1. Let \(L \) be the language over the alphabet \(\{a, b\} \) given by the regular expression \((ab \cup aab \cup aba)^*\).

 1.1. Design an NFA for \(L \) that has no \(\varepsilon \)-transitions and has only 4 states. [6 points]

 1.2. Convert the above NFA into a DFA for \(L \) by mechanically using the subset construction we studied in class. [10 points]

 1.3. Remove all states that are unreachable from the start state of the resulting DFA, to get a 7-state DFA for \(L \). [3 points]

 1.4. If you carefully observe this DFA, you will notice two states that can be replaced by a single state. Do this and draw the resulting DFA. Your final DFA should have exactly 6 states. [7 points]

2. Construct NFAs equivalent to following regular expressions (your NFAs may have \(\varepsilon \)-transitions):

 2.1. \(10 \cup (0 \cup 1)0^*1 \) [7 points]

 2.2. \(((0 \cup 1)(0 \cup 1))^* \cup ((0 \cup 1)(0 \cup 1)(0 \cup 1))^*\) [7 points]

3. Give regular expressions for the following languages.

 3.1. \(\{w \in \{0, 1\}^*: w \text{ has three consecutive 0's or three consecutive 1's or both}\} \). [7 points]

 3.2. \(\{w \in \{0, 1\}^*: w \text{ has three consecutive 0's and three consecutive 1's}\} \). [7 points]

 3.3. The set of strings in \(\{0, 1\}^* \) with an equal number of 0's and 1's such that no prefix has two more 0's than 1's nor two more 1's than 0's. [10 points]

3.4. Let us define a valid floating point number as \(u.v \), where \(u \) and \(v \) are (finite) strings of decimal digits (0..9) satisfying the following constraints: (the symbol “.” between \(u \) and \(v \) is the decimal point.)

 i. Neither \(u \) nor \(v \) may be \(\varepsilon \).

 ii. \(u \) can be just 0. If \(u \) is not 0, \(u \) has no leading 0's.

 iii. \(v \) can be just 0. If \(v \) is not 0, \(v \) has no trailing 0's.

 (Thus, for example, 0.0, 231.0 and 5.608 are valid, but 0.00, 05.68, .65, 12. and 4.5100 are not valid.)

 Give a regular expression for the set of valid floating point numbers described above. You might want to introduce some notation first to keep your expression small and readable. [10 points]
4. Let L be a nonempty language and M an NFA that recognizes L. Prove that M can be converted into an NFA M' which recognizes the same language L and has exactly one accept state. Your proof must describe M' both informally, using plain English, and formally, using mathematical notation. [10 points]

5. For a language L over alphabet Σ, define $\text{HALF}(L) = \{ x \in \Sigma^* : \exists y \in \Sigma^* (|x| = |y| \text{ and } xy \in L) \}$. Prove that if L is regular, then so is $\text{HALF}(L)$. Your proof must be formal; proofs not written in a formal mathematical style get very little credit even if they express the right intuition. [16 points]

Hint: You know that there is some DFA that recognizes L, but you know absolutely nothing else about this DFA. How do you make use of this DFA? Here are two different approaches you can try. Approach 1: Build an NFA for $\text{HALF}(L)$. Suppose x is the input string. Nondeterministically guess which state the DFA for L will end up in after reading x and nondeterministically guess a y to append to x as in the definition of $\text{HALF}(L)$. Approach 2: Build a DFA for $\text{HALF}(L)$. As you read x, work forwards and backwards simultaneously inside the DFA for L and try to meet in the middle.

Challenge Problems

Remember that challenge problems carry no regular credit, but are intended to provide a higher level of challenge for those who want to think further about the theory of computing.

CP1: For the language L from Problem 1, prove that it is impossible to design a DFA with 5 or fewer states.

CP2: For a language L over alphabet Σ, define $\text{LOG}(L) = \{ x \in \Sigma^* : \exists y \in \Sigma^* (|y| = 2^{|x|} \text{ and } xy \in L) \}$. Prove that if L is regular, then so is $\text{LOG}(L)$.