
CS 105 Winter 2005

4 Minimum Spanning Trees—January 28-February 3, 2005

Introduction

For all of these notes, G = (V,E) is an weighted, undirected, simple graph with n (unisolated)
vertices and m edges. Assuming no isolated vertices gives m ≥ n/2. To understand the Minimum
Spanning Tree algorithm, we begin with some combinatorics.

Definition A forest is a graph with no cycles.

Definition A tree is a connected forest.

Definition A spanning tree for G is a tree with the same vertex set as G which forms a subgraph
of G.

Definition A spanning forest for G is a forest with the same vertex set as G which forms a subgraph
of G.

/.-,()*+

JJJJJJJJJJJJJJJJJJJJJJJJ /.-,()*+

��
��

��
��

/.-,()*+
??

??
??

??
/.-,()*+

??
??

??
??

/.-,()*+

��
��

��
��

/.-,()*+

OOOOOOOOOOOOOO /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+

/.-,()*+

JJJJJJJJJJJJJJJJJJJJJJJJ /.-,()*+

/.-,()*+
??

??
??

??
/.-,()*+

??
??

??
??

/.-,()*+

��
��

��
��

/.-,()*+

OOOOOOOOOOOOOO /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+
Figure 1: A graph G and a spanning tree for G.

For any graph G and any edge e which is not in the graph, we denote by G+ e the graph which
has the same vertex set as G and all the edges of G as well as the edge e. This is an abuse of
notation, but the meaning is relatively clear.

Theorem 4.1 For any vertices u 6= v in a tree T , there is a unique cycle between u and v.

Theorem 4.2 If T is a spanning tree of G and e an edge in G which is not in T , then the graph
T + e has an unique cycle.

Proof Suppose we add the edge e = {u, v} to the tree T . There is a path P between u and v in
T , so P together with e forms a cycle. If there are two cycles in T + e, the edge e must be in both
of them since T is a tree. Together, these cycles form two distinct paths between u and v in T ,
contradicting the previous theorem.

We denote the unique cycle in the graph T + e by cycT (e).

Theorem 4.3 (Switch Theorem) Let T be a spanning tree of a graph G and e an edge of G which
is not in T . For any edge f ∈ cycT (e), the graph T + e− f is a spanning tree.

1



CS 105 Winter 2005

Proof Removing the edge f from T + e destroys the unique cycle in this graph, so T + e − f is
a forest. It remains to show that it is connected. Let u, v be two vertices in T . Since T is a tree,
there is a path between u and v. This path either includes the edge f , or it does not. If it does
not include f , then it remains in T + e− f . If it does include f , we have a walk between u and v
by replacing f in the previous path by cycT (e)− f . Therefore, this new graph is connected, which
shows that it is a tree (since we already have that it is a forest).

This is enough background to state the problem for which we are trying to find an algorithmic
solution. For input, we have our weighted graph G as in the introduction. We denote the weight
of the edge e by we. For any subgraph H of G we denote by w(H) the weight of H and say that
w(H) =

∑
e∈H we. We define Tm, the Minimum Spanning Tree of G to be the spanning tree of

least weight for G. As an exercise, we will show that if the edges have pairwise distinct weights
(no two edges have the same weight) then there is a unique spanning tree of minimum weight, so
we refer feel safe calling it the minimum spanning tree rather than a minimum spanning tree. We
abbreviate ”minimum spanning tree” as MST.

Theorem 4.4 For any graph G, the MST satisfies the following:

• The Cut Property or Blue Rule: For any cut (X, X) of G, the lightest edge crossing the
cut is in Tm.

• The Cycle Property or Red Rule: For all cycles C in G, the heaviest edge in C is not
in Tm.

Proof Red Rule: This is a proof by contradiction. Suppose the MST Tm of G contains the heaviest
edge e in the cycle C. Let U be the graph Tm−e. Since T was a tree, removing e results in a graph
with two connected components, U1 and U2. Removing e disconnected the graph so these vertices
must be in different connected components. Likewise, since C is a cycle and connected, there must
be another edge f 6= e in the cycle with its endpoints in different connected components. Since the
endpoints are in different connected components of U , it is clear that f is not in U . Also, since
adding f connects two components of the forest U , U + f is a tree. What is the weight of this tree?

w(U + f) = w(Tm − e + f)
= w(Tm)− w(e) + w(f)
< w(Tm)

This is a contradiction since Tm is the MST, so the heaviest edge in any cycle cannot be in the
MST.

Blue Rule: Let (X, X) is a cut of the graph G, and e the lightest edge crossing this cut. Suppose
that e is not in the MST, Tm. There must be some f crossing this cut which is also in cycTm

(e).
The graph T ′ = T − e + f is also a spanning tree and w(T ′) < w(Tm), contradicting that Tm is the
MST.

Historical Algorithms

Historically, there have been many algorithms for finding the MST. The first, from 1926, is Bor̊uvka’s
algorithm, giving a time bound of O(max{n2,m log n}). This is also the first algorithm ever pub-
lished. In 1930, Jarńık gave an O(m + n log n) algorithm, which was later rediscovered, indepen-
dently, by both Prim (1956) and Dijkstra (1958). The other historical algorithm was discovered by
Kruskal in 1956, with time O(m log n).

2



CS 105 Winter 2005

More recent work by Yao gives an O(m log log n) algorithm. Later, Fredman and Tarjan discribe
an algorithm which runs in O(m log∗ n), where log∗ is the inverse of the tower function. Unsatisfied,
Gabow and Gadil give an algorithm with O(m log log∗ n), and Chazelle worked out an algorithm
with time O(mα(m,n)) where α(m,n) is the inverse of the Ackerman function. Still, work on this
problem continued until 1999 when Karger, Klein and Tarjan published an algorithm with O(m)
expected time. This randomized algorithm degenerates to Bor̊uvka’s algorithm in the worst case,
and so has the O(max{n2,m log n}) worst case running time.

The first three algorithms, which we will call Bor̊uvka’s, Prim’s and Kruskal’s algorithms, are
the simplest to understand and will be covered here, as will the Karger et al. algorithm.

Kruskal’s Algorithm
Start with the entire graph G.
Process edges in increasing order by weight.
For each edge:

Discard it if retention would create a cycle
among edges retained so far.

This algorithm is correct by the red rule.

Prim’s Algorithm
Start with an empty forest, a dstinguished
vertex a.
while (forest unconnected)

Let T be the tree in the forest touching a.
Grow T by the lightest edge across
V ((T ), V (T ))

This algorithm is correct by the blue rule.

Bor̊uvka’s Algorithm
Start with an empty forest F .
while(unconnected)

For each tree T in F
Identify ligthest edge crossing (V (T ), V (T ))
Add this edge to F .

This algorithm is correct by the blue rule.

We call each iteration of the while loop in Bor̊uvka’s algorithm a Bor̊uvka phase. Using graph
theorhetic techniques, each phase take O(m) time. Since each phase reduces the number of con-
nected components by half, the total running time is O(m log n). The O(n2) running time is more
complicated and thus not included here.

An alternative way of looking at a Bor̊uvka phase is to contract the lightest edges. In this
contraction, we retain only the lightest edge if multiple edges are created, thus retaining a simple
graph.

A Linear Time Algorithm

The idea of the linear time algorithm that we are looking at is that Bor̊uvka’s algorithm only tells
you what edges to include in the MST, and never gets rid of edges that cannot be in the MST. The
best algorithm would take advantage of both the blue rule and the red rule. But how do we know
when an edge can’t be in the MST?

Definition For any forest F which is a subgraph of G and any vertices u, v in the graph, we define
wF (u, v) to be the maximum weight on an edge on the unique path between u and v in F . If no

3



CS 105 Winter 2005

such path exists, we say that wF (u, v) = ∞. Now, for any edge e = {u, v} we call e F -heavy if
we > wF (u, v). Otherwise, we call the edge F -light.

Note that edges between components of F can only be F -light since nothing is bigger than ∞.
By the red rule, an edge that is F -heavy for any forest F is not in the MST, Tm. The best forest
for throwing away edges would then be Tm, but we don’t have Tm! So we try to get something
close to Tm without taking a lot of time. The algorithm ends up looking like this.

Minimum Spanning Forest Algorithm for G

Step 1 Apply two Bor̊uvka phases and record the contracted edges (E1). Call the new graph G1.

Step 2 Form a graph H by including each edge of G1 independently with probability 1/2. Recursively
find the MSF of H and call it F .

Step 2.1 Identify the F -heavy edges of G1 and delete them to form graph G2.

Step 3 Recursively find the MSF of G2 and call it F ′. The MSF of G is F ∪ E1.

Since Step 1 includes edges which are in the MSF by the blue rule and Step 2.1 eliminates edges
which are not in the MSF by the red rule, the algorithm finds the correct MSF. There are two
recursive calls, so we have a binary tree of subproblems. At the first level, the left subproblem is
to find the MSF of H and the right subproblem is to find the MSF of G2. Since we have a binary
tree, there are at most 2d subproblems at a depth d in the tree. 2d−1 of these are left subproblems
and 2d−1 are right subproblems.

For the running time, other than the recursive calls, all of these operations are clearly linear
time in the number of edges except the identification of F -heavy edges in Step 2.1. This operation
is also deterministically linear time using a modified MST verification algorithm, but it is beyond
the scope of these notes and will appear in the next ones.

It only remains to analyze the total number of edges in the problem and all subproblems to get
the running time of the algorithm.

Expected Running Time

To do the expected running time, we employ a technique called left-child decomposition. The tree
is partitioned into subtrees where each subtree has as its root either the root of the main tree, or a
right subproblem. The subtree consists of all of the nodes reachable by a series of left steps down
the tree. We end up with a partition as in Figure 2.

If there are k edges in the root node of one of these subtrees, how many edges are expected
in the whole subtree? If there are k edges in a parent graph, G1, we can expect k/2 edges in the
subgraph H generated in Step 2. Since there are less edges than this in G1 (G1 is generated from
G by contraction, G has k edges), in the node at depth d from the root of the subtree we expect at
most k/2d edges, for a total of at most 2k expected edges in the subtree. But what number k of
edges can we expect in the root of the subtree?

4



CS 105 Winter 2005

Figure 2: A binary tree that decomposes into 4 subtrees, one red, one green, one blue, and one
violet.

Lemma 4.5 For a subgraph H of G obtained by including each edge independantly with probability
p, let F be the minimum spanning forest of H. The expected number of F -light edges in G is at
most n/p.

Proof For the proof, we process the edges in increasing order by weight, as in Kruskal’s Algorithm.
In this way, we form the subgraph H and the MSF F of H at the same time. For each edge, we first
decide if it is F -heavy or F -light. This is done by testing whether the endpoints are in the same
connected component of our current forest F . Once this is known, we flip a coin with probability
p of coming up heads. If it lands heads, we include the edge in H. If, in addition, it is F -light, we
include the edge in F .

Since only heavier edges are processed later, the F -heavy edges remain F -heavy and the F -light
edges remain F -light. Since they are inconsequential to our analysis, we ignore all of the coin flips
for F -heavy edges and concentrate on the F -light edges. There can be at most n edges in F , and
F -light edges are in F on heads, so we see only F -heavy edges after seeing n heads. Thus the total
number of F -light edges is the number of coin flips we have to do with a weight p coin before seeing
n heads, which is exactly a negative binomial variable and has expected value n/p.

Using this Lemma, we expect to see 2v/4 edges in a subproblem which has v vertices before
Step 1. Since in a right subproblem at depth d, there are n/4d expected vertices, we have a total
bound on the number of vertices in right subproblems as

∞∑
d=1

2d−1(2n)/4d = n/2

5



CS 105 Winter 2005

Combining this with the expectation of 2k edges in all the left children of a right subproblem and
m edges in the root, we get a bound of O(m + n) on the expected number of edges in the entire
problem.

The preceeding has been the proof of the following theorem:

Theorem 4.6 The expected running time of this MSF algorithm is O(m).

Probability of Expected Case

Theorem 4.7 The MSF algorithm runs in O(m) time with probability 1− exp (Ω(m)).

Proof The algorithm will fail to run in linear time if the number of edges in all the right sub-
problems is nonlinear in m or if the number of edges in all the left subproblems is nonlinear in the
total number of edges in all right subproblems. So what is the probability of either one of these
happening?

Edges in a right subproblem result from F -light edges in Step 2. The total number of F -light
edges is the total number of coin flips as in the analysis for Lemma 4.5. The number of coin flips
is bounded by the number of heads, which can be at most the number of vertices in all the right
subproblems. There are at most n/2 vertices in all right subproblems, so the probability that less
than n/2 heads occur in a sequence of 3m coin flips is the same as the probability that there are
more than 3m edges in all the right subproblems. Since m ≥ n/2, we know that this probability is
exp (Ω(m)) by a Chernoff bound.

Let the number of vertices in all the right subproblems be m′. We now consider all the coin
flips in Step 2, both for the F -heavy and F -light edges. The sequence of coin flips from the root of
our subtree for a given edge are all heads and a terminating tails. Concatenating these coin flips
for all edges, we see that the number of edges in all left subproblems is the number of heads in
these sequences, while the number of edges in all right subproblems is the number of tails, so the
probability that there are more than 3m′ edges in all left subproblems is at most the probability
that fewer than m′ tails occur in a sequence of 3m′ coin flips, which is exp (Ω(m)) by a Chernoff
bound.

Combined, this gives a probability of linear time at least 1− exp (Ω(m)).

Worst-Case Analysis

While the probability of linear time is good, it is always possible that it will fail, so we want to
estimate the worst-case running time. For this, we need to look at the total number of edges in two
ways.

Consider a subproblem with k edges and v vertices. How many edges are in both subproblems
combined? There are three kinds of edges that we can see in subproblems. In the left subproblem,
we have the edges in H but not in F and edges in F . The edges that are not in F do not occur
in the right subproblem, so the only edges that can occur in both subproblems are the edges in F .
There are at most v/4 of these because they form a forest in the contrracted graph G1. At least
v/2 edges are removed in Step 1, so there are at most k edges in both subproblems.

Since we begin with m edges, the above analysis shows there are at most m edges at each level,
for a total of O(m log n) edges.

6



CS 105 Winter 2005

The number of edges can also be bounded by the number of vertices, which is reduced by a
factor of 4 at each level. This gives at most n2/4d edges at each level, giving an O(n2) bound on
the number of edges. Thus the worst case running time is O(min{n2,m log n}).

7


