conditioning should not be underestimated. From an
undergraduate student coding his homework assignment to a professional
developer striving to meet a deadline, programmers are under pressure to

19As a result, it is not untypical for CS graduate students after such a course to know
much about about an imaginary architecture but very little about their actual desktop
PC.

9



produce working, easy-to-understand code as soon as possible, leaving them
no time to “question everything”, explore less-used features of libraries and
protocols, or puzzle out how particular APIs are implemented (not to men-
tion that the latter activity tends to be discouraged by proprietary software
vendors, sometimes in an extremely heavy-handed manner).

To learn security skills it is necessary for the students and developers
to be able to switch from this developer conditioning to the attacker way
of thinking. Exposure to the hacker culture through hacker conferences like
Defcon and others, Phrack and similar publications, as well as to comprehen-
sive collections such as Packet Storm, (http://packetstormsecurty.org),
helps this by providing the necessary culture shock, an “aha moment” (“Oh,
so this is how it actually works!”), and should, in my opinion, be an integral
part of every in-depth security curriculum. Recipes for preventing particular
kinds of exploits are only a small part of the value provided by these materi-
als. Their primary contribution lies in facilitating a deeper understanding of
the underlying systems, by exposing the implicit assumptions of its design-
ers, and by concentrating their attention on the “big picture” of the system
and its environment, especially on issues typically glossed over.

Conclusion

The hacker culture has accumulated a wealth of efficient, if different from
those accepted in the industry and academia, values, practices and approaches.
In particular, the “curriculum” experienced by a hacker while learning his
skills is substantially different. Yet, in many respects it produces impres-
sive results that enrich the other cultures, and its influence and exchange of
ideas with these others are growing. Therefore understanding and describ-
ing these “curriculum” and approaches is becoming more important day by
day. Ignoring or marginalizing the hacker culture means passing up unique
opportunities and valuable knowledge — at our own risk.

10


