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Abstract

In four-player pointer jumping, players observe some of the edges in a directed graph con-
sisting of five layers of nodes numbered 0 . . . 4 where layer 0 has a single node and layer 4
has two nodes. All nodes except those in the last layer possess a single edge pointing to a
node in the next layer. Players wish to calculate the node reached by following the path of
edges from the first layer in the graph to the last.

In the general input model for pointer jumping, Player i observes all edges in the graph
except those leading from layer i − 1 to layer i. We give a lower bound for the one-way
communication complexity of the four-player player pointer jumping function with the added
restriction to the general input model that Player 3 does not see the edges from layer 1 to
layer 2.

As an appendix, we provide observations obtained in our investigation into four-player
pointer jumping function in the general model.
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Chapter 1

Introduction

Computer science is a field that studies computational problems. Computer scientists may
analyze the properties of such problems, attempt to solve them, or implement their solu-
tions. A question central to all of these pursuits is: how challenging is it to solve a given
computational problem? Complexity theory attempts to measure the difficulty of these prob-
lems in relation to all other such problems by grouping them into classes. These classes of
problems may be organized on any of a variety of a problem’s characteristics. Frequently
studied characteristics include the amount of computation required to solve a problem (time
complexity), or the amount of memory necessary to solve the problem (space complexity).

1.1 Communication Complexity

When multiple parties individually hold information that is mutually necessary to solve a
computational problem, they must communicate in order to compute the correct solution.
Communication complexity is the study of how much information these parties must send
to each other. These problems, often referred to as communication games, are commonly
constructed as follows: each party in a communication game is given an input or several
inputs to a function, and the parties wish to know the function’s output. No party observes
all of the inputs to the function, and consequently they must send information to each other
in order to compute its output.

1.2 The Two-Player Model

The most familiar model for communication games is the two-player model due to Yao. In
this model, for a function f : X × Y → Z, there are two parties, Alice and Bob, assumed to
have unlimited computing power. They are given inputs x ∈ X and y ∈ Y respectively, and
they wish to compute the value f(x, y). Alice and Bob communicate according to a fixed
protocol composed of a series of stages in which one player sends a message in the form of
a sequence of bits to the other player. At each stage, the protocol must determine if the
communication game is over, and if not, specify which player speaks next. At any given
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stage, the protocol must determine the message of the player to speak based solely on the
information available to that player. That is, the player’s input and the messages sent thus
far. At the termination of the protocol, at least one of the players must be able to compute
f(x, y).

The cost of such a protocol, P , on input (x, y) is the total number of bits the players
communicate to each other when running the protocol on this input. The cost of P is the
maximum cost of P over all inputs (x, y). We say that the communication complexity of
f is the minimum cost of any protocol P over all protocols that compute f . Note that if
each player receives an input of n bits, a protocol can simply have one player send all n bits
to the other, allowing him to compute f , placing a trivial upper bound on the communi-
cation complexity of the function. However, providing meaningful upper and lower bounds
frequently relies on more sophisticated tools. We wish to examine lower bounds.

A key concept in lower bounding the communication complexity of functions in the two-
player model is the notion of a combinatorial rectangle, often simply referred to as a rectangle.
For A ⊆ X, B ⊆ Y , we call R = A× B ⊆ X × Y as a rectangle. Rectangles are important
to the study of communication protocols because the set of inputs that cause a protocol to
compute any output form a combinatorial rectangle. Loosely, this is a consequence of the
protocol having to specify a player’s message without knowledge of the other player’s input.
As an example, suppose at a given stage, it is Alice’s turn to speak and so far she has sent
messages a1, ..., ai, and Bob has sent messages b1, ..., bj. Suppose that on this sequence of
messages, Alice will respond with message ai+1 if she has as her input either x or x′. When
Bob receives the message, he cannot distinguish whether Alice sent the message on either
x or x′. Thus, if the protocol were to end here with output z and Bob sent his messages
on input y, then the combinatorial rectangle {(x, y), (x′y)} causes the protocol to compute
z. Thus, if we determine that any protocol for f must partition X × Y into a minimum
of t rectangles, the protocol must utilize at least t different sequences of messages. Since
such sequences of messages are sent with bits and it takes at least log2 t bits to describe the
longest sequence, we can lower bound the complexity of f with Ω(log t).

Variations on the basic two-party model sketched above include nondeterminism, ran-
domized communication, probability distributions on the inputs, and more. For formal
definitions and a more thorough introduction to all of these topics, refer to [5]. Another
extension to the two-party model is the inclusion of more players in what are known as
multiparty protocols.

1.3 Multiparty Protocols

Multiparty protocols include k players who wish to compute the value of a function f :
X1 × X2 × . . . × Xk → Z. There are variations on how players observe their inputs, but
the one we wish to concern ourselves with is known as the number on the forehead model.
Visually, one can think of player i in this model as having input i written on her forehead.
That is, she observes all inputs except xi. We interchangeably refer to this model in the
context of four-player pointer jumping as the general input model.
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Players communicate according to the blackboard model: that is, players can be thought
of as writing their messages on a blackboard so that messages are observed by all players.
The cost of a protocol on input (x1, x2, . . . , xk) in this setting is defined as the number of
bits that players write to the blackboard according to the protocol.

Proving lower bounds in this setting can be challenging because each player is aware of
a greater portion of the input. Each player observes k − 1 of k inputs, making the players’
task of computing f easier so that players have less need to communicate. This makes the
prover’s task of lower bounding the necessary communication harder.

A combinatorial structure for multiparty protocols analogous to the function of rectangles
for two-party protocols is the cylinder intersection.

Definition 1 Let S
(i)
j ⊆ Xj. We define Ci to be a cylinder in the ith dimension if Ci =

S
(i)
1 ×S

(i)
2 × . . .×Xi× . . .×S

(i)
k . That is, Ci is a cylinder in the ith dimension if membership

in Ci does not depend on the ith coordinate. Thus, if (x1, . . . , xi, . . . xk) ∈ Ci, then ∀x′i ∈
Xi, (x1, . . . , x

′
i, . . . xk) ∈ Ci.

We define C to be a cylinder intersection if it is the intersection of k cylinders in the
dimensions 1 through k. That is, C = ∩k

i=1Ci.

As with rectangle intersections, if any protocol that computes f must partition the input
into at least t cylinder intersections, then we can lower bound the communication com-
plexity of f with Ω(log t). For more details concerning multiparty protocols and cylinder
intersections, consult [5].

1.4 Rounds and One-way Protocols

We may constrain players in communication games to exchange only a limited number of
rounds of messages. Rounds are defined in the two-party setting as the number of alternations
between when Alice and Bob communicate [5]. For certain functions, restricting the number
of rounds a protocol allows can dramatically increase the complexity. We define a round in
multiparty protocols to be a group of stages in the protocol in which each player is allowed
to speak at most once.

In one-round protocols, each player is allowed to speak only once. A special case of
one-round protocols are one-way protocols, in which players speak only once in the order
P1, P2, ..., Pk with Pk writing the solution to the blackboard. One-way multiparty protocols
are of special interest because of their relation to other types of complexity.

1.5 One-way Multiparty Protocols and ACC Circuits

A circuit is a directed acyclic graph with a set of inputs nodes, a set of gate nodes, and a
set of output nodes. Input nodes are given boolean labels and are sources, meaning they
have in-degree zero. Gate nodes are vertices labeled with boolean functions that take inputs
equal to their fan-in, that is, their in-degree. Output nodes are sinks, that is, they have
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out-degree zero. The size of a circuit is the total number of gate nodes in the circuit. The
depth of a circuit is the maximum number of edges between any input and output node [3].
For a more complete introduction to circuits, refer to [5].

The class of functions computable by unbounded fan-in circuits of polynomial size and
bounded depth using the gates AND, OR, NOT, and MODm for a fixed m is referred to as
ACC. Any function in “ACC can be computed by a one-way protocol with polylogarithmic
number of players and only polylogarithmic cost” ([2] citing a result of [4]). Providing a
function computed with polylogarithmic number of players requiring more than polyloga-
rithmic cost using a one-way or simultaneous protocol would show the function is not in
ACC. No explicit function has yet been shown to not be in ACC; however, some functions
exhibit characteristics that make them promising candidates. The pointer jumping function
is one such candidate. This is because pointer jumping is known to be LOGSPACE-complete.
Thus, proving pointer jumping is in ACC would show that all other functions in LOGSPACE
are also in ACC. It seems doubtful that all of these functions actually belong to ACC be-
cause ACC is a complexity class in which membership is determined by the computational
steps needed to solve a problem. In contrast, LOGSPACE is a complexity class that groups
problems by the amount of space they require.
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Chapter 2

Pointer Jumping

2.1 Definition

Several different definitions of pointer jumping are given in the literature, but the fundamen-
tal structure of the problem remains the same throughout these variations. We construct the
basic framework for pointer jumping as follows: in a directed graph there are layers of nodes;
each node has out-degree one with an edge to a node in the following layer; players receive
a partial list of these edges, known as pointers, and wish to compute the node reached by k
pointer jumps from a given starting node. The pointer jumping function, “simulates many
naturally occurring functions, e.g. shifting, addressing, multiplication of binary numbers,
convolutions, etc” [2]. We now lay out several flavors of the pointer jumping:

• Kushilevitz and Nisan [5] along with Nisan and Wigderson [8] envision the pointer
jumping in the two-party model. Alice and Bob are each given a list of n pointers.
Each pointer in one of these lists points to a pointer in the opposite list. The protocol
is k-rounds and seeks to compute the output starting from a pointer in Alice’s input.

• Damm et al. consider pointer jumping when there are k players. There is a starting
node followed by k ordered layers, each containing n nodes. Players communicate
according to a one-way protocol and observe inputs according to the conservative
model (see Section 2.2) [2].

• Babai et al. consider the pointer jumping function as a special case of the more general
composition function. We adopt their definition, given formally below.

Definition 2 (Babai et al. [1], Definition 9.10) For a positive integer n, we set [n] :=
{1, . . . , n}. Let m0, m1, . . . ,mk be positive integers. The k-party composition function takes
as input a k-tuple (f1, . . . , fk) of functions, where f1 : [m0] → [m1], f2 : [m1] → [m2], . . . , fk :
[mk−1] → [mk], and returns their composition, fk ◦ fk−1 ◦ . . . ◦ f1.

Definition 3 (Babai et al. [1], Definition 9.10 cont’d.) In the special case of the k-
party composition function when m0 = 1, mk = 2, this function is boolean, and is called
the k-party pointer jumping function.
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Lemma 1 When the players speak in any order except the one-way order, the communica-
tion complexity of the k-party pointer jumping function is O(log n).

Proof: If the players speak in any order except the one-way order, there must be some Player
i who speaks before Player j where i > j. When it is Player i’s turn to speak, Player i simply
writes on the board the node reached by the first j pointer jumps. That is, Player i writes
fi(fi−1(. . . (f1(1))))) ∈ [mi]. Since m1 ≤ n, this requires at most log2 n communication bits.
Player j can see all functions fi+1, . . . fk−1, fk and so Player j now has enough information
to compute the output. Thus, the protocol uses O(log n) communication bits. []

2.1.1 The Relation to ACC

In Section 1.5 we related one-way protocols to ACC and observed that pointer jumping is
a promising candidate for showing a function to not be in ACC. By Definitions 2 and 3
and the obsevations made in Section 1.5, in order to prove that pointer jumping is not in
ACC, one would specifically need to show that the one-way or simultaneous communication
complexity of pointer jumping with k ≥ polylog(n) is Ω(nε) for a positive constant ε where
n = max(m1, m2, . . . ,mk−1).

2.2 Lower Bounds for Multiparty Pointer Jumping in

the Conservative Model

We now outline a result of Damm et al. for multiparty pointer jumping. For a thorough
understanding of the result, refer to [2]. Damm et al. were curious to examine pointer
jumping because of its association to the ACC complexity class 1.5. Consequently, they were
interested in the one-way complexity of the pointer jumping function with large number of
players. No lower bounds for pointer jumping with k > 3 had yet been shown, so to simplify
their analysis, they examined the problem in the conservative model.

Recall the definition of pointer jumping used by Damm et al. which can be obtained from
our Definition 3 by setting m1, . . . ,mk−1 = n and changing the last layer of nodes to contain
n nodes. The conservative model restricts the input model by limiting Player i from seeing
the inputs f1, . . . , fi−1 that she would see in the general model. Instead, Player i observes
the node reached by the first i − 1 pointer jumps, that is, the value of fi−1(. . . (f1(1))).
Player i continues to see inputs fi+1, . . . , fk. Damm et al. first compute an upper bound on
the communication complexity of pointer jumping when k ≤ log∗ n, proving that there is a
conservative protocol to compute the pointer jumping function using only n logk−1 n + O(n)
communication bits (Damm et al. Theorem 4.1 [2]). They then consider lower bounds.

They provide two lower bounds, both of which make use of an analysis on the density
of inputs on which the protocol will output the correct answer. Loosely, the idea is that
the players’ messages must partition the input space into cylinder intersections so that the
average size is no larger than the density multiplied by the size of the total input space.
These bounds are:
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1. The conservative one-way communication complexity of the pointer jumping function
for k = o((n/ log n)1/3) is lower bounded by Ω(n/k2) (Damm et al. Theorem 5.4 [2]).
The basic technique they apply in arriving at this result is a reduction of conservative
one-way protocols for k-party pointer jumping to a protocol for (k − 1)-party pointer
jumping. They iteratively perform the reduction until only one party remains to arrive
at a contradiction.

2. The conservative one-way communication complexity of the pointer jumping function
for any k ≤ log∗ n − ω(1) is lower bounded by Ω((n logk−1 n)(1 − o(1))) (Damm et
al. Theorem 5.6 [2]). They prove this result using a counting argument to arrive at a
contradiction based upon their density analysis.

2.3 Communication Complexity with Help

Most of the following section summarizes or quotes results from Babai et al. in [1]. We rely
upon the communication with help framework established by Babai et al. in proving our
main result.

Babai et al. introduce the notion of communication complexity with help for multiparty
communication games in which the players wish to compute a function with output of b
bits. They envision a Helper able to see all of the inputs that writes a help message on the
board before the players begin their communication. If the Helper were to write a message
of length b, the Helper could simply write the output. Therefore, they restrict the Helper to
sending at most r ≤ b− 1 bits (for more on communication with help, consult [1]).

Definition 4 (Babai et al. [1], Definition 1.2) The communication complexity of f with

help, denoted by Chelp(r, f) is the minimum cost of a protocol with r bits of help for f .

Notation 1 (Babai et al. [1], Construction 6.1) Let B = {0, 1}b, and let f : X2 ×
. . . × Xk → B be any function. We define f̃ : {1, . . . , b} × X2 × . . . × Xk → {0, 1} by
f̃(i, x2, . . . , xk) = f(x2, . . . , xk)i. In other words, Player 1’s input specifies a single bit of the
output of f .

Let 1C(f̃) be the communication complexity of f̃ when Player 1 speaks first but never speaks
again.

Lemma 2 (Babai et al. [1], Definition 6.2) 1C(f̃) ≥ min
(
b, Chelp(b− 1, f)/b

)
Proof: “Suppose we are given a communication protocol that computes f , that begins
with Player 1 sending at most b − 1 bits, but never speaking again. We use this protocol
to construct a (k − 1)-party protocol with help to compute the function f itself. In this
protocol, on input (x2, . . . , xk), the Helper sends the same message Player 1 would send in
the protocol for f̃ . Players 2 through k now compute f̃(i, x2, . . . , xk) for each possible value
of i, using the given protocol. After this, every bit of f(x1, . . . , xk) has been found, and
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at most b1C(f̃) bits of communication have been used.” [1]. (Note: we believe there is a
typo in the last line this proof, and that it should actually read: “After this, every bit of
f(x2, . . . , xk) has been found. . .”) The minimum is present in the bound because in the case
where no protocol exists to compute f that begins with Player 1 sending at most b− 1 bits
but never speaking again, Player 1 must have sent at least b bits.

2.4 Lower Bounds on the Communication Complexity

of the Bits of Hash Value Function

In formulating the communication with help framework, Babai et al. were inspired by a result
of Nisan and Wigderson concerning the bits of hash value function [8]. The function can be
defined as follows: BHV : {0, 1}2n × {0, 1}n × {0, 1}log n The first set is a 2-universal family
of hash function (a hash family where all functions in the family have equal probability of
mapping a given input to any given output) from {0, 1}n → {0, 1}n. The second set consists
of inputs to the hash function, and the last set consists of indices into the output. Thus,
BHV (x, y, z) computes x(y)z, that is, the zth bit of x(y).

Nisan and Wigderson give a lower bound of Ω(
√

n) for the one-way communication
complexity of the bits of has value function [8]. They prove the bound using an analysis
of probabilities conditioned on the messages the players send then invoking the Leftover
Hash Lemma of Mansour et al. [6]. We had a somewhat difficult time understanding their
argument and found the recasting of the bound in Babai et al. to be clearer [1].

Babai et al. obtain the same result by placing the problem in the formal communication
with help framework. They invoke the same Leftover Hash Lemma and then examine the
output of the hash function before it is indexed using multicolor discrepancy [1]. For more
on multicolor discrepancy, we refer the curious reader to [1] and [5].

2.5 Lower Bounds on the Communication Complexity

of Three-player Pointer Jumping

Citing an unpublished proof by Wigderson, Babai et al. provide an Ω(
√

n) lower bound on
the one-way communication complexity with an analysis utilizing the communication with
help framework. Some of their techniques served as inspiration for the tools we employ in our
analysis. They first relate three-player pointer jumping to two-player composition with help.
They then provide a proof via a shifting argument allowing them to assume that Player 3,
the player whose message indicates the value computed by the protocol, outputs a message of
a certain form. This section of the proof included an observation concerning near-Hamming
balls that that we were unable to relate to their overarching analysis of pointer jumping and
composition. Finally, they provide a counting argument analyzing the number of inputs on
which the protocol computes the correct answer over sets of inputs corresponding to the
messages sent by Player 2 in order to arrive at the bound.
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In their proof of the bound, Babai et al. use crucially the fact that the sets causing Player
2 to send a given message are rectangles. In four-player pointer jumping, the analogous sets
are cylinder intersections, although we introduce a simplification to the input model to allow
us to assume these sets are cylinders rather than cylinder intersections.
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Chapter 3

Lower Bounds on the Communication
Complexity of Four-player Pointer
Jumping

We examine the one-way communication complexity of the four-party pointer jumping func-
tion when n = m3 = m2 = (m1)

2 (see Definition 3). Further, we limit the input model by
restricting Player 3 from seeing the input (f2). In this model:

1. Player 1 sees (f2, f3, f4)

2. Player 2 sees (f1, f3, f4)

3. Player 3 sees (f1, f4)

4. Player 4 sees (f1, f2, f3)

This makes the pointer jumping function slightly harder for the players to compute, and
thus it is slightly easier to lower bound its communication complexity. Though the bound
for four-party pointer jumping in the number on the forehead model is the more interesting
problem, we believe our techniques may be an important step toward finding a lower bound
in the number on the forehead input model.

Theorem 1 (Main result) For the four-player pointer jumping function in the above re-
stricted model where n = m3 = m2 = (m1)

2, the one-way communication complexity is
Ω(
√

n).

Building upon the techniques presented in [1], our proof proceeds by relating the the four-
party pointer jumping function to a three-party composition function with help, and then
showing that in order to solve the problem with fewer than some amount of communication,
at least one of several conditions, each of which would lead to a contradiction, must be true.

The three-party composition function we wish to consider takes as input the three tuple
(f2, f3, f4), and outputs their composition: f4 ◦f3 ◦f2. Note that because f2 takes m1 inputs
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Figure 3.1: The graph view of four-player pointer jumping.

and f4 has two possible output values, it takes m1 bits to describe a composition of this
sort. There is no longer an input f1. Communication occurs with Player 1 acting as Helper,
speaking first by sending the help message, and then communication proceeds in a one-way
fashion.

Suppose we are given a protocol of cost less than
√

n/32 for the four-party pointer
jumping problem. We can use this protocol to construct a new protocol for the three-party
composition function with help that uses at most n/32 communication bits. We can do this
as follows. Player 1 sends as a help message the same message he would have sent in the
protocol for four-party pointer jumping. Then, for each 1 ≤ i ≤ m1, Player 2 sends the
message he would have sent if f1(1) = i given Player 1’s message in the original protocol.
Likewise, Player 3 then sends for each 1 ≤ i ≤ m1 the message she would have sent if
f1(1) = i given Player 1 and 2’s messages in the original protocol. Player 4 now has enough
information to compute f4 ◦ f3 ◦ f2(i) for each i ∈ [m1], and thus can output the desired
composition. We will limit the Helper to sending fewer than

√
n/8 bits. If the Helper

must send
√

n/8 bits or more, the original protocol must have used at least Ω(
√

n) bits of
communication.

We now present a shifting argument to reduce the size of the set of Player 4’s output.
This technique is similar to that presented in [1] for a similar purpose. Recall that in the
three-party composition function, Player 4 receives inputs (f2, f3) and outputs a function
from [m1] → [m4]. Thus, we can describe Player 4’s output with the function b(f2, f3) :

[m2]
[m1]× [m3]

[m2] → [m4]
[m1]. The number of such functions b is

(
mm1

4

)m
m1
2 m

m2
3 . The shifting

will reduce the size of the output space we must consider to mm3
4 .
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Before presenting the shifting argument, we first introduce some notation that we will
use in the proof of Lemma 3 and the subsequent remark.

Notation 2 Let m1, m2, m3, m4 be positive integers. α, β, and γ, γ̂, γ′ are functions: α ∈
[m2]

[m1], β ∈ [m3]
[m2], and γ, γ̂, γ′ ∈ [m4]

[m3]. S, Ŝ, S ′ ⊆ [m4]
[m3]. When we draw α or β,

at random, α is drawn with uniform probability from [m2]
[m1] and β is drawn with uniform

probability from [m3]
[m2]. In the proof of Lemma 3, γ is drawn with uniform probability from

S. Let b, b̂ be functions such that b, b̂ : [m2]
[m1] × [m3]

[m2] → [m4]
[m1]. Finally, p(b, S, α, β) =

Prγ[b(α, β) = γ ◦ β ◦ α].

Lemma 3 (Shifting Lemma, modeled on Babai et al. [1], Lemma 9.16) For all pairs
(b, S), for all γ̂, there exists Ŝ such that |Ŝ| = |S| and for all α, β, p(b, S, α, β) ≤ p(b̂, Ŝ, α, β)
where b̂ denotes the function γ̂ ◦ β ◦ α.

We give a construction modeled on the shifting construction in [1] to prove the Lemma.
The outer loop of the construction obeys the following invariant: at the end of the loop, for
every α, β, p(b, S, α, β) either increases or remains the same.

for j:=1 to m3 do
S ′ := ∅;
for γ ∈ S do

Let γ′ be defined by γ′(i) :=

{
γ̂(j)ifi = j

γ(i)otherwise
;

if γ′ /∈ S then
add γ′ to S ′;

else
add γ to S;

end

end
S := S ′;

Redefine b so that, for all α, β

{
b(α, β)(i) = γ̂(j) when β(α(i)) = j

b(α, β)(i) is unchanged otherwise
;

end

Observe that at the end of each iteration of the outer loop, for each γ that was in S,
either a γ or a γ′ is added to S ′. Thus, every time the construction replaces S with S ′,
the size of S remains the same. To see that at the end of each iteration of the outer loop,
for every α, β, p(b, S, α, β) either increases or remains the same, note the following for each
iteration of the outer loop:

1. For a given j ∈ [m3], we modified b so that the function it outputs behaves the same
as the the composition γ̂ ◦ β ◦ α does for all (α, β) when the composition β ◦ α would
output j
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Figure 3.2: α and β specify a vertical line to which we may apply the shift.

2. For a given j ∈ [m3], the inner loop either changed functions γ ∈ S to behave as γ̂
does on j or left them as they were. No γ is changed on any other coordinate, so the
number of γ ∈ S that behave as γ̂ does on all coordinates either increases or remains
the same at the end of each iteration of the outer loop.

This proves the Lemma. Note that this construction would still behave as desired if,
outside of the loops, we set for all α, β, b(α, β)(i) = γ̂(β(α(i))). We have written the
construction as above so that it obeys the invariant used in proving the Lemma. []

Remark 1 (The Application of the Shift) Suppose we have a partition Φ = Y1∪. . .∪Yq

of [m2]
[m1] × [m3]

[m2] × [2][m3] where q is a positive integer. Note that the code given in the
proof of the Shifting Lemma (Lemma 3) does not actually shift sets of the form Y ⊆ [m2]

[m1]×
[m3]

[m2] × [2][m3], but instead shifts sets of the form S ⊆ [2][m3]. Observe that the pair (α, β)
specify a vertical line in the cuboid [m2]

[m1]× [m3]
[m2]× [2][m3] (Figure 3). Taking this vertical

line in the partition Φ specifies a partition of [2][m3] of the form Π = S1∪ . . .∪Sp where p is a
positive integer. With this in mind, we apply the shift to the space [m2]

[m1]× [m3]
[m2]× [2][m3]

by iterating through all pairs (a, b) ∈ [m2]
[m1]× [m3]

[m2] and shift the sets in the corresponding
partition with respect to γ̂.

We now return to consider the composition function itself. In the protocol with help,
denote the message h as the help message sent by Player 1, s as the message sent by Player
2, and t as the message sent by Player 3. We now define a set.

Definition 5 Yh,s,t = {(f2, f3, f4) : Player 2 sends s given h, and Player 3 sends t given
(h, s)}.

The inputs to the three-party composition function can be thought of as composing a
cuboid in three dimensions with the f4 axis pointing toward the top of the page and the f2
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axis pointing into the page as in Figure 3. The sets Yh,s,t form cylinders within this cuboid.
(In the general input model, the equivalent sets would be cylinder intersections). Note that
these cylinders partition the cuboid on fixed h. By the Shifting Lemma (Lemma 3), we can
refer to Player 4’s output for an input (f2, f3, f4) ∈ Yh,s,t after shifting by gh,s,t ∈ [m4]

[m3]. We
now consider the consequences of shifting these zones according to the shifting construction
given in the proof for the Shifting Lemma (Lemma 3) all with respect to a fixed g ∈ [m4]

[m3].
For simplicity, we now refer to any gh,s,t by g.

Definition 6 The Hamming distance of functions a, b : C → D in the same family is the
number of inputs on which a and b produce different outputs. We denote the Hamming
distance of a, b as dist(a, b). We call a near to b if dist(a, b) < |C|/4. We call a far from b
if dist(a, b) ≥ |C|/4.

In the proofs of Lemmas 4, 5, and 6 below, we use the following conventions. Fix a
help message h. We say the shifting construction given in the proof of the Shifting Lemma
(Lemma 3) maps (f2, f3, f4) ∈ Yh,s,t, to (f2, f3, f

′
4). Further, throughout the rest of the proof,

we define Nh to be the number of help messages used by the protocol and we define Ns,t

and Nh,s,t to be the number of message pairs (s, t) and number of message triples (h, s, t)
respectively.

Lemma 4 (Similar to Babai et al. [1], Lemma 9.18)

|{(f2, f3, f4) : f ′4 is near g]}| ≤ mm1
2 mm2

3 mm3
4 2−m3/6 ×Ns,t

Proof: Enumerate the zones Yh,s,t from Y1, . . . , YNs,t . Then:

Pr
f2,f3,f4

[f ′4 is near g] = Pr
f2,f3,f4

[(f2, f3, f4) ∈ Y1 ∧ f ′4 is near g] + . . .

+ Pr
f2,f3,f4

[(f2, f3, f4) ∈ YNs,t ∧ f ′4 is near g].

Observe that for all g, the number of functions f ′4 near to g is less than or equal to∑m3/4
i=0

(
m3

i

)
(m4 − 1)i. From binary entropy, we have that

∑m3/4
i=0

(
m3

i

)
< 2m3H(1/4) where

H is the binary entropy function. From [1], we have that H(1/4) < 5/6. Thus, the number
of functions f4 near to g < 25m3/6(m4 − 1)m3/4. For m4 = 2, we can simplify this to 25m3/6.
Thus:

Pr
f2,f3,f4

[f ′4 is near g | (f2, f3, f4) ∈ Yi] ≤
25m3/6mm1

2 mm2
3

|Yi|
.

Plugging in, we see that:

Ns,t∑
i=1

Pr
f2,f3,f4

[(f2, f3, f4) ∈ Yi] Pr
f2,f3,f4

[f ′4 is near g | (f2, f3, f4) ∈ Yi] =

Ns,t∑
i=1

|Yi|
mm1

2 mm2
3 2m3

25m3/6mm1
2 mm2

3

|Yi|
= 2−m3/6 ×Ns,t .
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Figure 3.3: The “forbidden zone” consists of all inputs i to f ′4 where f ′4(i) 6= g(i). If f3 maps
fewer than 1/8 of its inputs to this zone, we call it bad.

Thus:
Pr

f2,f3,f4

[f ′4 is near g] ≤ 2−m3/6 ×Ns,t

. And because we have exactly mm1
2 choices for f2, mm2

3 choices for f3 and mm3
4 choices for

f4, we can use this probability to bound the size of the set considered in the statement of
the Lemma above by a simple multiplication. This completes the proof. []

We now consider those points (f2, f3, f4) ∈ Yh,s,t that the shifting construction maps to
points (f2, f3, f

′
4) where f ′4 is far from g.

Definition 7 We call f3 bad with respect to (f ′4, g) if f3 maps fewer than m2/8 inputs
to points in [m3] on which f ′4 and g disagree. That is, f3 is bad with respect to (f ′4, g)
if |{i : i ∈ [m2], g(f3(i)) 6= f ′4(f3(i))}| ≤ m2/8. We call f3 good with respect to (f ′4, g)
otherwise.

We choose the nomenclature bad and good because on a bad f3, Player 4 has a high
likelihood of outputting the correct answer over all f2. We, as the provers, wish to make it
as difficult as possible for the players to compute the correct answer, and so for us, this is
bad.

We now observe a property of the shifting construction given in the proof of the Shifting
Lemma (Lemma 3) when it is applied to a cylinder Yh,s,t.

For f4 ∈ [m4]
[m3], we define Pf4 to be the plane in the input cuboid corresponding to

f4. In set notation, Pf4 = {((α, β, f4)) : α ∈ [m2]
[m1], β ∈ [m3]

[m2]}. For f3 ∈ [m4]
[m3],

f4 ∈ [m4]
[m3], we define Lf3,f4 to be the line corresponding to f3 on the plane corresponding

to f4 corresponding to f4. In set notation, Lf3,f4 = {(α, f3, f4) : α ∈ [m2]
[m1]}.

Observe that because neither Player 2 nor 3 knows the input f2, all cylinders Yh,s,t

extend fully across the f2 axis of the input cuboid. Mathematically, for α1, α2 ∈ [m2]
[m1],

(α1, f3, f4) ∈ Yh,s,t ↔ (α2, f3, f4) ∈ Yh,s,t. A little thought shows that as a result of this
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property, any line Lf3,f4 will lie entirely inside the same cylinder Yh,s,t and as a result it will
be shifted contiguously so that all points on the line are shifted to a new line Lf3,f ′

4
. Thus,

we may speak of the shift as shifting lines rather than merely shifting points.

Definition 8 We call Lf3,f ′
4

a bad line if f3 is bad with respect to (f ′4, g). We call Lf3,f ′
4

a
good line otherwise.

Lemma 5

|{(f2, f3, f4) : f ′4 is far from g ∧ Lf3,f ′
4

is a bad line}| ≤
mm1

2 mm2
3 mm3

4 e−m2/32 ×Ns,t

Proof: We prove this result using the Chernoff bound.
Fix a plane Pf ′

4
where f ′4 is far from g. Let

pi = Pr
f3

[f ′4(f3(i)) 6= g(f3(i))].

Because f ′4 is far from g, for all i ∈ [m2], pi ≥ 1/4. Let Xi be an indicator random variable for
whether a randomly selected f3 maps i to one of the points on which f ′4 and g disagree. Then
Pr[Xi = 1] = pi, and Pr[Xi = 0] = 1− pi. We define X =

∑m2

i=0 Xi. Clearly, E(X) ≥ m2/4.
Applying the Chernoff bound (see [7]), we see that:

Pr[X < (1− 1/2)
m2

4
] ≤ e−m2(1/4)

(1/2)2

2 = e−m2/32.

This gives us the probability that a line Lf3,f ′
4
is bad for fixed f ′4 far from g. Note, however,

that the shifting construction may shift more than one line to the same Lf3,f ′
4

(Figure 3). At
most one line may be shifted to this position per cylinder Yh,s,t. Thus, for any (f3, f4) where
f ′4 is far from g, we can bound the probability that Lf3,f ′

4
will be bad with e−m2/32 × Ns,t.

Since each line contains mm1
2 points and there are mm2

3 choices for f3 and mm3
4 choices for

f4, we have that:

|{(f2, f3, f4) : f ′4 is far from g ∧ Lf3,f ′
4

is a bad line}| ≤ mm1
2 mm2

3 mm3
4 e−m2/32 ×Ns,t

and this proves the bound. []

Lemma 6

|{(f2, f3, f4) : f ′4 is far from g ∧ Lf3,f ′
4

is a good line ∧
f ′4 ◦ f3 ◦ f2 = g ◦ f3 ◦ f2}| ≤ mm1

2 mm2
3 mm3

4 e−m1/8

Proof: We bound this quantity using a technique similar to that used by Babai et al. in
their Lemma 9.16 [1].

Consider any line Lf3,f4 such that Lf3,f ′
4
. Observe that on this line, dist(f ′4 ◦ f3 , g ◦ f3) ≥

m2/8. Thus, if f2 maps any of its inputs to these m2/8 points of disagreement, Player 4 will
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Figure 3.4: The shifting construction may shift more than one line to the same Lf3,f ′
4
. The

colored regions represent cylinders.

output the incorrect answer (and, moreover, (f2, f3, f4) will not belong to the set considered
in the statement of the Lemma). Since f2 varies freely on the line in consideration and takes
m1 inputs,

Pr
f2

[f ′4 ◦ f3 ◦ f2 = g ◦ f3 ◦ f2] ≤
(

1− m2/8

m2

)m1

≤ e−m1/8.

This gives the probability Player 4 outputs the corrrect answer for a random input on
a good line. Since the number of good lines Lf3,f4 is at most the total number of lines,
mm2

3 mm3
4 , and each such line contains exactly mm1

2 points,

|{(f2, f3, f4) : Lf3,f ′
4

is a good line ∧ f ′4 ◦ f3 ◦ f2 = g ◦ f3 ◦ f2}|
≤ mm1

2 mm2
3 mm3

4 e−m1/8.
(3.1)

Observe that the set considered in the statement of the Lemma is a subset of the set
considered in equation 3.1, and so this proves the Lemma. []

Theorem 2 (Restatement of the main theorem) For the four-player pointer jumping
function in the restricted model where

1. Player 1 sees (f2, f3, f4)

2. Player 2 sees (f1, f3, f4)

3. Player 3 sees (f1, f4)

4. Player 4 sees (f1, f2, f3)

and n = m3 = m2 = (m1)
2, the one-way communication complexity is Ω(

√
n).
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Proof: We begin the proof by defining several sets.

Definition 9 Xh,s,t = {(f2, f3, f4) : Player 1 sends help message h, Player 2 sends s, and
Player 3 sends t}.
Zh,s,t = {(f2, f3, f4) : g ◦ f3 ◦ f2 = f4 ◦ f3 ◦ f2} ∩ Yh,s,t

Observe that Xh,s,t ⊆ Zh,s,t. To see why this is the case, note that because the protocol
is deterministic, on all inputs that cause (h, s, t) to be sent, Player 4 must output the correct
answer bh,s,t(f2, f3) = f4 ◦ f3 ◦ f2. However, if we fix a help message h, it is not required by
the protocol that an input that causes the players to output (s, t, bh,s,t(f2, f3) = f4 ◦ f3 ◦ f2)
given h would actually cause the Helper to send h.

Since the sets Xh,s,t partition the input space [m2]
[m1] × [m3]

[m2] × [m4]
[m3],∑

h,s,t

|Xh,s,t| = mm1
2 mm2

3 mm3
4 .

Fix a function g ∈ [m4]
[m3] to shift with. Observe that we can partition the sets Zh,s,t into

sets Znear
h,s,t and Z far

h,s,t that contain those points in Zh,s,t that are mapped to f ′4 near to and far

from g respectively. Further note that we can partition the sets Z far
h,s,t into sets Z far,bad

h,s,t and

Z far,good
h,s,t that contain lines Lf3,f4 ∈ Z far

h,s,t that are mapped to lines Lf3,f ′
4

that are respectively
bad and good.
By Lemmas 4, 5, and 6:

1.
∑

s,t |Znear
h,s,t,g| ≤ mm1

2 mm2
3 mm3

4 2−m3/6 ×Ns,t

2.
∑

s,t |Z
far,bad
h,s,t,g | ≤ mm1

2 mm2
3 mm3

4 e−m2/32 ×Ns,t

3.
∑

s,t |Z
far,bad
h,s,t,g | ≤ mm1

2 mm2
3 mm3

4 e−m1/8 .

Thus, we have:

mm1
2 mm2

3 mm3
4 ≤

∑
h,s,t

|Zh,s,t|

≤
∑

h

mm1
2 mm2

3 mm3
4

(
(2−m3/6 ×Ns,t) + (e−m2/32 ×Ns,t) + e−m1/8

)
.

Plugging in m1 =
√

n, m2 = n, m3 = n:

1 ≤
∑

h

(2−n/6 ×Ns,t) +
∑

h

(e−n/32 ×Ns,t) +
∑

h

e−
√

n/8

= 2−n/6 ×Nh,s,t + 2(−(n/32) log2 e) ×Nh,s,t + 2−
√

n/8 log2 e ×Nh

< 2−(n/32) log2 e+1 ×Nh,s,t + 2−
√

n/8 log2 e ×Nh .
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In order for the inequality to hold, either the number of message tuples (h, s, t) is at least
2n/32 log2 e or the number of help messages h is at least 2

√
n/8 log2 e−1. By the arguments we

presented when we constructed the protocol for the composition function and Lemma 2, the
original protocol must have used at least Ω(

√
n) bits of communication. This completes the

proof. []
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Chapter 4

Appendix: The General Input Model
and Uniform Shifting

Note that in the general input model, we cannot guarantee that lines remain contiguous after
shifting as in the restricted input model. This is because the sets Yh,s,t on fixed h form cylinder
intersections rather than merely cylinders. As a result, we cannot apply the techniques we
used in the restricted model directly to the general model and obtain a meaningful bound.
In our consideration of techniques to translate our result for four-player pointer jumping in
the restricted setting where Player 3 does not see f2 to the general input model, we observed
and proved an interesting property about the distribution of points after they have been
shifted according to the construction given in the proof of the Shifting Lemma (Lemma 3).
We give this result here.

Recall Notation 2. We reuse some of this notation with the amendment that m4 explicitly
equals 2 in the proof of the Uniform Shifting Lemma (Lemma 7).

Notation 3 Let m1, m2, m3, m4 be positive integers and m4 = 2. α, β, and γ, γ̂, γ′ are
functions: α ∈ [m2]

[m1], β ∈ [m3]
[m2], and γ, γ̂,∈ [m4]

[m3].

Lemma 7 (Uniform Shifting Lemma) Let Π = S1∪ . . .∪Sp where p is a positive integer
be any partition of [2][m3]. Let γ, γ̂ be chosen uniformly at random and let Si be the set in the
partition where γ ∈ Si. If we shift Si with respect to γ̂, the modified γ has uniform probability
in [2][m3].

Proof: In proving this Lemma, we first make a claim about the outcome of shifting coordi-
nate j of γ.
Claim: Let γ, γ̂, and Si be defined as above. When we shift coordinate j of the functions
in Si with respect to γ̂ the modified γ is uniform random.
Proof: Observe that a uniform random function γ in the hypercube [2][m3] can be de-
composed into two uniform random variables: one, which we will call γ−j, describing all
co-ordinates but the jth one, and one, which we will call γj, describing just the jth co-
ordinate. Note that γj is a 1-bit variable. In (Figure 4), when γj = 1, γ belongs to the
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Figure 4.1: The decomposition of γ into γ−j and γj. A line represents a value of γ−j. A
point at the end of a line represents a value of γ.

hypercube represented by the top plane, and when γj = 1, γ represented by the bottom
plane. We refer to the point opposite γ in the other hypercube, that is, the point described
by γ−j and ¬(γj), as γ̌.

The shift does not alter γ−j and so γ−j remains uniform random after the shift. Thus,
showing that the the shift results in uniform random γj is sufficient to prove the claim. We
can break down the outcome of the shift on γj into two complementary cases, both of which
produce uniform random γj:

1. γ̌ /∈ Si: In this case, the shift sets γj = γ̂j. Because γ̂j is uniform random, after the
shift, γj is uniform random.

2. γ̌ ∈ Si: In this case, the shift does not alter the value of γj. Because γj was uniform
random before the shift and was not altered, it is uniform random after the shift.

This completes the proof of the claim.
Notice that the shift itself works by shifting coordinates j = 1, j = 2, . . . j = m3. This

completes the proof of the lemma. []
Returning to the context of four-player pointer jumping in the general model, suppose we

select uniformly at random a point in the input cuboid (f2, f3, f4) and shift it with respect to
a randomly selected function g ∈ [2][m3]. Let (f2, f3, f

′
4) be the point after it has been shifted.

Using the Uniform Shifting Lemma (Lemma 7), we had hoped to eliminate the dependence
of f ′4 on (f2, f3). This would have allowed us to use a Chernoff bound and counting argument
similar to those used in Lemmas 5 and 6 respectively to bound the number of inputs on which
Player 4 produces the correct answer on fixed help message h (Note that this discussion only
considers the far inputs. A little investigation shows that the bound for near inputs does not
need adjustment in the general input model). However, (f2, f3) are necessary to determine
the cylinder intersection in which (f2, f3, f4) lies. The cylinder intersection is in turn used
by the shift in determining f ′4. Thus, f ′4 and (f2, f3) are not independent.

These tools may be helpful in generating a lower bound for pointer jumping with k > 3 in
the general input model, but unfortunately we have thus far been unable to apply them in a
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meaningful fashion. We present them here to the reader in order to provide a full disclosure
into the state of our research and hope that they provide some insight into the problem.
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Chapter 5

Concluding Remarks

5.1 Remarks

Our ambition when we began our investigation of four-player pointer jumping was to provide
a substantive lower bound on the one-way communication complexity in the number on the
forehead model. Further along into our research we had hoped to use the techniques we
established in the restricted model as a starting point and the Universal Shifting Lemma
as a stepping stone to reach a bound in the general input model. That we did not fully
accomplish our goal in the time we had for this attempt should not discourage further
attempts; rather we hope that the results we did achieve will make the steps that remain in
order to show a bound for the general model that much easier.

Additionally, we believe our result for four-player pointer jumping even in the limited
model is not without significance. No meaningful lower bounds have yet been shown for
pointer jumping with k > 3 in the number on the forehead model, and we have taken a
healthy step toward that. Although Damm et al. proved lower bounds for pointer jumping
with large numbers of players in the conservative model, our input model is in some ways less
restrictive than theirs because we only restrict the inputs viewed by a single player whereas
they restrict the inputs observed by all players except for a single player.

5.2 Open Problems

The logical next step in investigating the pointer jumping problem is to complete the for-
mulation of a bound on the one-way communication complexity with four players in the
general input model. If techniques similar to ours are used in the formulation of such a
bound, it would be interesting to examine how many players the result would extend to. A
polylogarithmic number of players with greater than polylogarithmic cost is, of course, the
ultimate goal (see Section 1.5) but it remains to be seen for how many players the techniques
presented here remain viable. Observe that in our proof of Lemma 5, we employed a constant
fractional reduction in the number of points on which the composition f ′4 ◦ f3 disagreed with
g◦f3 from the number of points on which f ′4 disagreed with g in order to invoke the Chernoff

26



bound. Repeated application of this technique would lead to an extension to a logarithmic
number of players.
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