
Solutions: Homework 1

Prepared by Chien-Chung Huang

1 Operations on languages

1.1) Suppose you split any string of the form 0n1n into x2x1. Then either x2 looks like 0k and
x1 looks like 0p1q(q = k + p) or x2 looks like 0k1p and x1 looks like 1p(k = p + q). Thus,
if L={0n1n | n > 0}, CYCLE(L) = {0p1q0k | q = p + k} ∪ {1q0k1p | k = p + q}.

1.2) The trick is to come up with a language L such that if a string is in L, then none of its
proper prefixes are in L. Here is such an infinite language L: (Let Σ be {0, 1})
L = {10, 110, 1110, 11110, ...}
More formally, L = {1n0 | n > 0}.
It is obvious that MIN(L) = MAX(L) = L.

1.3) No. For a proof, assume that MIN(L)= Σ∗. Let a be any symbol in Σ (since an alphabet,
as we defined in class, is non-empty, such a symbol must exist in Σ). Since MIN(L) = Σ∗,
the string a, aa must be in MIN(L). Since every string that is in MIN(L) is, by definition,
also in L, it follows that a, aa are also in L. Thus, a proper prefix of the string aa is in L.
So aa is not in MIN(L). This contradicts that MIN(L) = Σ∗. Hence the proof.

1.4) HALF (L) contains the first halves of all even-length strings in L.
Take any strings x of the form 0m1n. Is there a string y of the same length as x such that
xy is in L = {0p1q0r | q = p + r}? Yes, take y to be 1m0n; then xy is surely in L. We also
claim that 0m1n is the only form x can take, since the form 1s0m1n can not be the prefix
string in L.

We conclude that, for L = {0p1q0r | q = p + r}, HALF (L) = {0m1n | any m, n}.

1.5) If x is any string of the form 0n 1n, then xxR is 0n1n1n0n = 0n12n0n and such a string
is in L. Any other forms of x such as 1m0n1n or 0n1n0m or 0m1n causes xxR is not in L

anymore. Thus, for L = {0p1q0r | q = p + r}, HALFPALINDROME(L) = {0n1n | any
n}.

2 Tables ←→ Diagrams

2.1) M1 = (Q,Σ, δ, q1, q2).
Q = {q1, q2, q3}, Σ = {a, b}, and

δ(q1, a) = q2, δ(q1, b) = q1, δ(q2, a) = q3,
δ(q2, b) = q3, δ(q3, a) = q2, δ(q3, a) = q1

M2 = (Q,Σ, δ, q1, {q1, q4}).
Q = {q1, q2, q3, q4}, Σ = {a, b}, and

δ(q1, a) = q1, δ(q1, b) = q2, δ(q2, a) = q3,

δ(q2, b) = q4, δ(q3, a) = q2, δ(q3, b) = q1,

δ(q4, a) = q3, δ(q4, b) = q4.

2.2)

q q

q

q
5

1 2

3

4

q

d

u

d

u

d

u
d

u

u

d

3 Designing DFAs

3.1) If the start state is nonfinal and the DFA remains in the start state always, then it clearly
does not accept any string. Formally, here is DFA M = (Q,Σ, δ, q0, F):
Q = {q0}
Σ = {0, 1}
F = empty set

δ(q0, a) = q0 for any a in Σ.

0,1

0,1

3.2) As we read the first two or three symbols of the input, we will remember what they are
if it seems like the string might be one of 11 or 111. The moment we notice that the
string is surely not one of 11, 111 we go to a final state. Formally, here is the DFA
M=(Q,Σ, δ, qstart, F):
Q = {qstart, [1] [11], [111], qhappy}
Σ = {0, 1}
F = {qstart, qhappy}
δ(qstart, 0) = qhappy

δ(qstart, 1) = [1]
δ([1], 0) = qhappy

δ([1], 1) = [11]
δ([11], 0) = qhappy

δ([11], 1) = [111]
δ(qhappy, a) = qhappy for any a in Σ.

1

0

1 1

0,1

0
0

1 11 111

0,1

3.3) The main point is that we keep a count on how many 1’s have appeared in the substring.
M=(Q,Σ, δ, qstart, F)
Q{qstart, [1], [11], [110]}.Σ = {0, 1}, F = {qstart, [1], [11]}.
δ(qstart, 0) = qstart,

δ(qstart, 1) = [1],
δ([1], 0) = qstart,
δ(1, 1) = [11],
δ([11], 0) = [110],
δ([11], 1) = [11],
δ([110], 0) = [110],
δ([110], 1) = [110]

1 1

1 11 111
0

0
1

0

1,0

3.4) Informally, our DFA should keep track of the last three symbols seen. Furthermore, the
moment it notices that less than one of the last three symbols seen are 0

′

s, it should rec-
ognize right away that the string is no good, regardless of how the rest of the string is.
Thus, once it is in a state [i, j, k] where three of i, j, k are 1

′

s, it should never leave that
“bad” state. With this intuition, let’s define the DFA formally.

Let M=(Q,Σ, δ, q0, F) be a DFA defined as follows:

Q = {[k1k2...kn] | 0 ≤ n ≤ 3, each ki is 0 or 1 }.
Σ = {0, 1}
q = []
F = {[k1k2k3] | one or more of k1, k2, k3 are 0’s }
δ is defined as follows:

For n < 3, δ([k1k2...kn], a) = [k1k2...kna]
If one or more of k1, k2, k3 are 0’s, δ([k1k2k3], a) = [k2k3a]
else δ([k1k2k3], a) = [k1k2k3]
(Notice how the last rule makes sure that once the DFA reaches a bad state it will remain
there forever.)
This DFA recognizes the given language.

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

0

0

1

_01

_0

11

_ _ 0

0

011

0

01

111

0,1

1

3.5) As we read the binary string (from most significant bit to least significant), let us only
keep track of the remainder of the number that we have so far read (when the number
is divided by 5). Thus, if we have so far read the string 110 (so its value is 6), we will
remember 1. Since we only keep track of the remainder and there are only five possible
remainders (0, 1, 2, 3, 4,)when a number is divided by 5, our DFA will have only five
states, named 0, 1, 2, 3, 4. The trick is to come up with the correct transition function.

To get this, we will make the following observation.
Let rem(w) denote the remainder when the binary string w is divided by 5. With simple
arithmetic, we can show that, if w is a string and a is a symbol, then rem(wa) is the re-
mainder left by 2*rem(w)+a. For example, suppose w is 110 and a is 1. Then, rem(w) = 1,
rem(wa) = rem(1101) =3, and you see that rem(wa) is the remainder left by 2*rem(w)+a

= 3!

From the above observation, it is easy to figure out the transitions, From state r, on
reading a symbol a, we must go to state s, where s is the remainder left by 2r + a.

Formally, here is the DFA M=(Q,Σ, δ, q0, F):
Q = {0, 1, 2, 3, 4 }
Σ = {0, 1}
q0 = 0
F = {0}
δ(q,a)= p where p is the remainder obtained when 2q+a is divides by 5.

30 1 2 4

0

1 1 0

1

1 0

00

1

NaN

1

0

3.6) Informally, our DFA should keep track of the last 100 symbols seen. Furthermore, the
moment it notices that less than 10 out of the last 100 symbols seen are 0

′

s, it should
recognize right away that the string is no good, regardless of how the rest of the string is.
Thus, once it is in a state [k1k2...k100] where less than 10 ki are 0s, it should never leave
that “bad” state. With this intuition, let’s define the DFA formally.

Let M=(Q,Σ, δ, q0, F) be a DFA defined as follows:

Q = {[k1k2...kn] | 0 ≤ n ≤ 100, each ki is 0 or 1 }.
Σ = {0, 1}
q = []
F = {[k1k2...k100] | at least 10 out of k1, k2...k100 are 0’s }
δ is defined as follows:

For n < 100, δ([k1k2...kn], a) = [k1k2...kna]
If at least 10 of k1, k2, k3 are 0’s, δ([k1k2...k100], A) = [K2k3...k100a]
else δ([k1k2...k100], a) = [k1k2...k100]

