General Instructions: Same as in Homework 1.

Honor Principle: For this homework, you should work entirely on your own and not discuss with anyone.

15. Give a full formal proof that \(\text{ZPP} = \text{RP} \cap \text{coRP} \). [2 points]

16. For constants \(0 < \alpha < \beta < 1 \), define the class \(\text{BPP}_{\alpha,\beta} \) to be the class of all languages \(L \subseteq \Sigma^* \) such that there exists a PTM \(M \) that runs in polynomial time and behaves as follows on an input \(x \in \Sigma^* \):

\[
\begin{align*}
 x \notin L & \Rightarrow \Pr_{R}[M(x,r) = 1] \leq \alpha, \\
 x \in L & \Rightarrow \Pr_{R}[M(x,r) = 1] \geq \beta.
\end{align*}
\]

Note that our definition of BPP in class coincides with \(\text{BPP}^{\frac{1}{3}, \frac{2}{3}} \) in this notation.

Using Chernoff bounds, give a full formal proof that for all \(\alpha \) and \(\beta \) as above, \(\text{BPP}_{\alpha,\beta} = \text{BPP} \). [2 points]

Recall that the Chernoff bound we saw in class had the following general form. Let \(\{X_1, \ldots, X_n\} \) be independent indicator random variables with \(\mathbb{E}[X_i] = p_i \). Suppose \(X = \sum_{i=1}^{n} X_i \) and let \(p \) be such that \(np = p_1 + \cdots + p_n \). Then, for any \(\delta > 0 \):

\[
\Pr[X \geq (1 + \delta)np] \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}} \right)^{np}.
\]

We also have a similar inequality bounding deviations of \(X \) below its mean. For \(0 < \delta < 1 \):

\[
\Pr[X \leq (1 - \delta)np] \leq \left(\frac{e^{-\delta}}{(1 - \delta)^{1-\delta}} \right)^{np}.
\]