CS 105: Algorithms (Grad) Valika K. Wan & Khanh Do Ba
Set Cover and Application to Shortest Superstring Feb 21-24, 2005

1 Approximating Set Cover

1.1 Definition

An Instance (X, F') of the set-covering problem consists of a finite set X and a family F' of
subset of X, such that every elemennt of X belongs to at least one subset of F':

X = US
SeF

We say that a subset S € F' covers all elements in X. Our goal is to find a minimum size subset
C C F whose members cover all of X.

x=\Js (1)

SeC

The cost of the set-covering is the size of C, which defines as the number of sets it contains, and
we want |C| to be minimum. An example of set-covering is shown in Figure 1. In this Figure,
the minimum size set cover is C' = {T3, Ty, T5} and it has the size of 3.

° ° o | T,
Ty ° (0 S
e ko ® T
M Z
W oo e,
SRS -/

Figure 1: An instance (X, F') of set-covering problem. Here, X consists of 12 vertices and
F = {Th, Ty, T3, Ty, T5, Ts}. A minimum-size set cover is C = {S3, Sy, S5}. The greedy
algorithm produces set cover of size 4 by selecting the sets Sy, Sy, S5, S3 in order.

Set-covering problem is a model for many resource covering problems. As mentioned earlier
in the previous lecture, set-covering is an NP-Hard problem. We will now examine a greedy
algorithm that gives logarithmic approximation solution.

1.2 A Greedy Approximation Algorithm

IDEA: At each stage, the greedy algorithm picks the set S € F' that covers the greatest numbers
of elements not yet covered.

For the example in Figure 1, the greedy algorithm will first pick 77 because T} covers the
maximum number of uncovered elements, which is 6. Then, it will pick T, since it covers
maximum number uncovered elements, which is 3, leaving 3 more elements uncovered. Then
it will select T5 and T3 , which cover 2 and 1 uncovered elements, respectively. At this point,
every element in X will be covered.

By greedy algorithm, C' = {T1, Ty, Ts, T3} = cost = |C| =4

Page 1 of 9

CS 105: Algorithms (Grad) Valika K. Wan & Khanh Do Ba
Set Cover and Application to Shortest Superstring Feb 21-24, 2005

Where Optimum solution, C = {13, Ty, T5} = cost = |C]| =3

Algorithm 1: GREEDY-SET-COVER (X, F))
1 U—X

2 C 10

3 While U # 0

4 do select an S € F' that maximizes |S N U]
5

6

7

U~U-58
C—CU{S}

return C

The description of this algorithm are as following. First, start with an empty set C. Let C
contains a cover being constructed. Let U contain, at each stage, the set of remaining uncovered
elements. While there exists remaining uncovered elements, choose the set S from F' that covers
as many uncovered elements as possible, put that set in C' and remove these covered elements
from U. When all element are covered, C contains a subfamily of F' that covers X and the
algorithm terminates.

Figure 2: Another instance (X, F') of set-covering problem. Here, X consists of 9 vertices and
F = {T1, Ty, T, Ty}. The greedy algorithm produces set cover of size 3 by selecting the sets
T1, T3 and T in order.

1.3 Analysis Of Greedy-Set-Cover
Theorem: GREEDY-SET-COVER is a polynomial time o — approzimation algorithm, where

a = H(mazx{|S|: S€F}) (2)
and H(d) = the d"" harmonic number, which is equal to 1 + % + % + ...+ é = Zgzl% =
logd + O(1) (from equation (A.7) in Appendix A).
From the previous lectures, we have

c(T)

corn))

where C(T') = the solution of GREEDY-SET-COVER algorithm = |C|
C(OPT) = the optimal solution = |C¥|

Page 2 of 9

CS 105: Algorithms (Grad) Valika K. Wan & Khanh Do Ba

Set Cover and Application to Shortest Superstring Feb 21-24, 2005
So we have c

= 4

] W

this says that the GREEDY-SET-COVER produces the set cover C that has the size not more
than « times of that of the optimal solution. Combining equation (2) and (4), we get

] = max :
cop = H(maz {18 § € F) (5)

Equation (2) and (5) are equal. So if we prove equation (5), we prove the theorem.

Proof: From now on, we refer to GREEDY-SET-COVER algorithm as “the algorithm”. To prove
this algorithm, we assign a price of 1 to each set S € F selected by the algorithm and distribute
this price over the elements covered for the first time. Let S; denote the i*" subset selected by
the algorithm at ¥ iteration. Let ¢, be the price allocated to element z € X, that is covered
for the first time at i iteration.

1
@ = |S; — (S1USsU...US;)] ()

Notice that | S; — (S1 U S2U...US;_1) | is the number of elements covered for the first time by
S; at it" iteration. For example, from Figure 2, the price allocated to each element is calculated
as follows. At the 1% iteration, there are 6 elements covered for the first time by T7. Therefore,

the price of each of those 6 elements is ¢, = m = %. In 2 jteration, T3 covers 2 new

elements, so the price for each of those elements is ¢, = ITsflTl\ = % Finally, in 3" iteration,

T5 covers 1 more new element, so the price for this is obviously 1 and can be calculated from
_ 1 _1

Co = Tm—(muty)] — 1

At each iteration of the algorithm, 1 unit price is assigned and one of set S € F is also added

to the cover C, so the cost of the algorithm equals to the price of universe, .y cs.

= Ye (@)

zeX

Notice that the optimal solution is intractable, so in order to find out how our greedy algo-
rithm does in terms of performance compare to the optimal solution we need to make indirect
comparisons by using some reference quantities. Here, the reference quantity is the price of

universe, » .y Cz.
The price assigned to the optimal cover is defined as

PIDIL

SeC* xS

We need to find a relationship of the price of universe and the price optimal cover. From the
optimal cover price defined above, if some sets in the optimal solution overlap each other, the
price of the overlapped elements in those sets will be double counted. So we have

Y DN e = D (8)

SeC* zeS zeX

Page 3 of 9

CS 105: Algorithms (Grad) Valika K. Wan & Khanh Do Ba
Set Cover and Application to Shortest Superstring Feb 21-24, 2005

From equation (7) and (8), we get

< Y Ye (9)

SeC* xS

Claim:

Yo < H(IS]) (10)

z€eS

If the claim is true, from equation (3) we will get

cl < > H(S)
zeCx*
< |C* x H(maz{|S| : S € F}) (11)

which is the same as equation (5) and this proves the theorem.
Here, It remains to be shown that our claim in equation (10) is true.
Let S be any set S € F andi=1, 2, ..., |C], and let

wi(S) =[S — (S US> U...US))|

be number of elements of S remaining uncovered after the algorithm adding Sy, So, ..., S; to C
at it iteration. We define

up(S) =1|9|

to be the number of all elements in S, which is initially uncovered. Let k be the least index
such that
uk(S) =0

so that at k" iteration all element in S are covered for the first time by the sets S;, So, ..., S;
chosen by the algorithm. Notice that ug(S) > ui(S) > ... > ug—1(S) > ug(S). So we have
w;i—1(S) > u;(S) and w;—1(S) — u;(S) is the number of elements in S that are covered for the
first time by S; at i**iteration, for i =i =1, 2, ..., k. Thus,

k
1
ZCI — Z(ul_l(S) — Uz(S))) ’S _ (Sl US,u...U Si—l)‘ (12)

zeS i=1

which is equal to the sum of number of elements of S covered by S;times the price assigned to
each element at it" iteration. Observe that

|S¢—(51USQU...USZ;1)| > |S—(51USQU...U51;1)| (13)
= U;—1 (14)
because S; is the gready choice at it" iteration, so S cannot cover more new elements than S;

does (otherwise, S should be chosen by the algorithm instead of S;). So by equation (12) and
(14), we obtain

k

Zcm < Z(ui—l — ;) - uil_l

€S i=1

Page 4 of 9

CS 105: Algorithms (Grad) Valika K. Wan & Khanh Do Ba
Set Cover and Application to Shortest Superstring Feb 21-24, 2005

We now bound this quantity as follow:

Zczv < Z(Ui—l — ;) - ui

€S i=1

]
(]

=1
= H(uo) — H(u1) + (H(u1) — H(uz) + ... + H(ug—1) — H(uk)
= H(uo) — H(uk)
= H(ug) — H(0)
= H(uo)
= H(|S|)

which is the same as our claim in equation (10) and so this completes our proof. B

2 Approximating Shortest Superstring via Set Cover

2.1 Recap: Minimum Set Cover

Recall the (Weighted) Set Cover problem, defined as follows.

Set Cover Problem (SC): Given a universe X of elements, and a collection F' of subsets
S C X, where each S € F' has an associated non-negative cost, find a subcollection C' C F' of
minimum total cost that covers X, assuming one exists.

Valika showed us last time that although this problem is NP-hard to solve exactly, it can be
approximated to a factor of H; = logd + O(1), where d = max{|S| : S € F'}, at least for the
special case where cost(S) = 1 VS € F. In fact, the algorithm and analysis generalizes quite
naturally to the weighted problem, but I will give an alternate, perhaps more intuitive, proof
of the approximation factor anyway. First, the algorithm is as follows.

Page 5 of 9

CS 105: Algorithms (Grad) Valika K. Wan & Khanh Do Ba
Set Cover and Application to Shortest Superstring Feb 21-24, 2005

Algorithm 2: GREEDYSETCOVER(X, F)
C—10
U—X
while U # () do
Find set S € F'\ C that minimizes « :=
for each x € SNU do
L price(z) «— «
C«— CU{S}
| U«—U\S

return C

cost(S)
SnU -

(= I U VI

®

©

Note the only 2 modifications in this algorithm from the one Valika presented yesterday, namely,
the minimized quantity « in each iteration is now C?;g) instead of simply ﬁ, and we incor-
porate this price associated with each element x covered for the first time into the algorithm

(strictly to aid in the analysis).

Now, we will show the slightly weaker bound than yesterday, that is, that GREEDYSETCOVER
is an H,-approximation for Set Cover, where n = |X|. Observe that the cost of the returned
solution C is precisely the total assigned price of each element in X, > _ price(x). If we order
the elements of X as x1,x9,...,x, by the order in which they were covered by the algorithm,
breaking ties arbitrarily, then we can write this total cost as Y _,_; price(zy). In order to show
> p_q price(zy) < H, OPT, it thus suffices to prove the following lemma.

Lemma: For each k € {1,2,...,n}, price(xy) < 731211, where OPT is the cost of the optimal

cover.
Proof: Consider the iteration during which zj is covered. At the beginning of the iteration,
U contains all the elements as yet uncovered, of which there are at least n — k + 1. Now, the
optimal cover covers all of X, so in particular it certainly covers U. This implies that there
exists a set that achieves a < %. Why is this?

Imagine, for this and future iterations, we choose sets from the optimal cover instead of min-
imizing «. If we maintain element prices as usual, then 1 of the elements zg € U must have
price(xg) < %, since otherwise the total tally over the optimal cover will end up being > OPT,
which is absurd. But then the set S that covered xg is precisely the one we’re looking for, since
its & can only increase over iterations as fewer and fewer elements become available over which
it can distribute its cost.

So coming back to our original algorithm, the existence of a set with o < % means that since
we take the set that minimizes a, the set we end up selecting during the current iteration must
also have a < %. But « is the value we assign to price(zy), so we have price(xy) < %,
where |U| > n — k + 1, which gives us our lemma. W

This gives us the following theorem.

Page 6 of 9

CS 105: Algorithms (Grad) Valika K. Wan & Khanh Do Ba
Set Cover and Application to Shortest Superstring Feb 21-24, 2005

Theorem: GREEDYSETCOVER is an H,-approximation algorithm for the Set Cover problem.

2.2 Today: Shortest Superstring

So now we move on to our main topic of today. We will see an application of the Vertex
Cover approximation to in turn approximate a seemingly unrelated problem, namely Shortest
Superstring (SS). This is not the best approximation known for SS, but it is nonetheless an
interesting reduction.

Applications of SS include DNA analysis and data compression. A strand of human DNA can
be viewed as a long string over a 4-letter alphabet. Typically, only short substrings at a time
can be read from arbitrary and unknown positions in the long strand, many of which may
overlap, and it is conjectured that the shortest DNA string that contains all the read segments
as substrings is a good approximation of the actual DNA strand. In data compression, instead
of sending/storing a lot of strings independently, we can store a single shortest superstring,
together with beginning and ending positions in it for each substring.

2.3 Definition

Shortest Superstring Problem (SS): Given a finite alphabet ¥ and a set of n strings
S ={s1,82,...,8,} C ¥*, find a shortest string s € ¥* that contains s; as a substring for each
i=1,2,...,n. WLOG, assume no s; is a substring of s;, for i # j.

This problem is NP-hard, and a simple greedy algorithm for it (which I nevertheless don’t
have time/space to describe) is conjectured to be a 2-approximation. I guess that means this
is still an open problem, at least at the time the book was written. We will instead use the
H,,-approximation of SC above to obtain a 2H,-approximation of SS.

2.4 The Algorithm

Given an instance S C X* of SS, we wish to construct a corresponding instance (X, F') of SC.
In the SS problem, the set we need to ‘cover,” in some sense, is the set S of strings. So let
our universe X of elements that need to be covered in the SC problem be S. Now, how do we
associate a set set(o) € F with a string o € ¥* so that set(o) covers a string 7 € X = S if and
only if 7 is a substring of 0?7 We could define it to be the set of all substrings of o, but since
we want to limit our sets to subsets of X = S, we will define it as follows:

set(o) := {7 € S : 7 is a substring of o} (15)

A set cover, then, will be a collection of such sets set(c), from which we derive a superstring
of S by concatenating all the ¢’s together. However, we can’t define F' to be the collection of
set(o)’s for all o € ¥*, since F needs to be finite. On the other hand, we can’t limit the o’s to
just .S, since the only superstring we would then get is the concatenation of all strings in S, a not
very useful solution. To strike a balance, we wish the set of ¢’s to include various superstrings
of every pair of strings in S. To be precise, let us pick an arbitrary order {s1, s2,...,s,} of S.
Then for strings s;,s; € .S, if the last k& > 0 symbols of s; are the same as the first & symbols
of s;, let 0y, denote the string obtained by overlapping these & symbols of s; and s;. Let I

Page 7 of 9

CS 105: Algorithms (Grad) Valika K. Wan & Khanh Do Ba
Set Cover and Application to Shortest Superstring Feb 21-24, 2005

then be the set of o;;;,’s for all valid choices of ¢, j, k, that is, the set of all ‘good’ superstrings
of pairs of strings in S. We can now define F' as {set(c) : 0 € S U I}, and the associated cost
of each set set(o) is simply the length of o, that is, |o|. Based on this, we can now write down
the algorithm for SS as follows.

Algorithm 3: SHORTESTSUPERSTRING(.S)
1 Compute the instance (X, F') of SC as described above.
2 Let {set(o1),set(o2),...,set(ox)} be the collection of sets returned by
GREEDYSETCOVER(X, F).
3 return s:=01-09----- o

2.5 An Example

The following is a simple example of the reduction. Consider the simplest alphabet ¥ = {0,1},
over which we have the SS problem instance S = {s; = 001, sy = 01101, s3 = 010}. Then for
the string 11010010 € ¥*, for instance, we have set(11010010) = {s; = 001, s3 = 010}. Next,
we find I to be

I = {0122 = 001101, 0132 = 0010, 0232 = 011010, 0317 = 01001, o327 = 0101101} (16)
And finally, we have the SC instance (X, F'), with X = S,

F = {{81}, {82}, {83}, Set(Ulgg), Set(0'132), Set(O'Qgg), Set(Ugu), Set(0'321>} (17)

and set costs cost({s1}) = |s1| = 3 and cost(set(c122)) = |o122| = 6 as representative examples.

2.6 The Analysis

It is clear that this is a polynomial time reduction, and that SHORTESTSUPERSTRING gives
some superstring of S. Since we know that GREEDYSETCOVER is an Hy-approximation for
SC, in order to show that SHORTESTSUPERSTRING is a 2H,-approximation for SS it suffices to
prove the following lemma.

Lemma: Let OPTgc denote the cost of an optimal solution to the SS instance (X, F'), and
OPTgg denote the length of the shortest superstring of S. Then OPTgo < 2 x OPTgg.
Proof: It suffices to exhibit some set cover of cost < 2x OPTgg. Let s be a shortest superstring
of S, that is, one of length OPTgg, and let S = {s1,s9,...,s,} be ordered by each string’s
leftmost occurrence in s. For the rest of the proof, when we talk about strings in S we will
be referring to this ordering and to that particular leftmost occurrence. It helps to follow the
proof with Figure 3 for illustration.

Note that since no string in S is a substring of another, for all i < j, s; must start before and
end before s;. We will partition the ordered list sq,...,s, into groups as follows. Denote by
b; and e; the indices of the first and last string in the i** group. We let b; = 1 and e; be the
highest index such that s, still overlaps with s;,. Then by = €1 41, and e3 is the highest index
such that se, still overlaps with sp,, and so on, until we eventually have e; = n.

Page 8 of 9

CS 105: Algorithms (Grad) Valika K. Wan & Khanh Do Ba

Set Cover and Application to Shortest Superstring Feb 21-24, 2005
s
I
) .
1
I I
I 3 I
1 €1
1
1 b I
' 1
: | I
I 5 I
1 £2 I
I !
Sbs i |
1
I I
I 5, I
|—‘
S|
= |
3

Figure 3: Partitioning and recovering of strings in S within shortest superstring.

Now, for each i € {1,...,t}, by definition s, must overlap s, by some k; number of symbols.
So let m; = ope;k,- Clearly, m; ‘covers’ s; for b; < j < e;, so that {set(m;) : i € {1,...,t}} is
a set cover of the SS instance (X, F'). We now make the final and key observation that each
symbol in s is ‘covered’ by at most 2 of the m;’s. Why is this? Consider any i € {1,...,t — 2}
and we will show that m; cannot overlap m; 2. This is equivalent to saying s., does not overlap
Sbi4o- But we know that s., must end before s, , ends, and by construction sy, ,, must start
after s, ends, so se, certainly cannot overlap s, ,. It follows that this set cover that we just
found has a cost of >, |mi| <2 x OPTgg, completing our proof. W

This gives us the following theorem.

Theorem: SHORTESTSUPERSTRING is a 2H,-approximation algorithm for the Shortest Super-
string problem.

Page 9 of 9

