COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

1 Hashing
1.1 On Hashing

We are given the task of storing a dictionary of word-definition pairs — i.e., a setlofy) value) pairs. We could
store these pairs in a linked list, but this require3(a) access time.

o keys n values

We can choose a hash table as an alternative storage structure. Instead of keepikeythim order with thein
values, we divide the keys inta slots, or bins, using a hash functign f(keyx) — bins, 0 < s < m. Within each
bin we maintain a data structure, such as allistthat allows us to search within the keys which hash tokbin

1.1.1 The advantage of hashing over binary search trees

Hash tables are efficient when it comes to random access. Unlike in lists, where we do not know ahead of time where
we will find a value, the hash function points to the bin where the value is expected to be.

-2
ki
w2
=
-

m bins

In the good case, each bin containgn keys, and we can expect to searctkdm/m = «, whereq is the load
factor. Thus, the expected search timé&id) by assumption.

In this good case, the length of the lists holding the values that have collided, or hashed to the samenbin, are
However, in the worst case (when all the keys hash to the same bin), the search@itng!is

We thus considewo strategies when the worst case is unacceptably bad:

1. We assume that the worst case won't occur, or that it is very unlikely. In the case of hash tables, this makes an
assumption about the input, i.e., that it is evenly distributéds is the study of average case analysis.

2. Use randomness inside the algorithrhis is the study of randomized algorithms.

In this class, we will focus on the second of these strategies.

COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

1.1.2 Probability theory
Probability distribution: Over a finite spac€, we consider the functiop: Q — [0, 1] with the property

> op)=1

zEQ

(i.e., the space is a finite collection of numbers whose sumis 1.)

For any eveny C (2, the probability thai” occurs, orPr[E]is), p(x). It follows that0 < Pr[E] < 1.
We consider a random variable functigh: Q — R.

We use as an example a coin toss. In this case,

Q = {outcomes(5 coin tosses)} ={HHHHH,HHHHT, ...}
Expectation: E[X] =), p(z) x X(z) (This is sometimes referred to as a weighted average 3ilpér) =

1)

THEOREM : Linearity of expectation: If z, y are random variables ands a constant, then

Elz +y| = Elz] + Ely]
Elcz] = cE[z]

DEFINITION : We define anndicator random variable Z(F) : — R for an eventtl C Q:

1 if the event occurs
L(E) = { 0 otherwise

More formally,Z(E) : Q — R is defined as

1 ifzeF
L(E)(z) = { 0 otherwise

We note that ifZ is an indicator random variable, then

E|Z] = Pr[Z =1] = Pr[the corresponding event occurs)
PrROOF: E(Z) =0(Pr[Z =0])+ 1(Pr[Z =1)) =0+ Pr|Z =1]

1.2 Universal Hashing

[CLRS: 1.3.3; MR 8.4.1-4]
Note: We will be using the notation and reference to “universal” and “two universal’ of the CLRS presentation.

For this presentation, we assume that O(1).

In designing an efficient hashing scheme, we know that we can't just use a fixed hashing algorithm, because it
would be possible for our adversary to design input that would put our search algorithm in its worst case (i.e., all the
input keys could hash to the same location).

We thus consider a family of functions as part of our hashing scheme. When we need to construct a new hash table,
we choose one function of this family at random, and use it in the construction. (We also remember which function
we used, or else we would not be able to search the table after construction.) Given g{ashihash functions from
MtoN, M =1{0,1,...,m — 1}, we pick one functiorh from H uniformly at random

COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

DEFINITION : H is calleduniversal if ¥ keysk, I, k # I, Praen[h(k) = h(1)] < 1/m.

This goes to say that the number of hash functibns Hfor which h(k) = h(l) is at most|H|/m, or, with a
randomly choset the chance of a collision is no more tharhift) andh(l) were randomly chosen from the values
{0,1,....m-3.

DEFINITION : We say thatH is two-universal if V z1, o € M, ©1 # xz9, anyy,,ys € N, andh chosen uni-
formly at random fron¥,

Prih(z1) = y1 andh(zz) = y2] = 1/n?

We note that the first form of universality regards the probability that two keys collide; the second form concerns
the probability that two keys hash to two certain values (which may or may not constitute a collision).

THEOREM : Using a universal hash function family givé8search time] < 1 + a.
PROOF: We define two indicator random variables:

X =Z{h(k) = h(l)}

which is the indicator random variable for the event thand! collide;

Ye = Z Xkt

le M1k

which is the number of other keys that hash into the same slo(/agk)).

EW] =) E[Xu
1€ M;l#k

> PriXp=1]
leM;l#k

Y Prink) = h(D)
1€ M;l#k

Z 1/m(by definition)
1€ M;l#k
1/m(the number of keys # k)
1/m(n)
!

IA

Al

We note forY}, thatk is from a larger universe of possible keysjoesn't have to already be in the table. liiin
the table, we don’t want to count the collision/ofvith itself. So, we bound’, by «.

Search time: the length of the list at locatioh(k)

Y if k& ¢ the table
Yiy1 if k € the table

E[search time]

COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

1.3 Designing a Universal Hash Family
For this discussion, we will consider the keys of our hash functions as integers. Ybdetome prime> any key.
We define the hash famifyt which consists of function®(, ; : {0,1,...,p—1} — {0,1,...,m — 1} for all a andb
hab(k) = ((az + byod p)mod m

THEOREM:{hyp:a € {l,...,p—1},b€ {0,p— 1} is universal.
PROOF: We note thatz can't be 0, or all keys would map to the same slot. We note also that a funetdnp
is a linear operation over some fig{@,. ..,p-1.

We want to prove that the probability of a collision is bounded by a value. There are two places for a possible

collision to occur:mod p andmod m.
We show first that there cannot be a collisiomatd p.

e We suppose that # [and(ak + b)mod p = (al 4+ b)mod p. So,p dividesa(k — 1), sincep does not divide:,
becauséa| < p,a # 0.

e Because is prime, we cannot factor it, and it must thus divide— [). However,|k — I| < P, # 0, sop can't
divide (k — 1) either.

e This yields a contradiction; distinct keys thus cannot collide at the leveldwf p.
Next, we suppose that£ [are two distinct keys. Let
(1) r = (ak + b)mod p (2) s = (al 4+ b)mod p.

Then,r # s. We show that ands can take on all possible values{f,...,p — 1} x {0,...,p — 1} except for
those where: = s. As an aside, we note that:

r1 = (akp)mod p

s1 = (aly)ymod p } has a solution in a, b.

Two linear equations have a solution when

kxa+1lxb =r

k
Ixa+1xb =s"7|1

1
[0
The determinant is easy to evaluate:

k—140
k1

(We started with the second condition.)

Everything is still acceptableiod p becausey is prime; working mod a prime is the same as working in real
numbers.

If the determinant is non-zero, there is a solution and it is a unique solution.

By the theory of linear equation$(r, s),r # s, 3 a unique(a, b) such tha(l) and(2) hold.

This means that there is a one-to-one correspondance befwggrand(r, s); choosingh,, ;, at random is equiv-
alent to choosingr, s) at random, subject to the condition tha s.

Thus, Prlcollision] = Pr[r mod m = s mod m] (wherer,s « 0,...,p— 1 andr # s). If we remove the
requirement that # s, we find that

Prlcollision] = Pr[rmodm = smodm]—1/p
= Pr[s mod m = some particular value — 1/p

COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

Thus we see that the the probability of a collision is bounded:

Prlcollision] = Pry s qo,... p—1},rs[" mod m = s mod m|
= Pro_qo,..p—1}.r2s[r mod m = s mod m]

(Which is the same probability that archosen at random results in a collision.)

p—1}[r mod m = s mod m] —1/p

.....

(the1/p represents an additional valuefwheres = r)

= Pry_qo,...p—1}[s mod m = some particular value] — 1/p

m 2m 3m X p-1

| | | |
3 m+3 2m+3 3m+3 -

<In

(Say you pick the number 3— we can have a collision by choosing-8,3, 2m + 3, 3m + 3, etc.)
We note that the final segment of this drawing is of size:, asp is a prime and does not divide ly. Since it is
thus possible that it will not contain the value we’re looking for, we take the ceiling of this value.

-1
Prcollision] < P)m—‘ 1/p—1/p<1/m

1.4 Perfect Hashing

[CLRS 11.5; MR 8.5]

What if we could make the search tinig1) in the worstcase? We can accomplish this using a two-level hash
table in which the second hash function is collision-free. How do we achieve a simple hash function that is collision
free? We use a universal hash family with a table size’pficcording to the scheme discovered by Fredman, Komlos,
and Szemeredi (1984-1986).

CLAIM : Let h be chosen uniformly at random from a universal hash family mapping keys to, n2 — 1. Then, if
we hashn keys usingi, Pr{3collision] < 1/2.
To prove this, we digress for a moment to note Markov’s inequality: ¥ 0 is a random variable, theRr[z >
t] < @ for anyt > 0.
Intuitively, this tells us that a random variable’s probability to take on a value decreases the further that value strays
from the variable’s expected value.

ProoF: Of Markov's Inequality (for finite probability spaces)
Letzy,...,x, be the possible values of Then,

Elx] =Y.,z Prlz = z;]
=Yt T Priv=wi] + 30, 5, i Priv =]
> . Ti Prlz = zi](because x > 0)
> er;t t Prlz = z;]
=t Pr(z > t]

COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

Dividing by ¢,

@ > Priz > t]
t

Now, we prove the above claim concerning the probability of a collision for universal hash functions and a hashed
space of size?.
PROOF: Letx = the number of collisions.

Elx] = Y. Pribk) = h(D)

all pairs (k,l)

all pairs (k,l)
. n s n—1
= <2>1/n—2n <1/2

So we know that the expected number of collision$ /8. We want to say something about the probability of a
collision. Applying Markov’s inequality:

Pr[3 collision)

The idea here is that if we have an initial set of data, given that it is more likely than not that there will be no
collisions, it is quick to find within a few random guesses a hashing function that gives no collisions.

1.5 Optimized Space for Perfect Hashing

We showed above that picking a hash function uniformly at random fm- givesno collisionswith probability
> 1/2. However, we should ideally only use(n) space to store keys. Our second try for a bound on this space
used to store the hash table will her O(n).

0
1
p
Hp.nJ
n; leys [j —
0
1
2
n-1
n; -1

The size of this data structure will be+n, 2 +ng 2+ ---+n, 2, 0rn + Sy 2. We note that the number of
keys that hash to a particular bin (i.e., the values pin the preceeding sum) is determined by the hash function that
is chosen.

We want to boundg[n + -7 n3] = n + E[}_7_, n3]. We do this with an algebraic tricki® = a + 2 ((21 >

U

Using this trick, we find "7, n3 = 37 n+237" < 5

) = 2n times number of collisions in the hash function).

COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

E[Z?Zl nf] = n + 2 x E[#collisions of primary hash function]

IN

n+2><<7;j)><1/n

n+(n-1)=2n-1

Eln+30_nil<n+((2n-1)<3n

Elsize of data structure]

How likely is it that we’'ll actually get the expected size of this data structure when implemented? To discover this,
we apply Markov's Inequality.

Prlsize > 6n] <

E[ézze] <1/2

We note that to use this, we must obey the condition that the random variableObéThis is true in this case,
since the size of the structure will be greater than zero.
Itis actually possible to come up with a slightly tighter bound:

EY n;?l<2n—1 < 2n
2

2n
Pri} 3 qn;?>4n] <2t =1/2

Pr(size > 5n) <1/2
1.6 Algorithm and Run Time for Space-Optimized Perfect Hashing
We consider the algorithm by which one constructs a hash table in this way.
1. Choose a function frorf,, ,, uniformly at random.
2. Compute alk; and sets;; of keys hashing to slot by actually performing the hashing.
3. If X7 nj® >4, gotostep 1.
4. Forj =0ton —1,

(@) Choose a functioh; from H,, ,,, uniformly at random.
(b) Hash the keys i&; usingh;.
(c) If there is a collision irfH, go to step 4.1.

The expected run time i9(n) for steps 1-3 an@_7_, (O(n; 2)) for steps 4.1-4.3, for a total of O(n).

1.7 Refining the Space Optimization for Perfect Hashing

(The notation used in this section is similar to that of the paper of which it is a presentimimg a Sparse Table
with O(1) Worst Case Access Tiny Fredman, Komlos, and Szemeredi.)

GivenW C U with [W| = r, k € U, ands > r, let B(s,W, k, j) be the number of times that the valgds
achieved by the functiom — (Ik mod p)mod s whenz is restricted td¥. This refers to the number of values in the
bin, not the number of collisions.

We note that: plays the same role asin h, ;, and thats plays the same role as from h, ;. The range of the
function is from{0...s — 2}; it is not universal.

LeEMMA 1: Given the above, there existsae U such thatz;le (B(s, VQVJG,])) <r?/s

. S
k=1j=1

COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

Equation 1 expresses the number(kf, y) with z,y € W,z # y,1 < k < p, such thatkx mod p) mod s >
(ky mod p)mod s; i.e., the number of actual collisions.
The contribution of, y to this quantity is at most the number/ofor which

k(x —y)mod p € $,258,3s,...,p — 8,p — 28,p — 38, ... (2)

Becauser — y has the multiplicative inverseiod p, the number ok satisfying 2 is< @
(This is similar to the argument we saw in class.)

T
2

We conclude that the sumin (1) is bounded%ysl)—"z.
Using Lemma 1, we lellV = S, s = g(n), r = n. We find that for somé,

Jj=1

> possible choices far, y, we get(;) 2p—1) _ pol)(r(r=l)),

When we sum over thé

We note a quick algebraic trick:? = O((

Z/:(B(g(n)w% k,j)? =0 (n2> (4)

g(n)

g)) for z > 2, and use it to find that

WhereY"’ denotes the sum ovgr as;j goes from 1 tgj(n) and(B(g(n), s, k, j) > 2.
Sinceg(n) will be chosen such thdim—~ = 0, 4 implies that the total space required to resolve those blocks

g(n) —
having 2 or more values 8(n).

W
wa

Size is
B(g(n).sk.j) 2

W, can be a pointer to a secondary table or an immediate value. It's hard to know which is which, so we maintain
another data structure to keep track of this information. It contains “tag bits” that identify whethe%g; bmthe
first-level table contains an immediate value or a pointer to a secondary-level table.

These tag bits will take uQ(lo;m) space, ob(n) words. (These are single binary bits, and words are of length
log m bits.)

We need an auxiliary data structure to determine also whether a Blpé&knonempty. GiverI’, the memory used
to store the table, we nof€/, which is the first address of the cellg, ... W(,,) which are allocated consecutively in
order in memory.

Onthe intervall = [1, g(n)] we partitionﬁi) subintervals of sizé%”))?

With each subintervat of I, we associate a base addrés4[o]. This is the base address of the location preceding
the cells in7” associated with the non-emply;, j € 0. These base addresses are stored in a table ofg—’é;e:

O(n).

COSC 105 Lectures 1-4: Perfect and Universal Hashing Winter 2005

We create a second table of addressHg], j € I, that is used to store the offset$[;] = 0 if W; = 0; otherwise,
BA[j] + Alj] is the address iff” associated witfiV’; for j € o.
How much space does this new table take? Sitigéassumes at mos@)2 possible values, alll[j],j € I can

be packed into space
g(n)
o) <g(n)logh)> (5)
logm

2
In 5, g(n) is the number of blocks ifV;, log (%) comes fromog (%) and the fact thalog(z?) = 2 log x
and expresses the number of bits used to stdj& andlog m is the number of bits that can fit in a wond, > n.
We choosg(n) = ny/logn :

O [9ioa(*52)
logn
- 0 m+/log n log(+/log n))
- logn

0 nX%log logn
\/logn

We note that the denominator grows faster than the numerator; thus, the total space(sgd is

