
3 Growth of Functions

The order of growth of the running time of an algorithm, defined in Chapter 2,
gives a simple characterization of the algorithm’s efficiency and also allows us to
compare the relative performance of alternative algorithms. Once the input size n
becomes large enough, merge sort, with its 2(n lg n) worst-case running time,
beats insertion sort, whose worst-case running time is 2(n2). Although we can
sometimes determine the exact running time of an algorithm, as we did for insertion
sort in Chapter 2, the extra precision is not usually worth the effort of computing
it. For large enough inputs, the multiplicative constants and lower-order terms of
an exact running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make only the order of growth of
the running time relevant, we are studying the asymptotic efficiency of algorithms.
That is, we are concerned with how the running time of an algorithm increases with
the size of the input in the limit, as the size of the input increases without bound.
Usually, an algorithm that is asymptotically more efficient will be the best choice
for all but very small inputs.

This chapter gives several standard methods for simplifying the asymptotic anal-
ysis of algorithms. The next section begins by defining several types of “asymptotic
notation,” of which we have already seen an example in 2-notation. Several no-
tational conventions used throughout this book are then presented, and finally we
review the behavior of functions that commonly arise in the analysis of algorithms.

3.1 Asymptotic notation

The notations we use to describe the asymptotic running time of an algorithm
are defined in terms of functions whose domains are the set of natural numbers
N = {0, 1, 2, . . .}. Such notations are convenient for describing the worst-case
running-time function T (n), which is usually defined only on integer input sizes.
It is sometimes convenient, however, to abuse asymptotic notation in a variety of

Amit Chakrabarti
Text Box
This handout is from the book "Introduction to Algorithms, 2nd edition", by Cormen, Leiserson, Rivest and Stein. It has been generously provided to this CS 19 class by Tom Cormen.

42 Chapter 3 Growth of Functions

ways. For example, the notation is easily extended to the domain of real numbers
or, alternatively, restricted to a subset of the natural numbers. It is important, how-
ever, to understand the precise meaning of the notation so that when it is abused, it
is not misused. This section defines the basic asymptotic notations and also intro-
duces some common abuses.

2-notation

In Chapter 2, we found that the worst-case running time of insertion sort is
T (n) = 2(n2). Let us define what this notation means. For a given function g(n),
we denote by 2(g(n)) the set of functions

2(g(n)) = { f (n) : there exist positive constants c1, c2, and n0 such that
0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0} .1

A function f (n) belongs to the set 2(g(n)) if there exist positive constants c1
and c2 such that it can be “sandwiched” between c1g(n) and c2g(n), for suffi-
ciently large n. Because 2(g(n)) is a set, we could write “ f (n) ∈ 2(g(n))”
to indicate that f (n) is a member of 2(g(n)). Instead, we will usually write
“ f (n) = 2(g(n))” to express the same notion. This abuse of equality to denote
set membership may at first appear confusing, but we shall see later in this section
that it has advantages.

Figure 3.1(a) gives an intuitive picture of functions f (n) and g(n), where we
have that f (n) = 2(g(n)). For all values of n to the right of n0, the value of f (n)

lies at or above c1g(n) and at or below c2g(n). In other words, for all n ≥ n0, the
function f (n) is equal to g(n) to within a constant factor. We say that g(n) is an
asymptotically tight bound for f (n).

The definition of 2(g(n)) requires that every member f (n) ∈ 2(g(n)) be
asymptotically nonnegative, that is, that f (n) be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g(n) itself must be asymptotically
nonnegative, or else the set 2(g(n)) is empty. We shall therefore assume that every
function used within 2-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

In Chapter 2, we introduced an informal notion of 2-notation that amounted
to throwing away lower-order terms and ignoring the leading coefficient of the
highest-order term. Let us briefly justify this intuition by using the formal def-
inition to show that 1

2 n2 − 3n = 2(n2). To do so, we must determine positive
constants c1, c2, and n0 such that

1Within set notation, a colon should be read as “such that.”

3.1 Asymptotic notation 43

(b) (c)(a)

PSfrag replacements

nnn n0n0n0 f (n) = 2(g(n)) f (n) = O(g(n)) f (n) = �(g(n))

f (n)

f (n)
f (n)

cg(n)

cg(n)

c1g(n)

c2g(n)

Figure 3.1 Graphic examples of the 2, O, and � notations. In each part, the value of n0 shown is
the minimum possible value; any greater value would also work. (a) 2-notation bounds a function to
within constant factors. We write f (n) = 2(g(n)) if there exist positive constants n0, c1, and c2 such
that to the right of n0, the value of f (n) always lies between c1g(n) and c2g(n) inclusive. (b) O-
notation gives an upper bound for a function to within a constant factor. We write f (n) = O(g(n))

if there are positive constants n0 and c such that to the right of n0, the value of f (n) always lies on
or below cg(n). (c) �-notation gives a lower bound for a function to within a constant factor. We
write f (n) = �(g(n)) if there are positive constants n0 and c such that to the right of n0, the value
of f (n) always lies on or above cg(n).

c1n2 ≤
1
2

n2 − 3n ≤ c2n2

for all n ≥ n0. Dividing by n2 yields

c1 ≤
1
2
−

3
n
≤ c2 .

The right-hand inequality can be made to hold for any value of n ≥ 1 by choosing
c2 ≥ 1/2. Likewise, the left-hand inequality can be made to hold for any value
of n ≥ 7 by choosing c1 ≤ 1/14. Thus, by choosing c1 = 1/14, c2 = 1/2, and
n0 = 7, we can verify that 1

2 n2 − 3n = 2(n2). Certainly, other choices for the
constants exist, but the important thing is that some choice exists. Note that these
constants depend on the function 1

2n2−3n; a different function belonging to 2(n2)
would usually require different constants.

We can also use the formal definition to verify that 6n3 6= 2(n2). Suppose for
the purpose of contradiction that c2 and n0 exist such that 6n3 ≤ c2n2 for all n ≥ n0.
But then n ≤ c2/6, which cannot possibly hold for arbitrarily large n, since c2 is
constant.

Intuitively, the lower-order terms of an asymptotically positive function can be
ignored in determining asymptotically tight bounds because they are insignificant
for large n. A tiny fraction of the highest-order term is enough to dominate the

44 Chapter 3 Growth of Functions

lower-order terms. Thus, setting c1 to a value that is slightly smaller than the co-
efficient of the highest-order term and setting c2 to a value that is slightly larger
permits the inequalities in the definition of 2-notation to be satisfied. The coef-
ficient of the highest-order term can likewise be ignored, since it only changes c1
and c2 by a constant factor equal to the coefficient.

As an example, consider any quadratic function f (n) = an2 + bn + c, where
a, b, and c are constants and a > 0. Throwing away the lower-order terms and
ignoring the constant yields f (n) = 2(n2). Formally, to show the same thing, we
take the constants c1 = a/4, c2 = 7a/4, and n0 = 2 ·max((|b| /a),

√
(|c| /a)). The

reader may verify that 0 ≤ c1n2 ≤ an2+ bn + c ≤ c2n2 for all n ≥ n0. In general,
for any polynomial p(n) =

∑d
i=0 ai ni , where the ai are constants and ad > 0, we

have p(n) = 2(nd) (see Problem 3-1).
Since any constant is a degree-0 polynomial, we can express any constant func-

tion as 2(n0), or 2(1). This latter notation is a minor abuse, however, because it is
not clear what variable is tending to infinity.2 We shall often use the notation 2(1)

to mean either a constant or a constant function with respect to some variable.

O-notation

The 2-notation asymptotically bounds a function from above and below. When
we have only an asymptotic upper bound, we use O-notation. For a given func-
tion g(n), we denote by O(g(n)) (pronounced “big-oh of g of n” or sometimes just
“oh of g of n”) the set of functions

O(g(n)) = { f (n) : there exist positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0} .

We use O-notation to give an upper bound on a function, to within a constant
factor. Figure 3.1(b) shows the intuition behind O-notation. For all values n to the
right of n0, the value of the function f (n) is on or below cg(n).

We write f (n) = O(g(n)) to indicate that a function f (n) is a member of
the set O(g(n)). Note that f (n) = 2(g(n)) implies f (n) = O(g(n)), since 2-
notation is a stronger notion than O-notation. Written set-theoretically, we have
2(g(n)) ⊆ O(g(n)). Thus, our proof that any quadratic function an 2 + bn + c,
where a > 0, is in 2(n2) also shows that any such quadratic function is in O(n2).
What may be more surprising is that when a > 0, any linear function an + b is in
O(n2), which is easily verified by taking c = a + |b| and n0 = max(1,−b/a).

2The real problem is that our ordinary notation for functions does not distinguish functions from
values. In λ-calculus, the parameters to a function are clearly specified: the function n2 could be
written as λn.n2, or even λr.r2. Adopting a more rigorous notation, however, would complicate
algebraic manipulations, and so we choose to tolerate the abuse.

3.1 Asymptotic notation 45

Some readers who have seen O-notation before may find it strange that we
should write, for example, n = O(n2). In the literature, O-notation is sometimes
used informally to describe asymptotically tight bounds, that is, what we have de-
fined using 2-notation. In this book, however, when we write f (n) = O(g(n)),
we are merely claiming that some constant multiple of g(n) is an asymptotic upper
bound on f (n), with no claim about how tight an upper bound it is. Distinguish-
ing asymptotic upper bounds from asymptotically tight bounds has now become
standard in the algorithms literature.

Using O-notation, we can often describe the running time of an algorithm
merely by inspecting the algorithm’s overall structure. For example, the doubly
nested loop structure of the insertion sort algorithm from Chapter 2 immediately
yields an O(n2) upper bound on the worst-case running time: the cost of each it-
eration of the inner loop is bounded from above by O(1) (constant), the indices i
and j are both at most n, and the inner loop is executed at most once for each of
the n2 pairs of values for i and j .

Since O-notation describes an upper bound, when we use it to bound the worst-
case running time of an algorithm, we have a bound on the running time of the
algorithm on every input. Thus, the O(n2) bound on worst-case running time of
insertion sort also applies to its running time on every input. The 2(n 2) bound
on the worst-case running time of insertion sort, however, does not imply a 2(n 2)
bound on the running time of insertion sort on every input. For example, we saw
in Chapter 2 that when the input is already sorted, insertion sort runs in 2(n) time.

Technically, it is an abuse to say that the running time of insertion sort is O(n 2),
since for a given n, the actual running time varies, depending on the particular
input of size n. When we say “the running time is O(n2),” we mean that there is a
function f (n) that is O(n2) such that for any value of n, no matter what particular
input of size n is chosen, the running time on that input is bounded from above by
the value f (n). Equivalently, we mean that the worst-case running time is O(n 2).

�-notation

Just as O-notation provides an asymptotic upper bound on a function, �-notation
provides an asymptotic lower bound. For a given function g(n), we denote by
�(g(n)) (pronounced “big-omega of g of n” or sometimes just “omega of g of n”)
the set of functions
�(g(n)) = { f (n) : there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .

The intuition behind �-notation is shown in Figure 3.1(c). For all values n to the
right of n0, the value of f (n) is on or above cg(n).

From the definitions of the asymptotic notations we have seen thus far, it is easy
to prove the following important theorem (see Exercise 3.1-5).

46 Chapter 3 Growth of Functions

Theorem 3.1
For any two functions f (n) and g(n), we have f (n) = 2(g(n)) if and only if
f (n) = O(g(n)) and f (n) = �(g(n)).

As an example of the application of this theorem, our proof that an 2 + bn + c =
2(n2) for any constants a, b, and c, where a > 0, immediately implies that
an2 + bn + c = �(n2) and an2 + bn + c = O(n2). In practice, rather than using
Theorem 3.1 to obtain asymptotic upper and lower bounds from asymptotically
tight bounds, as we did for this example, we usually use it to prove asymptotically
tight bounds from asymptotic upper and lower bounds.

Since �-notation describes a lower bound, when we use it to bound the best-case
running time of an algorithm, by implication we also bound the running time of the
algorithm on arbitrary inputs as well. For example, the best-case running time of
insertion sort is �(n), which implies that the running time of insertion sort is �(n).

The running time of insertion sort therefore falls between �(n) and O(n 2), since
it falls anywhere between a linear function of n and a quadratic function of n.
Moreover, these bounds are asymptotically as tight as possible: for instance, the
running time of insertion sort is not �(n2), since there exists an input for which
insertion sort runs in 2(n) time (e.g., when the input is already sorted). It is not
contradictory, however, to say that the worst-case running time of insertion sort
is �(n2), since there exists an input that causes the algorithm to take �(n 2) time.
When we say that the running time (no modifier) of an algorithm is �(g(n)), we
mean that no matter what particular input of size n is chosen for each value of n,
the running time on that input is at least a constant times g(n), for sufficiently
large n.

Asymptotic notation in equations and inequalities

We have already seen how asymptotic notation can be used within mathematical
formulas. For example, in introducing O-notation, we wrote “n = O(n 2).” We
might also write 2n2+ 3n+ 1 = 2n2+2(n). How do we interpret such formulas?

When the asymptotic notation stands alone on the right-hand side of an equation
(or inequality), as in n = O(n2), we have already defined the equal sign to mean set
membership: n ∈ O(n2). In general, however, when asymptotic notation appears
in a formula, we interpret it as standing for some anonymous function that we do
not care to name. For example, the formula 2n2 + 3n + 1 = 2n2 + 2(n) means
that 2n2 + 3n + 1 = 2n2 + f (n), where f (n) is some function in the set 2(n). In
this case, f (n) = 3n + 1, which indeed is in 2(n).

Using asymptotic notation in this manner can help eliminate inessential detail
and clutter in an equation. For example, in Chapter 2 we expressed the worst-case
running time of merge sort as the recurrence

T (n) = 2T (n/2)+2(n) .

3.1 Asymptotic notation 47

If we are interested only in the asymptotic behavior of T (n), there is no point in
specifying all the lower-order terms exactly; they are all understood to be included
in the anonymous function denoted by the term 2(n).

The number of anonymous functions in an expression is understood to be equal
to the number of times the asymptotic notation appears. For example, in the ex-
pression

n∑

i=1
O(i) ,

there is only a single anonymous function (a function of i). This expression is thus
not the same as O(1) + O(2) + · · · + O(n), which doesn’t really have a clean
interpretation.

In some cases, asymptotic notation appears on the left-hand side of an equation,
as in

2n2 +2(n) = 2(n2) .

We interpret such equations using the following rule: No matter how the anony-
mous functions are chosen on the left of the equal sign, there is a way to choose
the anonymous functions on the right of the equal sign to make the equation valid.
Thus, the meaning of our example is that for any function f (n) ∈ 2(n), there
is some function g(n) ∈ 2(n2) such that 2n2 + f (n) = g(n) for all n. In other
words, the right-hand side of an equation provides a coarser level of detail than the
left-hand side.

A number of such relationships can be chained together, as in

2n2 + 3n + 1 = 2n2 +2(n)

= 2(n2) .

We can interpret each equation separately by the rule above. The first equation says
that there is some function f (n) ∈ 2(n) such that 2n2 + 3n + 1 = 2n2 + f (n) for
all n. The second equation says that for any function g(n) ∈ 2(n) (such as the f (n)

just mentioned), there is some function h(n) ∈ 2(n2) such that 2n2+ g(n) = h(n)

for all n. Note that this interpretation implies that 2n2+ 3n + 1 = 2(n2), which is
what the chaining of equations intuitively gives us.

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymp-
totically tight. The bound 2n2 = O(n2) is asymptotically tight, but the bound
2n = O(n2) is not. We use o-notation to denote an upper bound that is not asymp-
totically tight. We formally define o(g(n)) (“little-oh of g of n”) as the set

48 Chapter 3 Growth of Functions

o(g(n)) = { f (n) : for any positive constant c > 0, there exists a constant
n0 > 0 such that 0 ≤ f (n) < cg(n) for all n ≥ n0} .

For example, 2n = o(n2), but 2n2 6= o(n2).
The definitions of O-notation and o-notation are similar. The main difference is

that in f (n) = O(g(n)), the bound 0 ≤ f (n) ≤ cg(n) holds for some constant
c > 0, but in f (n) = o(g(n)), the bound 0 ≤ f (n) < cg(n) holds for all con-
stants c > 0. Intuitively, in the o-notation, the function f (n) becomes insignificant
relative to g(n) as n approaches infinity; that is,

lim
n→∞

f (n)

g(n)
= 0 . (3.1)

Some authors use this limit as a definition of the o-notation; the definition in this
book also restricts the anonymous functions to be asymptotically nonnegative.

ω-notation

By analogy, ω-notation is to �-notation as o-notation is to O-notation. We use
ω-notation to denote a lower bound that is not asymptotically tight. One way to
define it is by

f (n) ∈ ω(g(n)) if and only if g(n) ∈ o(f (n)) .

Formally, however, we define ω(g(n)) (“little-omega of g of n”) as the set

ω(g(n)) = { f (n) : for any positive constant c > 0, there exists a constant
n0 > 0 such that 0 ≤ cg(n) < f (n) for all n ≥ n0} .

For example, n2/2 = ω(n), but n2/2 6= ω(n2). The relation f (n) = ω(g(n))

implies that

lim
n→∞

f (n)

g(n)
= ∞ ,

if the limit exists. That is, f (n) becomes arbitrarily large relative to g(n) as n
approaches infinity.

Comparison of functions

Many of the relational properties of real numbers apply to asymptotic comparisons
as well. For the following, assume that f (n) and g(n) are asymptotically positive.

3.1 Asymptotic notation 49

Transitivity:

f (n) = 2(g(n)) and g(n) = 2(h(n)) imply f (n) = 2(h(n)) ,

f (n) = O(g(n)) and g(n) = O(h(n)) imply f (n) = O(h(n)) ,

f (n) = �(g(n)) and g(n) = �(h(n)) imply f (n) = �(h(n)) ,

f (n) = o(g(n)) and g(n) = o(h(n)) imply f (n) = o(h(n)) ,

f (n) = ω(g(n)) and g(n) = ω(h(n)) imply f (n) = ω(h(n)) .

Reflexivity:

f (n) = 2(f (n)) ,

f (n) = O(f (n)) ,

f (n) = �(f (n)) .

Symmetry:

f (n) = 2(g(n)) if and only if g(n) = 2(f (n)) .

Transpose symmetry:

f (n) = O(g(n)) if and only if g(n) = �(f (n)) ,

f (n) = o(g(n)) if and only if g(n) = ω(f (n)) .

Because these properties hold for asymptotic notations, one can draw an analogy
between the asymptotic comparison of two functions f and g and the comparison
of two real numbers a and b:

f (n) = O(g(n)) ≈ a ≤ b ,

f (n) = �(g(n)) ≈ a ≥ b ,

f (n) = 2(g(n)) ≈ a = b ,

f (n) = o(g(n)) ≈ a < b ,

f (n) = ω(g(n)) ≈ a > b .

We say that f (n) is asymptotically smaller than g(n) if f (n) = o(g(n)), and f (n)

is asymptotically larger than g(n) if f (n) = ω(g(n)).
One property of real numbers, however, does not carry over to asymptotic nota-

tion:

Trichotomy: For any two real numbers a and b, exactly one of the following must
hold: a < b, a = b, or a > b.

50 Chapter 3 Growth of Functions

Although any two real numbers can be compared, not all functions are asymptoti-
cally comparable. That is, for two functions f (n) and g(n), it may be the case that
neither f (n) = O(g(n)) nor f (n) = �(g(n)) holds. For example, the functions n
and n1+sin n cannot be compared using asymptotic notation, since the value of the
exponent in n1+sin n oscillates between 0 and 2, taking on all values in between.

Exercises

3.1-1
Let f (n) and g(n) be asymptotically nonnegative functions. Using the basic defi-
nition of 2-notation, prove that max(f (n), g(n)) = 2(f (n)+ g(n)).

3.1-2
Show that for any real constants a and b, where b > 0,

(n + a)b = 2(nb) . (3.2)

3.1-3
Explain why the statement, “The running time of algorithm A is at least O(n 2),” is
meaningless.

3.1-4
Is 2n+1 = O(2n)? Is 22n = O(2n)?

3.1-5
Prove Theorem 3.1.

3.1-6
Prove that the running time of an algorithm is 2(g(n)) if and only if its worst-case
running time is O(g(n)) and its best-case running time is �(g(n)).

3.1-7
Prove that o(g(n)) ∩ ω(g(n)) is the empty set.

3.1-8
We can extend our notation to the case of two parameters n and m that can go to
infinity independently at different rates. For a given function g(n, m), we denote
by O(g(n, m)) the set of functions
O(g(n, m)) = { f (n, m) : there exist positive constants c, n0, and m0

such that 0 ≤ f (n, m) ≤ cg(n, m)

for all n ≥ n0 or m ≥ m0} .
Give corresponding definitions for �(g(n, m)) and 2(g(n, m)).

