If you have any questions about the grading of a particular problem, please consult the appropriate grader as shown below:

- Problems 1 and 2 were graded by David Blinn.
- Problem 3 was graded by Chien-Chung Huang.
- Problems 4 and 5 were graded by Amit Chakrabarti.

1. Let \(\mathbb{N} = \{0, 1, 2, 3, \ldots\} \) be the set of all non-negative integers and let \(\mathbb{R}^+ \) be the set of all non-negative real numbers. Suppose we have two functions \(f, g : \mathbb{N} \to \mathbb{R}^+ \). Write precise mathematical definitions of the notations \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \).

Solution: \(f(n) = O(g(n)) \) means \(\exists c, n_0 > 0 (\forall n \geq n_0 (f(n) \leq cg(n))). \)
\(f(n) = \Omega(g(n)) \) means \(\exists c, n_0 > 0 (\forall n \geq n_0 (f(n) \geq cg(n))). \)

2. Let \(S \) be a sample space for a random process and let \(P \) be the appropriate probability distribution on \(S \). Answer the following questions with precise mathematical definitions.

2.1. What does it mean to say that \(P \) is a uniform probability distribution?

Solution: Any of the following would be an appropriate definition:
\[\forall x \in S \ (P(x) = 1/|S|) \]
OR
\[\forall x, y \in S \ (P(x) = P(y)) \]
OR
\(P \) assigns equal weight to all elements of \(S \).

2.2. Let \(A, B \subseteq S \) be two events. What does it mean to say that \(A \) and \(B \) are independent?

Solution: It means \(P(A \mid B) = P(A) \).
3. For each of the recurrences below, find a big-Θ bound on the solution. You may use theorem(s) and result(s) from the textbook without proof. If you ever need to use the fact that $f(n) = \Theta(g(n))$ for some f and g, you should state this, but you need not prove it.

3.1.

$$T(n) = \begin{cases} 4T(\lceil n/2 \rceil) + 2n^2 - 9n + 6, & \text{if } n > 1 \\ 1, & \text{if } n = 1. \end{cases}$$

Solution: We have $2n^2 - 9n + 6 = \Theta(n^2)$. We also have $\log_2 4 = 2$. The master theorem tells us that $T(n) = \Theta(n^2 \log n)$.

3.2.

$$T(n) = \begin{cases} 27T(\lceil n/3 \rceil) + n^3, & \text{if } n > 1 \\ 2, & \text{if } n = 1. \end{cases}$$

Solution: The initial condition $T(1) = 2$ doesn’t matter; we have $\log_3 27 = 3$ and so the master theorem tells us that $T(n) = \Theta(n^3 \log n)$.

3.3.

$$T(n) = \begin{cases} 4T(\lceil n/3 \rceil) + \frac{n^2}{\sqrt{n+1}}, & \text{if } n > 1 \\ 1, & \text{if } n = 1. \end{cases}$$

Solution: We have $\frac{n^2}{\sqrt{n+1}} = \Theta(n^{3/2})$, so we want to compare $\log_4 4$ with $3/2$. Since $3^{3/2} = \sqrt{27} > \sqrt{16} = 4$, we have $3/2 > \log_4 4$. Now the master theorem tells us that $T(n) = \Theta(n^{3/2})$.

3.4. \[T(n) = \begin{cases} 4T([n/2]) + n \log n, & \text{if } n > 1 \\ 2, & \text{if } n = 1. \end{cases} \]

Solution: Let us define two new sequences \(L(n) \) and \(U(n) \) as follows: \(L(1) = U(1) = 2 \), and for \(n > 1 \),

\[
L(n) = 4L([n/2]) + n, \\
U(n) = 4U([n/2]) + n^{3/2}.
\]

Then, for all \(n \), \(L(n) \leq T(n) \leq U(n) \) (this can be proved rigorously by induction). But the master theorem tells us that \(L(n) = \Theta(n^2) \) and \(U(n) = \Theta(n^2) \). Therefore \(T(n) = \Theta(n^2) \) as well.

This problem was almost identical to textbook P4.5-7 from the textbook. The hint at the back of the textbook suggests a different, but more long-winded, approach. (Although, why on earth would one want to work harder than necessary?!)

4. As discussed in class, a virtual 3-sided die that shows the numbers \(x_1, x_2 \) and \(x_3 \) with equal probability can be constructed out of a usual 6-sided die by writing each of the \(x_i \) on two of the faces. Suppose that we construct three specific 3-sided dice as follows:

- The red die shows the numbers in \(\{3, 5, 7\} \) with equal probability.
- The green die shows the numbers in \(\{2, 4, 9\} \) with equal probability.
- The blue die shows the numbers in \(\{1, 6, 8\} \) with equal probability.

We say that “die \(A \) beats die \(B \)” if, upon rolling both dice, the number on top of \(A \) exceeds the number on top of \(B \) with probability \(> 50\% \).

4.1. Suppose the red die and the green die are both rolled. Let \(E_{RG} \) denote the event that the number on top of the red die exceeds the number on top of the green die. Compute \(P(E_{RG}) \). Does the red die beat the green die?

Solution: A sample space for rolling these two dice is given by

\[S_{RG} = \{ (i, j) : \text{the red die shows } i \text{ and the green die shows } j \}. \]

Since the dice are fair, the probability distribution on this sample space is uniform. We see that \(|S_{RG}| = 9 \) and that \(E_{RG} = \{ (3, 2), (5, 2), (5, 4), (7, 2), (7, 4) \} \), so that \(|E_{RG}| = 5 \). Therefore, using the formula for the probability of an event under a uniform distribution, we have

\[P(E_{RG}) = \frac{|E_{RG}|}{|S_{RG}|} = \frac{5}{9} > 50\%, \]

which means that the red die does beat the green die.
4.2. Does the green die beat the blue die? Show your work!

Solution: Proceeding as above, the situation is modelled by a uniform distribution on the sample space

\[S_{GB} = \{(i, j) : \text{the green die shows } i \text{ and the blue die shows } j\} \]

and the event \(E_{GB} = \{(2, 1), (4, 1), (9, 1), (9, 6), (9, 8)\} \). Therefore

\[P(E_{GB}) = \frac{|E_{GB}|}{|S_{GB}|} = \frac{5}{9} > 50\% \]

and we conclude that the green die does beat the blue die.

4.3. Does the blue die beat the red die? Again, show your work.

Solution: A similar calculation gives a probability of \(5/9 \) again and shows that (wonder of wonders) the blue die does beat the red die! Yet another way in which probability can be non-intuitive.
5. A standard deck of 52 cards is randomly shuffled and separated into four bridge hands (traditionally called North, East, South and West) of 13 cards each. A little birdie tells you that North and South hold 11 spades between them, and thus, East and West hold 2 spades between them. Given this information, what is the probability that East and West hold exactly one spade each?

Free hint: The answer is not 50%.

Solution: Let S be the set of cards held by East and West. It does not matter exactly which cards are in S, just that $|S| = 26$ and S contains exactly two spades. Now, we divide S into two hands of 13 cards each. The given question is: what is the probability that both East and West end up with one spade each?

There are $\binom{26}{13}$ ways to divide S into two hands, all equally likely. Of these, let us count the number of divisions in which East gets exactly one spade. We can choose which spade (s)he gets in $\binom{2}{1}$ ways and which 12 non-spades (s)he gets in $\binom{24}{12}$ ways; by the product principle, this gives a total of $\binom{2}{1}\binom{24}{12}$ ways. Therefore,

$$
\text{Required probability} = \frac{\binom{2}{1}\binom{24}{12}}{\binom{26}{13}}
= \frac{2 \cdot 24!}{12! \cdot 13!}
= \frac{2 \cdot 24! \cdot 13! \cdot 13!}{26! \cdot 12! \cdot 12!}
= \frac{2 \cdot 13 \cdot 13}{26 \cdot 25}
= \frac{13}{25}.
$$

Thus, the desired answer is $13/25 = 52\%$.
