
CS 21
Winter 2004
Discrete Mathematics

Recursive algorithms
that run in linear time

Amit Chakrabarti
Computer Science

Dartmouth College

Imagine an algorithm that is given an input of size n. It works by doing a linear amount of work
(at most cn units, for some constant c), and calling itself recursively on one input of size at most
n/2. These two steps need not occur in this order; the algorithm could first do some work, then
call itself recursively once, then do some more work. So long as the total amount of work is at
most cn units, we can use the recurrence inequality T (n) ≤ T (dn/2e) + cn for the running time
of the algorithm. Letting U(n) be a sequence such that U(1) = T (1) and U(n) = U(dn/2e) + cn
for n > 1, we can show by an easy induction that T (n) ≤ U(n). The master theorem tells us that
U(n) = Θ(n). Therefore, T (n) = O(n). This proves that our algorithm runs in linear time.

In class, we generalized the above result. We observed that it’s not particularly important that
our algorithm’s recursive call cut the input size in half. It might decrease the input size from n to
at most 2n/3 or 9n/10 or in fact αn for any positive constant α < 1. However, we now need a new
proof because the master theorem no longer helps us. We have the new recurrence inequality

T (n) ≤ T (dαne) + cn . (1)

Theorem 1 For any positive sequence T (n) satisfying (1), we have T (n) = O(n).

Proof: We have to show that there exist constants k and n0 such that for all integers n ≥ n0 we
have T (n) ≤ kn. We shall prove this using strong induction. Choose n0 and k so that they satisfy

n0 ≥ 2
1− α

, (2)

k ≥ 1
n0

· max
1≤i<n0

{T (i)}+ c , (3)

k ≥ 2c

1− α
. (4)

The above inequalities were not born out of thin air; instead, they are the result of some calculations
on scratch paper. But to keep the proof slick I have hidden this work! You should feel free to do the
same when writing your proofs.

Before embarking on the proof by induction, we make two important claims:

CLAIM 1: For n ≥ n0, we have dαne < n.

CLAIM 2: For n ≥ n0, we have (1− α)n− 1 ≥ (1− α)n
2

.

PROOF OF CLAIM 1: Using (2), (1 − α)n ≥ (1 − α)n0 ≥ 2. We can rewrite that as αn ≤ n − 2. Now
using this, dαne < αn + 1 ≤ n− 2 + 1 < n.

PROOF OF CLAIM 2: Using (2), 1
n ≤ 1

n0
≤ 1−α

2 . Thus,

(1− α)n− 1
n

= (1− α)− 1
n

≥ (1− α)− 1− α

2
=

1− α

2
.

Multiplying out by n gives us the inequality we claimed.

Now that we have proved our claims, let us resume the proof of the theorem. For our base case,
we use n = n0. By claim 1, the integer dαn0e is less than n0. So, by (3), k ≥ 1

n0
T (dαn0e) + c. Thus,

kn0 ≥ T (dαn0e) + cn0 ≥ T (n0) ,

1



where the last inequality follows directly from the given condition (1). This finishes the base case.

For the inductive step, suppose we have shown T (i) ≤ ki for all integers i with n0 ≤ i < n.
We shall show that T (n) ≤ kn as well. Claim 1 tell us that dαne < n, so the inductive hypothesis
applies and we get

T (n) ≤ T (dαne) + cn ≤ kdαne+ cn < k(αn + 1) + cn = kn− k((1− α)n− 1) + cn .

Now, using Claim 2∗, we obtain

T (n) ≤ kn− k
(1− α)n

2
+ cn .

Next, using (4)†, we obtain

T (n) ≤ kn− 2c

1− α

(1− α)n
2

+ cn = kn− cn + cn = kn .

This completes the inductive step and the proof of the theorem. �

Using the above theorem we see that recursive algorithms that make one recursive call and do a
linear amount of additional work will run in linear time provided the input size in the recursive call
is smaller than n by at least a constant factor. This principle is fundamental to the design of many
many linear time algorithms.

∗Do you see why we made such an outlandish looking claim?
†Do you now see why we wanted k to satisfy inequality (4)?

2


