
Solutions: Homework 5

Prepared by Chien-Chung Huang
1

1 Answer:

S0 → S1|S2|S3

S1 → 00S1|01S1|11S1|10S1|A

S2 → BC

S3 → CB

B → ABA|0

C → ABA|1

A → 0|1

2

2.1 Answer:

It’s not a CFL.
let {anbncm | n ≤ m ≤ 2n} = L

Assume it’s a CFL, let p be the constant mentioned in the Pumping Lemma (PL). Consider
the string w = apbpc2p. we can split w into uvwyz satisfying all the three conditions of
PL.
if vxy is contained in all a’s, when we pump up, the number of a’s will be larger than the
number of b’s. So the result is not in L.
if vxy is contained in all b’s, when we pump up, the number of b’s will be larger than the
number of a’s. So the result is not in L.
if vxy is contained in all c’s, when we pump up, the number of s’s will be larger than two
times the number of a’s. So the result is not in L.
if vxy is contained in a’s and b’s, when we pump up p times, the relationship n ≤ m ≤ 2n
will no longer hold. So the result is not in L.
if vxy is contained in b’s and c’s, when we pump up p times, either the relationship
n ≤ m ≤ 2n will no longer hold, or the number of a’s and b’s is not equal. So the result
is not in L.
it’s a contradiction to PL, thus L is not a CFL.

2.2 Answer:

L is not a CFL. For a proof, assume L is a CFL. Let p be the number mentioned in PL.
Let s = apbp2

. Clearly s is in L and | s | is at least p. By PL, there exist u, v, x, y, z such
that s = uvxyz, | vxy |≤ p, | vy |> 0, and uvixyiz is in L for all i ≥ 0. If vy consists
only one type of symbol, uv2xy2z is clearly not in L, contradicting PL. if vy consists of
two different symbols, suppose there are k a’s in vy(k is at least 1), then the maximum
number of b’s in vy is p-k. considering uv2xy2z, the number of a is p+k and the maximum
number of b’s is p2 + p − k. (p + k)2 = p2 + 2pk + k2 > p2 + p − k, thus the relationship
m = n2 no longer hold. Thus, we have a contradiction to PL. We conclude that L is not
a CFL.

2.3 Answer:

We observe that any string in the language is in one of the following two forms:

(1) of the form uvwvRx where:

u is from ((a ∪ b)∗#)∗

v is from (a ∪ b)∗

w is from (#(a ∪ b)∗)∗#

x is from (#(a ∪ b)∗)∗

(2) of the form uvx where v is a palindrome and u, x are as above.

In the grammar below, the variables have the following meaning:

<Any> generates (a ∪ b)∗,

U generates all u as above,

W generates all w as above, and

X generates all x as above,

<Any>−→ a <Any>| b <Any>| ε

U −→ <Any> # U | ε

W −→ # <Any> W | ε

X −→ # <Any> X | ε

S1 generates desirable strings of the first form:

S1 −→ UZX

Z −→ aZa | bZb | W

S2 generates desirable strings of the second form:

S2 −→ UPX

P −→ aPa | bPb | a | b | ε

Finally, start symbol S generates s1 or s2:

S −→ S1 | S2

2.4 Answer:

L is not a CFL. For a proof, assume L is a CFL. Let p be the number mentioned in PL. Let
s = 1p0p#1p0p−11. Clearly s is in L and | s | is at least p. By PL, there exist u, v, x, y, z

such that s = uvxyz, | vxy |≤ p, | vy |> 0, and uvixyiz is in L for all i ≥ 0. The following
is a list of all possible cases: (1) vxy lies entirely before the # symbol, (2) vxy lies entirely
after the # symbol, (3) vy contains #, and (4) v contains one or more of the trailing 0’s
of the first number and y contains one or more of the leading 1’s of the second number.
In all of these case, uv2xy2z is clearly not in L, contradicting PL. We conclude that L is
not a CFL.

2.5 Answer:

This language L is a CFL.

Here is an informal justification. Any string in (a ∪ b)∗ can be split into a sequence of
“blocks”, where each block is a string from a∗b∗. By definition of L, a string is in L if and

only if one of the following three conditions is true: (1) some block has a different number
of a′s and b′s , or (2) some block has a different number of a′s than some other block, or
(3) the number of blocks is different from the number of a′s in the first block. The PDA
for L splits initially into three incarnations, call them M1,M2, and M3. M1 checks for
Condition 1, M2 checks for Condition 2, and M3 checks for Condition 3. They work as
follows.

M1 nondeterministically picks a block to check. If that block has an unequal number of
a′s and b′s, it enters accept state and eats up the rest of the input while remaining in the
accept state.

M2 nondeterministically chooses one block, stacks up the a′s in that block, and then
nondeterministically chooses any one later block and checks if the a′s in this block do not
tally with the a′s already stored on the stack. If they don’t tally, it enters accept state
and eats up the rest of the input while remaining in the accept state.

M3 stacks up the a′s of the first block and pops one “a” for each block that it encounters.
To verify that the number of blocks is unequal to the number of a′s in the first block,
it lets one incarnation enter the accept state whenever the stack is nonempty. When in
accept state, the machine does not consume any input.

3

3 Answer:

S0 → A

A → BAB|B|ε

B → 00|ε

Remove B → ε:

S0 → A

A → BAB|AB|BA|A|B|ε

B → 00

Remove A → ε:

S0 → A|ε

A → BAB|AB|BA|A|B

B → 00

Remove A → B:

S0 → A|ε

A → BAB|AB|BA|A|00

B → 00

Remove A → A:

S0 → BAB|AB|BA|BB|00|ε

A → BAB|AB|BA|BB|00

B → 00

We use the another the variables CC to replace every occurrence of 00: And we replace
BAB with BD

S0 → BD|AB|BA|CC|BB|ε

D → AB

A → BD|AB|BA|BB

B → CC

C → 0

4

4.1 Answer:

Assume that the complexity of grammar G is c. Now let us follw Theorem 2.6 step by
step:

Remove all the ε rules. We know that for each of the removed rule A → ε, we have to
create 2X more rules, given X is the number of times A appearing in right-hand side of
each rule. Thus, the complexity is now O(2c).

The next step is to remove the unit rules. Note that there are at most |V |2 units rules.
Removing one unit rule at most add the same size of new rules to the set. Thus, the
complexity grows up to O(2C ∗ |V |2).

Finally, replace all the rules whose right-hand size is bigger than 2. Notice that for each
rule, we add at most constant number of rules into this set (more exactly, the number of
new rules is the length of the right-hand side -1). Thus, the complexity is still O(2C ∗|V |2).

4.2 Answer: Following the proof of Lemma 2.15 from Sipser’s book, we consider the rules
separately:

• For those rules App → ε, the complexity is |Q| ∗ 3.

• For those rules Apq → AprArq, the complexity is |Q|(|Q| − 1)(|Q| − 2) ∗ 4

• For thoese rules Apq → aArsb, the complexity is |Q||Q − 1||γ||Σ|2|Q − 2||Q − 3| ∗ 5

Note: |Q|, |Q − 1|, |Q − 2|, |Q − 3| correspond to the all possible choices of p,q,r,s.
Also |Γ| is there because that any variable t ∈ γ can be the first character to be pop
or pushed. |Σ|2 is caused by all the possible choices in the two transition functions
δ(p, a, ε), δ(s, b, t), a, b ∈ Σ. However, in this question, |Γ| and |Σ| are constants, so
we can ignore them when computing the upperbound.

The total complexity is

|Q|(|Q|−1)(|Q|−2)∗4+|Q|(|Q|−1)(|Q|−2)∗4+|Q||Q−1||γ||Σ|2|Q−2||Q−3|∗5 = O(|Q|4)

4.3 Answer:

A natural choice for the set of variables is the n states in the DFA(M) = {Q,Σ, δ, q0, F} .

We can construct the CFG by the following rules.

• For each state qi ∈ Q, we create a varible Aqi
.

• For every transition function δ(qi, a) = qj , we create the rule Aqi
→ aAqj

.

• For those final states qi ∈ F , we add the rules Aqi
→ ε.

The complexity of our CFG is |Q||Σ| ∗ 4 + |F | ∗ 3 = O(|Q| + |F |) = O(|Q|) = O(n).

|Σ| can be ignored as the question assumes a constant-sized alphabet.

5

5.1 Answer:

First derivation

〈 STMT 〉 →

〈 IF-THEN 〉 →

if condition then 〈 STMT 〉 →

if condition then 〈 IF-THEN 〉 →

if condition then if condition then 〈 STMT 〉 else 〈 STMT 〉 →

if condition then if condition then 〈 ASSIGN 〉 else 〈 ASSIGN 〉 →

if condition then if condition then a := 1 else a := 1.

Second derivation

〈 STMT 〉 →

〈 IF-THEN-ELSE 〉 →

if condition then 〈 STMT 〉 else 〈 STMT 〉 →

if condition then 〈 IF-THEN 〉 else 〈 STMT 〉 →

if condition then if condition then 〈 STMT 〉 else 〈 STMT 〉 →

if condition then if condition then 〈 ASSIGN 〉 else 〈 ASSIGN 〉 →

if condition then if condition then a:=1 else a:=1.

5.2 Answer:

〈 STMT1 〉 → 〈 ASSIGN 〉| 〈 IF-THEN 〉| 〈 IF-THEN-ELSE 〉| 〈 BEGIN-END1 〉

〈 STMT2 〉 → 〈 ASSIGN 〉| 〈 IF-THEN-ELSE 〉| 〈 BEGIN-END2 〉

〈 IF-THEN 〉 → if condition then 〈 STMT1 〉

〈 IF-THEN-ELSE 〉 → if condition then 〈 STMT2 〉 else 〈 STMT1 〉

〈 BEGIN-END1 〉 → begin 〈 STMT-LIST1 〉 end

〈 BEGIN-END2 〉 → begin 〈 STMT-LIST2 〉 end

〈 STMT-LIST1 〉 → 〈 STMT-LIST1 〉 〈 STMT1 〉| 〈 STMT1 〉

〈 STMT-LIST2 〉 → 〈 STMT-LIST2 〉 〈 STMT2 〉| 〈 STMT2 〉

〈 ASSIGN 〉 → a:=1

