The Hamiltonian Path Problem

- Input: A graph $G = (V, E)$
- Question: Does G have a Hamiltonian path?
- Definition: A Hamiltonian path of G is a path that covers all vertices of G.

- To turn this into a language, define
 $\text{HAMPATH} = \{\langle G \rangle: G$ is a graph that has a Hamiltonian path$\}$.

The Vertex Cover Problem

- Input: A graph $G = (V, E)$ and an integer $k > 0$
- Q: Does G have a vertex cover of size $\leq k$?
- Definition: A vertex cover of G is a subset of V that covers (i.e., “touches”) every edge in E.

- To turn this into a language, define
 $\text{VC} = \{\langle G, k \rangle: G$ is a graph that has a vertex cover of size $\leq k$\}.

Recap: P and NP

- $P = \{L \subseteq \Sigma^*: L$ is decided by a TM in polynomial time$\}$
- $NP = \{L \subseteq \Sigma^*: L$ is decided by a NDTM in polynomial time$\}$
- In CS 25 you (essentially) learnt techniques to show that various languages $\in P$.
- How do we show that a language $\in \text{NP}$?
Proof that HAMPATH \in NP

- “On input $\langle G \rangle$, where $G = (V, E)$ is a graph:
 1. Let $n = |V|$.
 2. Guess a permutation v_1, v_2, \ldots, v_n of V.
 3. For $i = 1$ to $(n-1)$:
 3.1. If $\{v_i, v_{i+1}\} \notin E$, then REJECT.
 4. ACCEPT.”

- Clearly polynomial time.
- Uses nondeterminism in step 2.

Do we need to guess?

- We showed that HAMPATH, VC \in NP.

- Their (nondeterministic) algorithms used the power to guess in a crucial way.

- Enumerating all guesses
 - all permutations, in case of HAMPATH
 - all k-sized subsets, in case of VC
 could take exponential time in the input size.

Proof that VC \in NP

- “On input $\langle G, k \rangle$, where $G = (V, E)$…:
 1. Guess a subset $C = \{v_1, v_2, \ldots, v_k\}$ of V.
 2. For each edge $\{u, v\} \in E$:
 3.1. If $u \notin C$ and $v \notin C$, then REJECT.
 3. ACCEPT.”

- Clearly polynomial time.
- Uses nondeterminism in step 1.

More examples of NP problems

- SATISFIABILITY, a.k.a. SAT:
 - Input: A formula, i.e., the AND of a set of Boolean clauses, e.g.
 - $x_1 \vee \neg x_2 \vee x_3$
 - $\neg x_1 \vee \neg x_2$
 - $x_4 \vee x_2 \vee x_3 \vee \neg x_7 \vee x_1$
 - Question: Is the formula satisfiable? I.e., is there a TRUE/FALSE assignment to the x_is that makes the formula true?

- Note: Every clause must be satisfied.
Proof that SAT \(\in\) NP

- SAT = \{\langle\phi\rangle: \phi \text{ is a satisfiable formula}\}
- “On input \langle\phi\rangle,
 1. Guess a Boolean value (TRUE/FALSE) for each variable that occurs in \(\phi\).
 2. If the guessed values satisfy all the clauses of \(\phi\), then ACCEPT, else REJECT.”
- Deterministic algorithm? Enumerating all guesses could take \(2^{O(n)}\) time, where \(n = |\langle\phi\rangle|\).

More examples of NP problems

- The SUBSET-SUM problem:
 - Input: A finite set of integers \(S\) and a target integer \(t\).
 - Question: Is there a subset \(T \subseteq S\) such that the sum of the elements of \(T\) equals \(t\)?
- Again, clearly in NP: just guess a subset and verify that it sums to \(t\).

Polynomial time reductions

- We’ve now seen several problems that are in NP but don’t seem to be in P:
 HAMPATH, VC, SAT, SUBSET-SUM
- We shall see: if we could somehow solve one of these problems in P-time, we could solve all of them in P-time.
- How? Via P-time reductions.
 - i.e., reductions that run in polynomial time.

NP-completeness

- A language \(L\) is said to be NP-complete if
 1. \(L \in\) NP
 2. Every language in NP can be P-time reduced to \(L\).
- In other words, the power to solve \(L\) gives us the power to solve everything in NP!
 - Here “solve” means “solve in polynomial time.”
- In still other words, if \(L \in\) P then \(P = NP\).
What it means to be NP-complete

• Suppose we’ve proven (somehow) that a language L is NP-complete.
• This suggests that L can’t be decided in P-time.
 – Because, if L could be decided thus, then so could every problem in NP…
 – …such as these one thousand problems that generations of brilliant computer scientists have been unable to solve…
• Suggests, but does not prove.

How to prove NP-completeness

• A language L is said to be NP-complete if
 (1) $L \in NP$
 (2) Every language in NP can be P-time reduced to L.
• Suppose we’ve proven (somehow) that SAT is NP-complete. We wish to prove that VC is, too.
• Prove (1). For (2), just reduce SAT to VC!
 Any NP language \rightarrow SAT \rightarrow VC

NP-completeness of VC

• We’ve already proven (1) VC \in NP
• For (2), we’ll use several steps:
 – First, we reduce SAT to 3SAT.
 – Then, we reduce 3SAT to IND-SET.
 – Finally, we reduce IND-SET to VC.
 – Each of these reductions will run in polynomial time.

SAT \rightarrow 3SAT

• 3SAT is just like SAT, except that each clause in the formula is required to have exactly 3 literals.
 • $x_1 \lor \neg x_2 \lor x_3$
 • $\neg x_1 \lor \neg x_2 \lor x_5$
 • $x_4 \lor x_2 \lor x_3$
• To convert an arbitrary formula into this form, need to deal with
 – clauses that have only 1 or 2 literals,
 – clauses that have 4 or more literals.
SAT → 3SAT

- Clauses with too few literals
 - Replicate literals to bring the number up to 3,
 - E.g., \((\neg x_1 \vee x_3) \rightarrow (\neg x_1 \vee \neg x_1 \vee x_3)\)
 - and \((x_3) \rightarrow (x_3 \vee x_3 \vee x_3)\)

- Clauses with too many literals
 - Chaining: split into multiple clauses, using new “link” literals.
 - E.g., \((x_1 \vee x_2 \vee x_3 \vee x_4) \rightarrow (x_1 \vee x_2 \vee z) \wedge (\neg z \vee x_3 \vee x_4)\)
 - Replace \((x_1 \vee ... \vee x_j)\) with \((k-2)\) new clauses:
 \((x_1 \vee x_2 \vee z_3) \wedge (\neg z_3 \vee x_3 \vee z_4) \wedge (\neg z_4 \vee x_4 \vee z_5) \wedge ... \wedge (\neg z_{k-1} \vee x_{k-1} \vee x_k)\)
 [Like converting a CFG into CNF]

- Check that all this can be done in poly time.

3SAT → IND-SET

- Must convert 3cnf-formula \(\phi\) into \(G\) and \(k\), s.t.
 - If \(\phi\) satisfiable, then \(G\) has an i.s. of size \(k\).
 - If \(\phi\) unsatisfiable, then \(G\) doesn’t have i.s. of size \(k\).

- Idea: turn
 \((x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \neg x_3)\)
 into

\[\begin{array}{c}
 x_1 \\
 \neg x_1 \\
 x_2 \\
 \neg x_2 \\
 x_3 \\
 \neg x_3 \\
 x_4 \\
 \neg x_4 \\
 x_5 \\
 \neg x_5 \\
\end{array}\]

3SAT → IND-SET

- The IND-SET problem asks whether a given input graph has an independent set of a given size.
 - An independent set is a set of vertices such that no two of them are adjacent.

- Thus, the larger an independent set, the more interesting it is. Can we find the largest?

- Decision (yes/no) version: Given \(G\) and \(k\), does \(G\) have an independent set of size \(\geq k\)?

3SAT → IND-SET

- Formally, “On input \(\langle \phi \rangle\):
 - Let \(C_1, ..., C_k\) be the clauses of \(\phi\).
 - Create a 3k-vertex graph \(G\) where each vertex corresponds to a literal in some \(C_i\) as follows:
 - Draw \(k\) disjoint triangles, one per clause.
 - Then add extra edges connecting each pair of contradicting literals.
 - Output \(\langle G, k \rangle\).”

- Why does this work? Prove it!
IND-SET → VC

- **Theorem:** Suppose G has n vertices. Then G has an independent set of size k iff G has a vertex cover of size $(n - k)$.
 - Proof sketch: The vertices *not* in an independent set form a vertex cover.
- **This theorem leads to a very simple reduction:**
 “On input (G, k)
 1. Let $n =$ number of vertices of G.
 2. Output $(G, n-k)$.”

Recap

- We have shown these reductions: $\text{SAT} \rightarrow \text{3SAT} \rightarrow \text{IND-SET} \rightarrow \text{VC}$
- Therefore, if we could show SAT is NP-complete
 – we would have shown that 3SAT is NP-complete.
 – we would have shown that IND-SET is NP-complete.
 – we would have shown that VC is NP-complete.
- Eventually: **Cook-Levin theorem**, which proves from scratch that SAT is NP-complete.

Very important reading assignment

- Read Sipser, pages 248-253.
- Read Sipser, section 7.5 completely.
 - There you will find proofs that HAMPATH and SUBSET-SUM are NP-complete.
 - We will not be doing these proofs in class, but you are responsible for knowing and understanding them.