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1 What is a Linear Programming Problem?

A linear program (LP) is a minimization problem where we are asked to minimize a given linear
function subject to one or more linear inequality constraints. The linear function is also called
the objective function.

Formulation:

Minimize
n∑

i=1

CiXi (where Ci ∈ < and are constants and Xi ∈ < and are variables)

Subject to constraints:
a11x1 + a12x2 + ........ + a1nxn ≥ b1

a21x1 + a22x2 + ........ + a2nxn ≥ b2

a31x1 + a32x2 + ........ + a3nxn ≥ b3

...

an1x1 + an2x2 + ........ + annxn ≥ bn

Alternately, we can rewrite the above formulation as:

Minimize CT X (where C,X ∈ < and are column vectors)

Subject to constraints:
AX ≥ b (where b ∈ <m, A ∈ <m×n)

Given C,A and b the above LP can be solved in time poly(inputlength).

2 Set Cover using LP rounding

For the definition of the Set Cover problem and examples, refer to Valika’s scribed notes. In
the greedy set cover problem we were given (X, F ) earlier. Now we consider (X, F, c) where c
is the cost function for every set F .
c : F −→ <+

F ⊆ 2X

|X| = n
Thus ∀S ∈ F, c(S) =”cost” of using set S in the cover.
Earlier, for the greedy set cover explained by Valika, we can consider ∀S, c(S) = 1.

2.1 LP formulation

Find a cover X of minimum cost where C ⊆ F is a cover if
⋃
∀S∈C S = X

Let us assign a binary variable xS for each S ∈ F where

xS =
{

1 S ∈ C
0 S 6∈ C
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Subject to constraints: ∑
S∈F,S3α

xS ≥ 1 for each α ∈ X (1)

xS ∈ {0, 1} for each S ∈ F (2)

Note: Above problem is not an LP since above statement is not a linear constraint. The above
problem is actually an Integer Linear Problem or IP. Solving an IP is NP-Complete.

Let us now relax our second constraint to 0 ≤ xS ≤ 1 for each i and allow xi ∈ <.

Here we are violating our original inequality direction, since xi ≤ 1
We can easily fix this problem by restating our constraint (2) as:

xS ≥ 0 (for each S ∈ F )

−xS ≥ −1 (for each S ∈ F )

Now we can use the cost function to differentiate our set cover returned from the earlier greedy
version which had no concept of the cost of a set:

Minimize
∑

S∈F,S3α

c(S)xS ≥ 1 for each α ∈ X

Proposed Algorithm: LP-Set-Cover

Algorithm 1: LP-Set-Cover(V,E)

Construct LP relaxation for given instance (X, F, c) as shown above1

Invoke polynomial time LP solver to get a solution2

P = (PS1 , PS2 , ...PSt), where{S1, S2, ..., St} = F
C ←− ∅3

for each S ∈ F do4

C ←− C ∪ {S} with probability PS5

Repeat steps 3 & 4 (lnn + 10) times and return unions of the covers computed in Ĉ6

return Ĉ7
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2.2 Analysis of Algorithm

Let us now verify that the above algorithm is correct and analyze its optimality.
Expected Cost of the Solution:

E[cost(Ĉ] = E[
∑
S∈F

c(S)xS ] where xS iff S ∈ Ĉ

=
∑
S∈F

c(S)E[xS ]

=
∑
S∈F

c(S)Pr[S ∈ Ĉ]

≤
∑
S∈F

c(S)(lnn + 10)PS

= (lnn + 10)
∑
S∈F

c(S)PS

= (lnn + 10)OPTLP

≤ (lnn + 10)OPTIP

Therefore LP-Set-Cover is a (lnn + 10) Approx Algorithm (In the expected sense)

2.3 Correctness:

What is the probability that Ĉ is a cover i.e what is the Pr[Ĉ is a cover] ?
Pick any α ∈ X. Let Sα be a set of sets such that {S ∈ F : S 3 α} = {T1, T2, ..Tk}
Let us find the probability that α was not picked in the set picked in steps 3-4 of LP-Set-Cover

Pr[αnot covered] = (1− PT1)(1− PT2)......(1− PTk
)

≤
(

(1− PT1) + (1− PT2) + ...... + (1− PTk
)

k

)k

By AM-GM inequality

=
(

1− PT1 + PT2 + ... + PTk

k

)k

≤
(

1− 1
k

)k

≤ e−1
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Now we find Probability after (lnn + 10) repetitions of steps 3-4 to get our cover Ĉ

Pr[α not covered by Ĉ] ≤ (e−1)(ln n+10)

=
e−10

n

Pr[∃α ∈ X not covered by Ĉ] ≤ n.
e−10

n
= e−10

→ Pr[Ĉ is a cover] ≥ 1− e−10 ≈ 0.999

2.4 Final Algorithm:

Repeat LP-Set-Cover untill we have a cover. Expected number of repetitions < 2
Note: Repeating does not affect quality of approximation, just the running time.
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