1. Write a regular expression for the language generated by the following grammar:

\[
\begin{align*}
S & \rightarrow AT \\
T & \rightarrow ABT \mid TBA \mid AA \\
A & \rightarrow 0 \\
B & \rightarrow 1
\end{align*}
\]

A single line answer will do; you don't have to justify or show any steps. Your regular expression should be as simple as possible.

[5 points]

2. Draw a DFA for the language

\[
\{ x \in \{0,1\}^* : x \text{ contains an equal number of occurrences of the substrings 01 and 10} \}.
\]

For example, 101 and 0000 are in the language, but 1010 is not.

[5 points]
3. Recall that x^R denotes the reverse of the string x. For a language L, let $L^R = \{x^R : x \in L\}$. Give a complete formal proof that if L is regular, so is L^R.

[10 points]

4. Consider two languages $A, B \subseteq \Sigma^*$. Prove that $(A^*B^*)^* = (A \cup B)^*$. Remember that to prove $X = Y$ for sets X and Y you must separately prove $X \subseteq Y$ and $Y \subseteq X$.

[8 points]

5. Prove that there exist languages $A, B, C \subseteq \{0,1\}^*$ that satisfy all of the following properties:

(a) $A = B \cap C$.
(b) B and C are both non-regular.
(c) A is infinite and regular.

To get any credit, you must prove all three properties for whatever A, B, C you have decided to use.

[12 points]

6. A permutation of a string x is any string that can be obtained by rearranging the characters of x. Thus, for example, the string abc has exactly six permutations:

$abc, acb, bac, bca, cab, cba$.

Clearly, if y is a permutation of x, then $|y| = |x|$. For a language L over alphabet Σ, define

$$\text{PERMUTE}(L) = \{ x \in \Sigma^* : x \text{ is a permutation of some string in } L \},$$
$$\text{SELECT}(L) = \{ x \in \Sigma^* : \text{every permutation of } x \text{ is in } L \}.$$

Classify each of the following statements as TRUE or FALSE, and give proofs justifying your classifications.

6.1. If $L_1 = 1^*0$, then $\text{PERMUTE}(L_1)$ is regular.

[5 points]

6.2. If $L_2 = 0^*1^*$, then $\text{SELECT}(L_2)$ is regular.

[5 points]

6.3. Regular languages are closed under the operation PERMUTE.

[10 points]

6.4. Regular languages are closed under the operation SELECT.

[10 points]
7. Draw a PDA for the language \(\{0^i1^j : i < j < 2i \} \). For clarity, keep your stack alphabet disjoint from \(\{0, 1\} \). Provide a brief justification (no need for a formal proof) that your PDA works correctly.

[15 points]

8. Design a context-free grammar for the complement of the language \(\{a^n b^n : n \geq 0 \} \) over the alphabet \(\{a, b\} \). Give brief explanations for the “meanings” of your variables (i.e. explain what strings are generated by each of your variables).

[15 points]

Here endeth the exam.