
CS 39
Fall 2005
Theory of Computation

Homework 5 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

1. (Designing a CFG)

Let L = {x ∈ {0, 1}∗ : x 6= ww for any w ∈ {0, 1}∗}. First, any string of odd length is clearly not
in L. Consider, on the other hand, a string s of even length 2n. Let s[i] denote the ith symbol of
s, so that s ∈ L if and only if s[i] 6= s[n + i] for some 1 ≤ i ≤ n.

The key observation is that for any such i, s can be split into two odd-length substrings s1 and s2

(of lengths 2i− 1 and n− 2i+1, respectively) such that s[i] and s[n+ i] are their respective middle
symbols. Conversely, if we take any two odd-length strings s1 and s2 and concatenate them to form
a string s = s1s2 of length 2n, then the middle indices of s1 and s2 correspond to s[i] and s[n + i],
respectively, for some 1 ≤ i ≤ n (namely, i = (|s1| + 1)/2).1

We can then say that a string is in L if and only if it is the concatenation of (equivalently, it can
be split into) two odd-length strings whose middle symbols differ. The following grammar captures
this formulation.

S → Sodd|S01|S10

Sodd → SoddAA|A

S01 → M0M1

S10 → M1M0

M0 → AM0A|0

M1 → AM1A|1

A → 0|1

Here, Sodd generates all odd-length strings, S01 generates {s1s2 ∈ {0, 1}∗ : s1, s2 have middle
symbols 0, 1, resp.}, S10 generates {s1s2 ∈ {0, 1}∗ : s1, s2 have middle symbols 1, 0, resp.}, and M0

and M1 generate odd-length strings with middle symbols 0 and 1, respectively.

2. (Decoding a CFG)

2.1. Let G denote the given grammar. Then L(G) = {x ∈ {0, 1}∗ : N0(x) = 2N1(x)}.

2.2. Proof. For concision, let us say a string x satisfies C if N0(x) = 2N1(x). The easy direction
to show is L(G) ⊂ {x ∈ {0, 1}∗ : w satisfies C}. Let x ∈ L(G). Take any x ∈ L(G). We show
that x satisfies C by inducing on the length of the shortest derivation of x in G. If this length
is 0, then x = ε and we are done since ε satisfies C. If it is ≥ 1, then consider the first step of a
shortest derivation S

∗
⇒ x. Suppose it is S ⇒ 1S00. Then by induction, the string generated

by the S on the RHS satisfies C, so x must also satisfy C. A similar argument applies to all
the other rules as well, so our induction is complete.

Now let us prove that {x ∈ {0, 1}∗ : x satisfies C} ⊂ L(G). We do this using strong induction
on the length of the string. For our base case, the shortest string satisfying C is ε, which we
can generate by S ⇒ ε, so ε ∈ L(G). For our inductive case, take a string x satisfying C such
that |x| ≥ 3.

Suppose x is of the form 1y00 for some y ∈ {0, 1}∗. Then y must certainly satisfy C, so by

inductive hypothesis we have a derivation S
∗
⇒ y. Adding a step to this gives us the derivation

S ⇒ 1S00
∗
⇒ 1y00 = x, so x ∈ L(G) and we are done. Likewise, if x = 00y1 for some string y.

Now, let w[i . . . j] denote the substring of w from index i to index j, inclusive. We can define
the function fw : {0, . . . , |w|} → Z by

fw(i) = N0(w[1 . . . i]) − 2N1(w[1 . . . i])

1
Note: You should try a few concrete examples to convince yourself of this fact.

Page 1 of 6

CS 39
Fall 2005
Theory of Computation

Homework 5 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

so that w satisfies C if and only if fw(0) = fw(|w|). To visualize the graph of fw, imagine
walking along w from left to right, starting at the origin. Each time you see a 0, move up one
level, and each time you see a 1, move down two levels.

Suppose, then, that x is of neither of the two forms above. Then it can take any of the
following forms:

(1) 1 . . . 1

(2) 1 . . . 10

(3) 0 . . . 0

(4) 01 . . . 1

Consider case (1). We know that fx(0) = fx(n) = 0, so since x[1] = x[n] = 1, it follows that
fx(1) = −2 and fx(n − 1) = 2. But fx can only increase by 1 at a time, so it must hit 0 (i.e.,
the horizontal axis) at some point, that is, fx(i) = 0 for some 2 ≤ i ≤ n − 2. But this implies
that the substrings x[1 . . . i] and x[i + 1 . . . n] both satisfy C. By inductive hypothesis, they
can then be derived in the grammar G. Combining these derivations with the rule S ⇒ SS
gives us a derivation of x.

Cases (2) and (4) also share the property that fx(1) < 0 < fx(n − 1), so the same reasoning
applies to give us a derivation of x. Case (3), however, is a little different. We have fx(1) =
1 > 0 > −1 = fx(n − 1), so as before we are guaranteed that fx must move from positive
to negative values at some point. But because fx drops 2 at a time, it might not hit 0, but
instead jump directly from 1 to -1. If it does hit 0, then as before we are done. Otherwise, let
j be the index of the 1 that causes it to cross over, that is, fx(j−1) = 1 and fx(j) = −1. Then
fx(1) = fx(j − 1), so x[2 . . . j − 1] satisfies C. Likewise, fx(j) = fx(n − 1), so x[j + 1 . . . n − 1]
satisfies C. By induction, they can be derived in G, so combining these derivations with the
rule S ⇒ 0S1S0 gives us a derivation of x. This completes our induction and proof.

3. (CFL or not?)

3.1. L = {anbncm : n ≤ m ≤ 2n} is not a CFL.

Proof. Suppose, to get a contradiction, that L is context-free. Let s = apbpcp, where p is
the pumping length of L. Let s = uvxyz be the division of s specified by the Pumping
Lemma. Since |vxy| ≤ p, vy cannot contain both a’s and c’s. If vy contains neither, that is, it
consists entirely of b’s, then pumping down will result in fewer b’s than a’s. If vy contains a’s
(and possibly b’s, but no c’s), then pumping up will break the condition n ≤ m. Finally, if vy
contains c’s, then pumping down will break the same condition. Hence, we have a contradiction
of the Lemma, so L cannot be a CFL.

3.2. L = {anbm : n ≥ 0,m = n2} is not a CFL.

Proof. Suppose, to get a contradiction, that L is context-free. Let s = apbp2

, where p is the
pumping length of L. Let s = uvxyz be the division of s specified by the Pumping Lemma. If
either v or y contains both a’s and b’s, then pumping up will break the format of a∗b∗. If both
v and y consist of only a’s, then pumping down breaks the condition m ≥ n2 (the condition
m = n2 can be split into the two conditions m ≥ n2 and m ≤ n2). Similarly if v and y consist
of only b’s. The only possibility left is that v consists entirely of a’s and y consists entirely of
b’s. Then Na(v) ≥ 1 and Nb(y) ≤ p, so pumping up p times results in Na(uvp+1xyp+1z) ≥ 2p
and Nb(uvp+1xyp+1z) ≤ 2p2 < 4p2 = (2p)2, breaking the condition m ≥ n2. Hence, we have a
contradiction of the Lemma, so L cannot be a CFL.

Page 2 of 6

CS 39
Fall 2005
Theory of Computation

Homework 5 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

3.3. L = {x1# . . . #xk : k ≥ 1, each xi ∈ {0, 1}∗, and for some i, j, xi = xR
j } is a CFL.

Proof. One approach is to construct a PDA that uses nondeterminism to guess which two
pieces to match against each other. A more concise proof, which we will present, is via a CFG.

Observe that for any string s = x1# . . . #xk ∈ L, if i 6= j (where xi = xR
j), then s is of the

form x(wywR)z, where

• x ∈ ({a, b}∗#)∗

• w ∈ {a, b}∗

• y ∈ (#{a, b}∗)∗#

• z ∈ (#{a, b}∗)∗.

If, on the other hand, i = j (where xi = xR
j), then s is of the form xvz, where x and z are

as above, and v ∈ {a, b}∗ such that v = vR. We know how to generate each of these types of
substrings, so combining them gives us the following CFG for L.

S → S1|S2

S1 → XY ′′Z

S2 → XV Z

X → XT#|ε

Z → Z#T |ε

Y ′′ → aY ′′a|bY ′′b|Y ′#

Y ′ → Y ′#T |ε

V → aV a|bV b|a|b|ε

T → Ta|Tb|ε

U → Ua|Ub|U#|ε

Here, S1 and S2 generate the two categories into which we split L. X, Z and V generate the
corresponding lowercases described above. T generates {a, b}∗ and U generates {a, b,#}∗. And
lastly, Y ′ generates our y above, less the # suffix, and Y ′′ generates the substring wywR.

3.4. L = {bi#bi+1 : i ≥ 1} is not a CFL.

Proof. Suppose, to get a contradiction, that L is context-free. Let s = 1p0p#1p0p−11, where
p is the pumping length of L. Let s = uvxyz be the division of s specified by the Pumping
Lemma. First note that vy cannot contain #, otherwise pumping down will result in no #’s
in the string, not allowing it to be in L. Alternately, if v and y (ignoring ε’s) are both on the
same side of the #, then pumping down will make the number represented on that side too
small to satisfy L. The only possibly remaining is that v is on the left and y is on the right of
the #, and more specifically, that v consists of some positive number of 0’s and y consists of
some positive number of 1’s. Then pumping down gives us 1p0p−|v|#1p−|y|0p−11. Given this
LHS, the RHS would have to be 1p0p−|v|−11, but it clearly is not since |v|, |y| > 0. Hence, we
have a contradiction of the Lemma, so L cannot be a CFL.

3.5. L = (a ∪ b)∗ − {(anbn)n : n ≥ 1} is a CFL.

Proof. We observe that any string in {a, b}∗ either is the empty string ε or can be split into a
positive number of non-empty “blocks” of the form a∗b∗, where all but the first and last blocks
are in particular of the form a+b+. Now, a string x 6= ε belongs to L if and only if it satisfies
at least one of the following conditions:

Page 3 of 6

CS 39
Fall 2005
Theory of Computation

Homework 5 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

(1) some block has different numbers of a’s and b’s,

(2) some block has a different number of a’s from the first block, and

(3) the number of blocks is different from the number of a’s in the first block.

We can then write L = L1 ∪L2∪L3 ∪{ε}, where Li consists of strings satisfying condition (i).
So by the closure of CFLs under union, it remains for us to show that L1, L2 and L3 ∪{ε} are
CFLs.

Here is a PDA for L1:

ε, ε → $

b, ε → ε

a, ε → ε
b, ε → ε

a, ε → ε

b, ε → ε

b, ε → εa, ε → ε

a, ε → a

a, ε → a

a, ε → a

b, a → ε

b, a → ε

ε, a → ε

b, $ → ε

a, ε → ε
b, ε → ε

Here is a PDA for L2:

ε, ε → $

a, ε → a

b, ε → ε

b, ε → ε

a, ε → ε b, ε → ε

a, ε → ε

a, a → ε

a, a → ε

ε, a → ε

a, $ → ε

a, ε → ε
b, ε → ε

Here is a PDA for L3 ∪ {ε}:

ε, ε → $

a, ε → a

b, a → ε

b, ε → ε

a, a → ε

ε, a → ε

b, ε → ε

a, a → ε

ε, a → ε

b, ε → ε

a, $ → ε

a, ε → ε
b, ε → ε

Page 4 of 6

CS 39
Fall 2005
Theory of Computation

Homework 5 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

It is left as an exercise for the reader to verify that these PDAs indeed recognize the languages
specified.

4. (Complexity of CFGs)

4.1. The complexity of G is at most O(|Q|4).

Proof. First observe that every rule in G has length at most 5 = O(1), so a bound on the
number of rules is also a bound on the complexity of G. We consider each of the three types
of rules separately.

Type I, of the form Apq → aArsb, consists of at most a rule for every choice of p, q, r, s ∈ Q,
t ∈ Γ, and a, b ∈ Σε, or a total of |Q|4 · |Γ| · (|Σ| + 1)2 = O(|Q|4) rules, since |Γ|, |Σ| = O(1).
Type II, of the form Apq → AprArq, consists of a rule for every choice of p, q, r ∈ Q, or a total
of |Q|3 rules. Type III, of the form App → ε, consists of a rule for every p ∈ Q, or a total of
|Q| rules. Tallying up all three, we get a total complexity of O(|Q|4).

Note that this bound is tight, since we can construct a PDA that has every allowed transition
(possible thanks to non-determinism), which results in Type I containing Ω(|Q|4) rules.

4.2. Proof. Let M = (Q,Σ, δ, q0, F) be our DFA, where |Q| = n. The idea is to have a variable for
each state, which will generate all strings that take M from that state to a final state. Our
grammar is then G = (Q,Σ, R, q0), where R is defined as follows.

• For each q ∈ Q, a ∈ Σ, include the rule q → aδ(q, a).

• For each q ∈ F , include the rule q → ε.

Each rule in G is of O(1) length, and there are a total of |Q| · |Σ| + |F | = O(n) rules, so
the complexity of G is O(n). It remains to show that G is indeed equivalent to M , that is,

L(G) = L(M). To do this, we prove the stronger claim that for each q ∈ Q, w ∈ Σ∗, q
∗
⇒ w if

and only if δ̂(q, w) ∈ F , using induction on |w|.

If |w| = 0, then w = ε, so that q
∗
⇒ w if and only if G contains the rule q ⇒ ε if and only if

q ∈ F if and only if δ̂(q, ε) = q ∈ F . For our inductive case, suppose |w| ≥ 1.

For our (⇒) direction, let q
∗
⇒ w and a ∈ Σ be the first symbol of w. Then the first rule in the

derivation must be q ⇒ ap, for some p ∈ Q. Now, we know p
∗
⇒ w[2 . . . |w|], so by induction,

δ̂(p,w[2 . . . |w|]) ∈ F . But then δ̂(q, w) = δ̂(p,w[2 . . . |q|]), so δ̂(q, w) ∈ F as well.

For our (⇐) direction, suppose δ̂(q, w) ∈ F , and as above let a ∈ Σ be the first symbol in

w. Let p = δ(q, a), so that δ̂(p,w[2 . . . |w|]) ∈ F . By induction, we know p
∗
⇒ w[2 . . . |w|].

But we also know G contains the rule q → ap, so we can combine these to get the derivation
q ⇒ ap

∗
⇒ w, completing our induction.

5. (Ambiguous grammars)

5.1. Consider the following two distinct derivations for the same string:

< STMT > ⇒ <IF-THEN>

⇒ if condition then <STMT>

⇒ if condition then <IF-THEN-ELSE>

⇒ if condition then if condition then <STMT> else <STMT>

⇒ if condition then if condition then <ASSIGN> else <ASSIGN>

⇒ if condition then if condition then a:=1 else a:=1

Page 5 of 6

CS 39
Fall 2005
Theory of Computation

Homework 5 Solutions

Prepared by Khanh Do Ba

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

< STMT > ⇒ <IF-THEN-ELSE>

⇒ if condition then <STMT> else <STMT>

⇒ if condition then <IF-THEN> else <STMT>

⇒ if condition then if condition then <STMT> else <STMT>

⇒ if condition then if condition then <ASSIGN> else <ASSIGN>

⇒ if condition then if condition then a:=1 else a:=1

5.2. Intuitively, this grammar is ambiguous because each “else” could be paired with any occur-
rence of “if condition then” that precedes it, and the string accordingly generated. Loosely
speaking, think of this as parenthesis matching where every ‘)’ has to be matched with a pre-
ceding ‘(’, but some ‘(’s stand by itself. There are many ways to make such pairings, leading
to ambiguity. To fix this, we need a convention to make the pairing unique and well-defined.
We choose the following natural rule: from left to right, we pair each “else” with the closest
preceding “if condition then” not already paired. We see then that between a paired “if
condition then” and “else” there must be a completely matched sequence of ‘(’s and ‘)’s,
that is, no stand-alone ‘(’: if there had been an extra ‘(’, it would have been used in a match
before the ‘(’ to its left.

We can now define the following unambiguous grammar. We introduce a new variable,
<MATCHED>, corresponding to strings generated by the old <STMT> that are completely matched.

<STMT> → <ASSIGN> | <IF-THEN> | <IF-THEN-ELSE>

<IF-THEN> → if condition then <STMT>

<IF-THEN-ELSE> → if condition then <MATCHED> else <STMT>

<MATCHED> → <ASSIGN> | if condition then <MATCHED> else <MATCHED>

<ASSIGN> → a:=1

Page 6 of 6

