Your textbook (Sipser) states, in Lemma 2.21, that any context-free grammar (CFG) can be converted into an equivalent pushdown automaton (PDA). The proof given there takes a CFG \(G\) and constructs a certain “3-state” PDA* \(M\), and gives intuition for why \(L(M) = L(G)\). The textbook stops short of giving a full formal proof, though. Here is a formal proof.

Theorem: For the PDA \(M\) constructed in the textbook (Figure 2.24), we have \(L(M) = L(G)\).

Proof: First, we introduce some notation. For \(y \in \Sigma^*\) and \(\gamma \in (V \cup \Sigma)^*\), we let \(M[y, \gamma]\) denote the statement “\(M\) can be in state \(q_{\text{loop}}\), having read the prefix \(y\) of the input string, and with \(\gamma\$\) on its stack.” Note that \(M[x, \varepsilon]\) iff \(M\) can make the transition to \(q_{\text{accept}}\) after reading \(x\), i.e., iff \(x \in L(M)\).

Part 1: \(L(G) \subseteq L(M)\): Suppose \(x \in L(G)\). Then \(S \Rightarrow x\) in \(n\) steps for some positive integer \(n\), via a leftmost derivation. Let \(S = s_0 \Rightarrow s_1 \Rightarrow s_2 \Rightarrow \cdots \Rightarrow s_n = x\) be such a leftmost derivation. Suppose

\[
\begin{align*}
\pi_i &= y_i A_i \gamma_i, \\
\text{where} \quad y_i &\in \Sigma^*, A_i \in V, \text{ and } \gamma_i \in (V \cup \Sigma)^*, \text{ for } 0 \leq i < n, \\
\text{and} \quad y_n &= x, A_n = \gamma_n = \varepsilon.
\end{align*}
\]

In other words, \(A_i\) denotes the leftmost variable in \(\pi_i\) (or \(\varepsilon\), in the case \(i = n\) when \(\pi_i\) has no variables). We claim that \(M[y_i, A_i \gamma_i]\) for all \(i, 0 \leq i \leq n\). In particular, this proves that \(M[x, \varepsilon]\), i.e., that \(x \in L(M)\). The proof of the claim is by induction on \(i\).

The base case is \(i = 0\). The transition out of \(q_{\text{start}}\) shows that \(M\) can be in state \(q_{\text{loop}}\) having read no input and with \(S\$\) on its stack, i.e., \(M[\varepsilon, S]\). Note that \(y_0 = \gamma_0 = \varepsilon\) and \(A_0 = S\); therefore \(M[y_0, A_0 \gamma_0]\).

For the induction step, suppose we have shown \(M[y_i, A_i \gamma_i]\), for some \(i\) with \(0 \leq i < n\). The derivation step \(\pi_i \Rightarrow \pi_{i+1}\) must expand the leftmost variable in \(\pi_i\), i.e., \(A_i\). Let \(\pi_{i+1} = A_i \alpha_i \gamma_i\) be the CFG rule used in this step. Then

\[
y_{i+1} A_{i+1} \gamma_{i+1} = \pi_{i+1} = y_i A_i \gamma_i.
\]

Since \(y_i\) is a prefix of \(y_{i+1}\), we can write \(A_i \gamma_i = z_i A_{i+1} \gamma_{i+1}\) for some \(z_i \in \Sigma^*\) (note, in particular, that this continues to hold even if \(i+1 = n\)). This implies \(y_{i+1} = y_i z_i\). Since \(M\) has a loop transition at state \(q_{\text{loop}}\) that can pop \(A_i\) and push \(\alpha_i\), we have \(M[y_i, \alpha_i \gamma_i]\), i.e., \(M[y_i, z_i A_{i+1} \gamma_{i+1}]\). Finally, since \(M\) has a loop transition at \(q_{\text{loop}}\) that can read any input character \(a \in \Sigma\) while popping \(a\) off the stack, and since \(y_i z_i = y_{i+1}\) is a prefix of the input \(x\), we have \(M[y_{i+1}, A_{i+1} \gamma_{i+1}]\), i.e., \(M[y_{i+1}, A_{i+1} \gamma_{i+1}]\). This completes the induction step and the proof of Part 1.

Part 2: \(L(M) \subseteq L(G)\): The proof of this is similar to the proof in Part 1. The details are left to you as an exercise. (It’s good practice; please try writing out the details.)

In fact, the number of states could be much greater than 3, once we unroll the shorthand notation that allows us to push multiple symbols on the stack in a single move.