Welcome to CS 39
Theory of Computation

Professor Amit Chakrabarti
Teaching Assistant: Vibhor Bhatt
http://www.cs.dartmouth.edu/~cs39

Russell’s Paradox
• Mr. Jones in the only barber in town. He shaves all those men and only those men who do not shave themselves.
• If YES, Mr. Jones shaves himself…
 – by his own condition, he cannot shave himself!
• If NO, Mr. Jones does not shave himself…
 – by his own condition, he must shave himself!!

Math notation: Logic
Variables x, y, \ldots stand for polygons in the plane.
• Let $p(x)$ be the statement “x is a parallelogram”.
• Let $q(x) = “x$ has at least one right angle”.
• Let $r(x) = “x$ is a rectangle”.
• Let $s(x) = “x$ is a square”.
• Let $t(x) = “x$ is a rhombus”.

True or false: $p(x) \land q(x) \Rightarrow r(x)$

True
Let $p(x)$ be the statement “x is a parallelogram”.
Let $q(x) =$ “x has at least one right angle”.
Let $r(x) =$ “x is a rectangle”.
Let $s(x) =$ “x is a square”.
Let $t(x) =$ “x is a rhombus”.

True or false: $r(x) \land s(x) \Rightarrow t(x)$

In fact $s(x) \Rightarrow t(x)$

True or false: $t(x) \Rightarrow \neg r(x)$

Not all rhombuses are rectangles, but some are. $t(x) \not\Rightarrow r(x)$

Math notation: Quantifiers

- Strictly speaking, we should use quantifiers whenever there seems to be ambiguity.
- $\forall:$ “for all” (universal quantifier)
- $\exists:$ “there exists” (existential quantifier)

Thus, $\forall x (t(x) \Rightarrow \neg r(x))$ is false.
 - Because not all rhombuses are non-rectangles.
But $\exists x (t(x) \Rightarrow \neg r(x))$ is true.
 - Because there do exist rhombuses that are non- rects.

Negating an implication gives an AND statement
$\neg(P \Rightarrow Q)$ is the same as $(P \land \neg Q)$, which is the same as $(P \land \neg Q)$.

Negating a quantified statement flips the quantifier type
$\neg \forall x (t(x) \Rightarrow \neg r(x))$ is the same as $\exists x (\neg (t(x) \Rightarrow \neg r(x)))$,
which is the same as $\exists x (t(x) \land r(x))$.

Does this make sense? If not, say so now!
Types of proof

- Proof by construction
- Proof by contradiction
- Proof by (mathematical) induction

- Which type of proof is best?
 - This question makes no sense.
 - Any proof style is good, so long as you write complete and rigorous proofs.
 - In fact, within a single long proof you may want to use two, or all three, styles.

Proof by construction

Theorem: Every even positive integer can be written as the sum of two odd positive integers.

Proof: Let $2m$ be an even positive integer.
If m is odd, write $2m = m + m$, and we are done.
If m is even, write $2m = (m–1) + (m+1)$ …
… since m is even, $m \geq 2$, so $(m–1)$ is positive … and we are done.

Proof by induction

To prove a theorem by induction:
- Prove the theorem for a general case by assuming the same theorem to be true (“induction hypothesis”) for all smaller cases.
- Separately prove the theorem, without making any assumptions, for all “base” cases, i.e., those cases for which there is nothing smaller.
 - Many people prefer to write the base case(s) first.

Proof by induction

Theorem: Every even positive integer can be written as the sum of two odd positive integers.

Base case: 2 can be written as $1+1$.
Induction step: Let m be an even integer > 2.
… Then $(m–2)$ is a smaller even positive integer.
… By induction hypothesis, $m–2 = p+q$ for odd $p, q > 0$.
… So, $m = (p+2) + q$, i.e., m can also be written as the sum of two odd positive integers.
Proof by contradiction

• We want to prove a statement \(S \).

• Begin by assuming the opposite of \(S \) (i.e., \(\neg S \)).

• Use logical reasoning to arrive at a contradiction.

• We are then forced to conclude that our assumption is wrong, i.e., that \(S \) is true.

Infinite Loop Tester

• You are a grader for CS 5

• Students submit a program “foo.java”
 – You have test input files “1.inp”… “100.inp”
 – Every test case correctly handled: 1 point
 – Infinite loop: -20 points (penalty)

• You wish to automate the grading process
 – Write a program “ILT.java” which takes two input files ---“foo.java” and “i.inp” --- and checks whether “foo.java” enters an infinite loop on input “i.inp”.

Proof by contradiction

• Let \(P(I) \) denote program \(P \) running on input \(I \).

• We’ll assume that ILT can be written.

• Recall that \(ILT(P,I) \) says “infinite loop” if \(P(I) \) enters an infinite loop. Otherwise it says “halts”.

• For our logical reasoning, we’ll construct a program Buster, using the program ILT.

Buster(P) does the following:

1. Run \(ILT(P,P) \).
2. If \(ILT \) says “infinite loop”, then halt.
3. If \(ILT \) says “halts”, enter an infinite loop!

What happens when we run Buster(Buster)?

– If the run halts, then in line 1 ILT would have said “halts”, so we would go to line 3 and…OOPS!
– If the run does not halt, then after line 1 we’d go to line 2 and… OOPS!

We have a contradiction. Thus, \(ILT \) cannot exist.
Think it over

• The proof you have just seen is one of the most profound results in the theory of computing.

• Make sure you understand it.

• Try to explain the proof to a friend.