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General Instructions. Each problem has a fairly short solution. Feel free to reference things we have proved in class, to keep
your own solutions short. Each problem is worth 10 points, except for the last problem, which is worth 20 points. I have
indicated a partial score breakdown for the last problem as a guideline only.

Honor Prinicple. You are allowed to discuss the problems and exchange solution ideas with your classmates. But when you
write up any solutions for submission, you must work alone. You may refer to any textbook you like, including online ones.
However, you may not refer to published or online solutions to the specific problems on the homework. If in doubt, ask the
professor for clarification!

General Instructions:

Notation: We consider certain natural Boolean function families in this homework, which we now define. Each of these
function families is of the form f = { fn}n∈N, where fn : {0, 1}n→ {0,1}.

PAR : PARn(x) = 1 ⇐⇒
n
∑

i=1

x i ≡ 1 (mod 2) , ∀ x ∈ {0,1}n .

MODm : MODm,n(x) = 1 ⇐⇒
n
∑

i=1

x i 6≡ 0 (mod m) , ∀ x ∈ {0,1}n, m ∈ N, m≥ 2 .

MOD′m,k : MOD′m,k,n(x) = 1 ⇐⇒
n
∑

i=1

x i ≡ k (mod m) , ∀ x ∈ {0,1}n, m, k ∈ N, m≥ 2 .

MAJ : MAJn(x) = 1 ⇐⇒
n
∑

i=1

x i ≥ n/2 , ∀ x ∈ {0,1}n .

Throughout this homework, “circuits” are allowed to have unbounded fan-in. The class AC0 consists of Boolean functions
(equivalently, languages over the alphabet {0,1}) that can be computed by constant depth polynomial size circuits with AND,
OR and NOT gates. The class AC0[m] is similar, except that it additionally allows MODm gates, where m≥ 2 is a constant integer.

12. Complete the proof of Håstad’s Switching Lemma, by filling in the steps we skipped in class. As a reminder, here is an
outline of the proof, along with what we did not show in class.

Let f be a k-DNF on n variables. Let Rm denote the set of restrictions (i.e., partial assignments) of these variables that
have exactly m stars, i.e., Rm = {α ∈ {0, 1,?}n : Ex(α) = n−m}. Let p ∈ (0, 1

2
) be a small fraction. The switching lemma

says that hitting f with a random restriction from Rpn will very likely result in a function of low deterministic query
complexity. To be precise:

Pr
ρ∈RRpn

[D( f |ρ)≥ s] ≤ (7pk)s . (1)

To prove this, we considered the set of “bad” restrictions B = {ρ ∈ Rpn : D( f |ρ) ≥ s}. We gave an injective map from
B to Rpn−s × {0, 1}s × stars(k, s), where

stars(k, s) := {(w1, . . . , w`) : `≥ 1, each wi ∈ {0, 1}k \ {0}k, and |w1|+ · · ·+ |w`|= s} ,

where |w| denotes the number of 1s in the binary string w.

12.1. Prove that | stars(k, s)| ≤ (k/ ln 2)s.
Hint: Use induction on s to prove that | stars(k, s)| ≤ αs, where (1+ 1/α)k = 2. Then show that this inequality
implies the above. For the base case, put the empty string in stars(k, 0) for convenience.

12.2. Use the above result to upper bound |B|, and complete the calculations required to derive Eq. (1).
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13. Consider depth-2 circuits with access to each input bit x i and its negation ¬x i , where ~x ∈ {0,1}n is the input vector. As
part of our proof that PAR /∈ AC0, we showed that if such a circuit computes PARn, it must have size at least 2n−1. But
what if we’re only interested in a circuit that computes PARn correctly on some subset of a little more than half of the 2n

different inputs?

13.1. Why is it not interesting to compute PARn correctly on just 2n−1 inputs?

13.2. Show that there is a depth-2 circuit of size 2O(
p

n) that computes PARn correctly on at least 2n−1 + 2
p

n inputs.

14. Prove that MAJ /∈ AC0.

Hint: This can be solved using either of the two techniques we used in class to show PAR /∈ AC0. However, you can give
a shorter proof by exhibiting an AC0 circuit that reduces PAR to MAJ. For this approach, it might help to use FALSE = +1,
TRUE =−1 and consider sums of the form x1 + · · ·+ xn/2 − xn/2+1 − · · · − xn. Be careful about separating the two cases:
(a) n is odd (b) n is even.

15. Let n = 2m log m, and assume m is a power of 2. The Element Distinctness function EDn : {0, 1}n → {0, 1} is defined
by viewing the input as (the concatenation of) the binary representations of m integers s1, . . . , sm, each of which is
represented by 2 log m bits. It tells us whether or not these integers are distinct. Formally,

EDn(s1, . . . , sm) = 1 ⇐⇒ ∀ i 6= j ∈ [m] : si 6= s j .

Using Neciporuk’s method, prove that LB(EDn) = Ω(n2/ log n).

16. Let p and q be primes with p 6= q. We claimed in class that the approximation-by-polynomials technique can be extended
to show that MODq /∈ AC0[p]. This problem walks you through the proof.

The proof requires a bit of finite field theory, but that shouldn’t daunt you. Here is the crucial fact we need: the finite
field K := Fpq−1 contains Fp (the familiar field consisting of integers mod p) as a subfield, and also contains a primitive
q-th root of unity, i.e., an element ω ∈ K \ {0,1} such that ωq = 1.

Suppose C is an n-input AC0[p] circuit with depth d and size s that computes the function MODq. As in class, we can
assume, thanks to de Morgan’s Laws, that C contains no AND gates. We topologically sort C and proceed to approximate
each of its gates, in order, by polynomials over Fp.

16.1. By generalizing the random subsums construction from class in a suitable manner, prove that there exists a polyno-
mial h(x1, . . . , xn) ∈ Fp[x1, . . . , xn] such that

• deg h≤ (p− 1)`,
• ∀ ~x ∈ {0, 1}n : h(~x) ∈ {0, 1}, and
• Pr[h(~x) 6= ORn(~x)]≤ 1/p`, with ~x ∈R {0, 1}n. [3 points]

16.2. Based on your construction above, prove that there exists a polynomial f (x1, . . . , xn) ∈ Fp[x1, . . . , xn] such that

• deg f ≤
p

n.
• ∀ ~x ∈ {0, 1}n : f (~x) ∈ {0, 1}, and

• Pr[ f (~x) 6= C(~x) = MODq(~x)]≤ s · p−n1/(2d)/(p−1), where ~x ∈R {0,1}n.

To get these bounds you will need to set ` appropriately in the previous construction. [2 points]

16.3. The above gave us a “low degree approximation” to the single Boolean function MODq. By suitably modifying the
circuit C , prove that there exists a “large” good set A⊆ {0,1}n on which each of the Boolean functions MOD′q,k (with
0 ≤ k ≤ q − 1) can be represented by a low degree polynomial. State your results precisely. In particular, state a
precise lower bound on |A| and an upper bound on the degree. [4 points]
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16.4. Consider the affine map α : K → K given by α(x) = 1+(ω−1)x . This map gives us a “notation shift” for functions
with Boolean input: 0/1 notation becomes 1/ω notation. Applying α coordinatewise maps the set A to some set
A′ ⊆ {1,ω}n. Based on your earlier observations, prove that the polynomial y1 y2 · · · yn agrees with some “low”
degree multilinear polynomial g(y1, . . . , yn) ∈ K[y1, . . . , yn] on the set A′. [5 points]

16.5. Argue that the equations y−1
i = 1+(ω−1−1)(ω−1)−1(yi−1) hold for (y1, . . . , yn) ∈ A′. [1 points]

16.6. Proceeding as we did in class, prove that every function from A′ to K can be represented (on A′) by a multilinear
polynomial in K[y1, . . . , yn] of degree ≤ n/2+

p
n. Using this, count the number of functions from A′ to K in two

ways to obtain the desired super-polynomial lower bound on s. [5 points]
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