
CS 105: Algorithms (Grad)
Solving Set Cover using Linear Programming

Soumendra Nanda
Feb 28, 2005

1 What is a Linear Programming Problem?

A linear program (LP) is a minimization problem where we are asked to minimize a given linear
function subject to one or more linear inequality constraints. The linear function is also called
the objective function.

Formulation:

Minimize
n∑

i=1

CiXi (where Ci ∈ < and are constants and Xi ∈ < and are variables)

Subject to constraints:
a11x1 + a12x2 + + a1nxn ≥ b1

a21x1 + a22x2 + + a2nxn ≥ b2

a31x1 + a32x2 + + a3nxn ≥ b3

...

an1x1 + an2x2 + + annxn ≥ bn

Alternately, we can rewrite the above formulation as:

Minimize CT X (where C,X ∈ < and are column vectors)

Subject to constraints:
AX ≥ b (where b ∈ <m, A ∈ <m×n)

Given C,A and b the above LP can be solved in time poly(inputlength).

2 Set Cover using LP rounding

For the definition of the Set Cover problem and examples, refer to Valika’s scribed notes. In
the greedy set cover problem we were given (X, F) earlier. Now we consider (X, F, c) where c
is the cost function for every set F .
c : F −→ <+

F ⊆ 2X

|X| = n
Thus ∀S ∈ F, c(S) =”cost” of using set S in the cover.
Earlier, for the greedy set cover explained by Valika, we can consider ∀S, c(S) = 1.

2.1 LP formulation

Find a cover X of minimum cost where C ⊆ F is a cover if
⋃
∀S∈C S = X

Let us assign a binary variable xS for each S ∈ F where

xS =
{

1 S ∈ C
0 S 6∈ C

Page 1 of 4

CS 105: Algorithms (Grad)
Solving Set Cover using Linear Programming

Soumendra Nanda
Feb 28, 2005

Subject to constraints: ∑
S∈F,S3α

xS ≥ 1 for each α ∈ X (1)

xS ∈ {0, 1} for each S ∈ F (2)

Note: Above problem is not an LP since above statement is not a linear constraint. The above
problem is actually an Integer Linear Problem or IP. Solving an IP is NP-Complete.

Let us now relax our second constraint to 0 ≤ xS ≤ 1 for each i and allow xi ∈ <.

Here we are violating our original inequality direction, since xi ≤ 1
We can easily fix this problem by restating our constraint (2) as:

xS ≥ 0 (for each S ∈ F)

−xS ≥ −1 (for each S ∈ F)

Now we can use the cost function to differentiate our set cover returned from the earlier greedy
version which had no concept of the cost of a set:

Minimize
∑

S∈F,S3α

c(S)xS ≥ 1 for each α ∈ X

Proposed Algorithm: LP-Set-Cover

Algorithm 1: LP-Set-Cover(V,E)

Construct LP relaxation for given instance (X, F, c) as shown above1

Invoke polynomial time LP solver to get a solution2

P = (PS1 , PS2 , ...PSt), where{S1, S2, ..., St} = F
C ←− ∅3

for each S ∈ F do4

C ←− C ∪ {S} with probability PS5

Repeat steps 3 & 4 (lnn + 10) times and return unions of the covers computed in Ĉ6

return Ĉ7

Page 2 of 4

CS 105: Algorithms (Grad)
Solving Set Cover using Linear Programming

Soumendra Nanda
Feb 28, 2005

2.2 Analysis of Algorithm

Let us now verify that the above algorithm is correct and analyze its optimality.
Expected Cost of the Solution:

E[cost(Ĉ] = E[
∑
S∈F

c(S)xS] where xS iff S ∈ Ĉ

=
∑
S∈F

c(S)E[xS]

=
∑
S∈F

c(S)Pr[S ∈ Ĉ]

≤
∑
S∈F

c(S)(lnn + 10)PS

= (lnn + 10)
∑
S∈F

c(S)PS

= (lnn + 10)OPTLP

≤ (lnn + 10)OPTIP

Therefore LP-Set-Cover is a (lnn + 10) Approx Algorithm (In the expected sense)

2.3 Correctness:

What is the probability that Ĉ is a cover i.e what is the Pr[Ĉ is a cover] ?
Pick any α ∈ X. Let Sα be a set of sets such that {S ∈ F : S 3 α} = {T1, T2, ..Tk}
Let us find the probability that α was not picked in the set picked in steps 3-4 of LP-Set-Cover

Pr[αnot covered] = (1− PT1)(1− PT2)......(1− PTk
)

≤
(

(1− PT1) + (1− PT2) + + (1− PTk
)

k

)k

By AM-GM inequality

=
(

1− PT1 + PT2 + ... + PTk

k

)k

≤
(

1− 1
k

)k

≤ e−1

Page 3 of 4

CS 105: Algorithms (Grad)
Solving Set Cover using Linear Programming

Soumendra Nanda
Feb 28, 2005

Now we find Probability after (lnn + 10) repetitions of steps 3-4 to get our cover Ĉ

Pr[α not covered by Ĉ] ≤ (e−1)(ln n+10)

=
e−10

n

Pr[∃α ∈ X not covered by Ĉ] ≤ n.
e−10

n
= e−10

→ Pr[Ĉ is a cover] ≥ 1− e−10 ≈ 0.999

2.4 Final Algorithm:

Repeat LP-Set-Cover untill we have a cover. Expected number of repetitions < 2
Note: Repeating does not affect quality of approximation, just the running time.

Page 4 of 4

