Recap: P, NP, examples

- P = \{L \subseteq \Sigma^*: L \text{ is decided by a TM in polynomial time}\}
- NP = \{L \subseteq \Sigma^*: L \text{ is decided by a NDTM in polynomial time}\}
- We showed that HAMPATH, VC \in NP.
 Their (nondeterministic) algorithms used the power to guess in a crucial way.

More examples of NP problems

- SATISFIABILITY, a.k.a. SAT:
 - Input: A formula, i.e., the AND of a set of Boolean clauses, e.g.
 - \(x_1 \lor \neg x_2 \lor x_3\)
 - \(\neg x_1 \lor \neg x_2\)
 - \(x_4 \lor x_2 \lor x_5 \lor \neg x_7 \lor x_1\)
 - Question: Is the formula satisfiable? I.e., is there a TRUE/FALSE assignment to the \(x_i\)'s that makes the formula true?
 - Note: Every clause must be satisfied.

Proof that SAT \(\in\) NP

- SAT = \{\langle \phi \rangle: \phi \text{ is a satisfiable formula}\}
- "On input \(\langle \phi \rangle\),
 1. Guess a Boolean value (TRUE/FALSE) for each variable that occurs in \(\phi\).
 2. If the guessed values satisfy all the clauses of \(\phi\), then ACCEPT, else REJECT."
- Deterministic algorithm? Enumerating all guesses could take \(2^{O(n)}\) time, where \(n = |\langle \phi \rangle|\).
More examples of NP problems

- The SUBSET-SUM problem:
 - Input: A finite set of integers S and a target integer t.
 - Question: Is there a subset $T \subseteq S$ such that the sum of the elements of T equals t?
- Again, clearly in NP: just guess a subset and verify that it sums to t.

Polynomial time reductions

- We’ve now seen several problems that are in NP but don’t seem to be in P:
 - HAMPATH, VC, SAT, SUBSET-SUM
- We shall see: if we could somehow solve one of these problems in P-time, we could solve all of them in P-time.
- How? Via P-time reductions.
 - i.e., reductions that run in polynomial time.

NP-completeness

- A language L is said to be NP-complete if
 1. $L \in \text{NP}$
 2. Every language in NP can be P-time reduced to L.
- In other words, the power to solve L gives us the power to solve everything in NP!
 - Here “solve” means “solve in polynomial time.”
- In still other words, if $L \in \text{P}$ then $\text{P} = \text{NP}$.

What it means to be NP-complete

- Suppose we’ve proven (somehow) that a language L is NP-complete.
- This suggests that L can’t be decided in P-time.
 - Because, if L could be decided thus, then so could every problem in NP…
 - …such as these one thousand problems that generations of brilliant computer scientists have been unable to solve…
- Suggests, but does not prove.
How to prove NP-completeness

- A language L is said to be *NP-complete* if
 1. $L \in NP$
 2. Every language in NP can be P-time reduced to L.
- Suppose we’ve proven (somehow) that SAT is NP-complete. We wish to prove that VC is, too.
- Prove (1). For (2), just reduce SAT to VC!

Any NP language \rightarrow SAT \rightarrow VC

NP-completeness of VC

- We’ve already proven (1) VC \in NP
- For (2), we’ll use several steps:
 - First, we reduce SAT to 3SAT.
 - Then, we reduce 3SAT to IND-SET.
 - Finally, we reduce IND-SET to VC.
 - Each of these reductions will run in polynomial time.

SAT \rightarrow 3SAT

- 3SAT is just like SAT, except that each clause in the formula is required to have exactly 3 literals.
 - $x_1 \lor \neg x_2 \lor x_3$
 - $\neg x_1 \lor \neg x_2 \lor x_5$
 - $x_4 \lor x_2 \lor x_5$
- To convert an arbitrary formula into this form, need to deal with
 - clauses that have only 1 or 2 literals,
 - clauses that have 4 or more literals.

SAT \rightarrow 3SAT

- Clauses with too few literals
 - Replicate literals to bring the number up to 3,
 - E.g., $(\neg x_1 \lor x_5)$ \rightarrow $(\neg x_1 \lor x_5 \lor \neg x_1)$.
- Clauses with too many literals
 - Split into multiple clauses, using new “link” literals.
 - E.g., $(x_1 \lor x_2 \lor x_3 \lor x_4)$ \rightarrow $(x_1 \lor x_2 \lor z) \land (\neg z \lor x_3 \lor x_4)$
 - Replace $(x_1 \lor \ldots \lor x_k)$ with $(k-2)$ new clauses:
 - $(x_1 \lor x_2 \lor z_1) \land (\neg z_1 \lor x_3 \lor x_4) \land \ldots \land (\neg z_{k-3} \lor x_{k-1} \lor x_k)$
- Check that all this can be done in P-time.
3SAT \rightarrow \text{IND-SET}

- The \text{IND-SET} problem asks whether a given input graph has an \textit{independent set} of a given size.
 - An \textit{independent set} is a set of vertices such that no two of them are adjacent.
- Thus, the \textit{larger} an independent set, the more interesting it is. Can we find the largest?
- Decision (yes/no) version: Given \(G \) and \(k \), does \(G \) have an independent set of size \(\geq k \)?

3SAT \rightarrow \text{IND-SET}

- Formally, “On input \(\langle \phi \rangle \):
 - Let \(C_1, \ldots, C_k \) be the clauses of \(\phi \).
 - Create a 3\(k \)-vertex graph \(G \) where each vertex corresponds to a literal in some \(C_i \) as follows:
 - Draw \(k \) disjoint triangles, one per clause.
 - Then add extra edges connecting each pair of contradicting literals.
 - Output \(\langle G, k \rangle \).”
- Why does this work? Prove it!

3SAT \rightarrow \text{IND-SET}

- Must convert 3cnf-formula \(\phi \) into \(G \) and \(k \), s.t.
 - If \(\phi \) satisfiable, then \(G \) has an i.s. of size \(k \).
 - If \(\phi \) unsatisfiable, then \(G \) doesn’t have i.s. of size \(k \).
- Idea: turn
 \[
 (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_5) \land (x_4 \lor x_2 \lor \neg x_5)
 \]
 into
 \[
 \begin{array}{c}
 x_1 \\
 \neg x_2 \\
 x_3 \\
 x_4 \\
 \neg x_5 \\
 \end{array}
 \]

IND-SET \rightarrow \text{VC}

- Theorem: Suppose \(G \) has \(n \) vertices. Then \(G \) has an independent set of size \(k \) iff \(G \) has a vertex cover of size \((n - k) \).
 - Proof sketch: The vertices \textit{not} in an independent set form a vertex cover.
- This theorem leads to a very simple reduction:
 “On input \(\langle G, k \rangle \)
 1. Let \(n = \) number of vertices of \(G \).
 2. Output \(\langle G, n-k \rangle \).”
Recap

• We have shown these reductions:
 SAT → 3SAT → IND-SET → VC

• Therefore, if we could show SAT is NP-complete
 – we would have shown that 3SAT is NP-complete.
 – we would have shown that IND-SET is NP-complete.
 – we would have shown that VC is NP-complete.

• Next time: Cook-Levin theorem, which proves from scratch that SAT is NP-complete.

Very important reading assignment

• Read Sipser, pages 248-253.

• Read Sipser, section 7.5 completely.
 – There you will find proofs that HAMPATH and SUBSET-SUM are NP-complete.
 – We will not be doing these proofs in class, but you are responsible for knowing and understanding them.