General Instructions: Same as in Homework 1.

Honor Principle: Same as in Homework 1.

- 20. Prove that if $g_n : \{0,1\}^n \to \{0,1\}^{m(n)}$ is $(\varepsilon(n), t(n))$ -pseudorandom, then it is $(\varepsilon(n), t(n))$ -unpredictable. For this problem you may assume that t(n) refers to "running time." [2 points]
- 21. Suppose the family $g = \{g_n\}_{n \in \mathbb{N}}$, where $g_n : \{0,1\}^n \to \{0,1\}^{n+1}$, is a pseudorandom generator. Suppose k > 1 is a constant. Based on g, construct a pseudorandom generator $h = \{h_n\}_{n \in \mathbb{N}}$ where $h_n : \{0,1\}^n \to \{0,1\}^{n^k}$. [2 points]

This is essentially Problem 7 from Chapter 10 of [Arora-Barak].