1. (DFA → regular expression)

Throughout this solution, we shall use the shorthand R^+ for RR^*, where R is an arbitrary regular expression.

1.1. $R_1^0 = \varepsilon \cup a$

$R_{12}^0 = b$

$R_{21}^0 = b$

$R_{22}^0 = \varepsilon \cup a$

$R_{11}^1 = R_{11}^0 \cup R_{11}^0 (R_{11}^0)^* R_{11}^0 = (\varepsilon \cup a)^+ = a^*$

$R_{12}^1 = R_{12}^0 \cup R_{12}^0 (R_{12}^0)^* R_{12}^0 = b \cup (\varepsilon \cup a)^+ b = a^* b$

$R_{21}^1 = R_{21}^0 \cup R_{21}^0 (R_{21}^0)^* R_{21}^0 = b \cup b(\varepsilon \cup a)^+ = ba^*$

$R_{22}^1 = R_{22}^0 \cup R_{22}^0 (R_{22}^0)^* R_{22}^0 = (\varepsilon \cup a) \cup b(\varepsilon \cup a)^+ b = \varepsilon \cup a \cup ba^* b$

$\Rightarrow L = R_{12}^2 = a^* b (a \cup ba^* b)^*$

1.2. $R_{11}^0 = \varepsilon$

$R_{12}^0 = a \cup b$

$R_{13}^0 = \phi$

$R_{21}^0 = \phi$

$R_{22}^0 = \varepsilon \cup a$

$R_{23}^0 = b$

$R_{31}^0 = a$

$R_{32}^0 = b$

$R_{33}^0 = \varepsilon$

$R_{11}^1 = \varepsilon$

$R_{12}^1 = a \cup b$

$R_{13}^1 = \phi$

$R_{21}^1 = \phi$

$R_{22}^1 = \varepsilon \cup a$

$R_{23}^1 = b$

$R_{31}^1 = a$

$R_{32}^1 = b \cup a(a \cup b) = b \cup aa \cup ab$

$R_{33}^1 = \varepsilon$

$R_{11}^2 = \varepsilon$

$R_{12}^2 = a \cup b \cup (a \cup b)a^* = a^+ \cup ba^*$

$R_{13}^2 = (a \cup b)a^* b = a^+ b \cup ba^* b$

$R_{21}^2 = \phi$

$R_{22}^2 = a^*$

$R_{23}^2 = b \cup (\varepsilon \cup a)a^* b = a^* b$

$R_{31}^2 = a$

$R_{32}^2 = (b \cup aa \cup ab) \cup (b \cup aa \cup ab)a^*(\varepsilon \cup a) = ba^* \cup aa^+ \cup aba^*$

$R_{33}^2 = \varepsilon \cup (b \cup aa \cup ab) a^* b = \varepsilon \cup ba^* b \cup aa^+ b \cup aba^* b$

$R_{31}^3 = \varepsilon \cup (a^+ b \cup ba^* b)(ba^* b \cup aa^+ b \cup aba^* b)^*$

$R_{32}^3 = (a^+ b \cup ba^* b)(ba^* b \cup aa^+ b \cup aba^* b)^*$

$R_{33}^3 = \varepsilon \cup (a^+ b \cup ba^* b)(ba^* b \cup aa^+ b \cup aba^* b)^*$
\[L = R^2_{11} \cup R^3_{13} \]

2. \emph{True or false}

2.1. False. For a counterexample, let \(L \) be any non-regular language such as \(\{0^n1^n : n \geq 0\} \). Since \(L \) is non-regular, \(\overline{L} \) (the complement of \(L \)) is also non-regular. Yet, \(L \cup \overline{L} = \Sigma^* \) is regular.

2.2. False. For a counterexample, let \(L \) be any non-regular language such as \(\{0^n1^n : n \geq 0\} \). Since \(L \) is non-regular, \(\overline{L} \) (the complement of \(L \)) is also non-regular. Yet, \(L \cap \overline{L} = \emptyset \) is regular.

2.3. True. We proved in class that if a language is regular, so is its complement. This is equivalent to the statement that if the complement of a language is regular, so is that language itself.

2.4. False. Any set can be written as a (possibly infinite) union of singleton sets containing its elements. In particular, any language \(L \) can be written as a union of finite, therefore regular, languages: \(L = \bigcup_{x \in L} \{x\} \). More concretely, take our favorite nonregular language. We have \(\{0^n1^n : n \geq 0\} = \bigcup_{n=0}^{\infty} \{0^n1^n\} \).

2.5. False. If this were true, then by De Morgan’s Law the previous would also have to be true. For a concrete counterexample, let \(A_n = \{0^n1^n\} \) for every \(n \geq 0 \). Then for every \(n \), \(\overline{A_n} \) is regular. Assume, to get a contradiction, that the statement is true. Then \(\bigcap_{n=0}^{\infty} \overline{A_n} \) is regular, so that \(\bigcap_{n=0}^{\infty} \overline{A_n} \) is regular. But by De Morgan’s Law, the latter is just \(\bigcup_{n=0}^{\infty} A_n \), which we know to be nonregular, giving us our contradiction.

3. \(L \) \emph{regular} \(\Rightarrow \) \(\text{MAX}(L) \) \emph{regular}

If \(M = (Q, \Sigma, \delta, q_0, F) \) is a DFA for \(L \), then the intuition to construct a DFA \(M' \) for \(\text{MAX}(L) \) is as follows. If \(q_f \) is a final state of \(M \) and there is a non-empty string that drives \(M \) from \(q_f \) to a final state (possibly \(q_f \) itself), then \(q_f \) should not be a final state in \(M' \). This ensures that \(M' \) does not accept a string in \(L \) if there is a way of extending it to be another string in \(L \).

Formally, let \(M' = (Q, \Sigma, \delta, q_0, F') \), where \(F' = \{q : q \in F \text{ and } \forall x \in \Sigma^+, \delta(q, x) \notin F\} \).

4. \(L \) \emph{regular} \(\Rightarrow \) \(\text{CYCLE}(L) \) \emph{regular}

We observe that a string \(w \) is in \(\text{CYCLE}(L) \) if and only if there is a way to split \(w \) into two parts: \(x_1 \) and \(x_2 \), such that there is a state \(q \) of \(L \)'s DFA \(M \) satisfying

1. \(\delta(q, x_1) \in F \) and
2. \(\delta(q_0, x_2) = q \).

That is to say, a marble starting off in state \(q \) ends up in a final state of \(M \) upon consuming \(x_1 \), and a marble starting off in the initial state of \(M \) ends up in \(q \) upon consuming \(x_2 \). This suggests that the marble should keep track of three things: (1) the state of \(M \) where it started, (2) the state of \(M \) at which it currently is, and (3) whether it is consuming \(x_1 \) or \(x_2 \). Accordingly, each state of the new NFA \(M' \) will be a 3-vector \((p, q, i) \), where \(p \) and \(q \) are states of \(M \), and \(i \in \{1, 2\} \).

Formally, if \(M = (Q, \Sigma, \delta, q_0, F) \) is a DFA for \(L \), define a new NFA \(M' = (Q', \Sigma, \delta', q'_0, F') \), where

\[
\begin{align*}
Q' &= Q \times Q \times \{1, 2\} \cup \{q'_0\} \text{ where } q'_0 \notin Q \times Q \times \{1, 2\} \\
F' &= \{(q, q, 2) : q \in Q\} \\
\delta'(q'_0, \varepsilon) &= \{(q, q, 1) : q \in Q\} \\
\delta'(p, q, 1, \varepsilon) &= \{(p, q_0, 2)\} \text{ for every } q \in F \\
\delta'(p, q, i, a) &= \{(p, \delta(q, a), i)\} \text{ if } a \in \Sigma
\end{align*}
\]

By the discussion above, \(M' \) recognizes \(\text{CYCLE}(L) \).
5. (Regular or not?)

5.1. \(L = \{0^n1^n0^{n+m} : m, n \geq 0 \} \).

Nonregular. Assume, to get a contradiction, that \(L \) is regular. Let \(s = 1^p0^p \), where \(p \) is the
pumping length. Clearly, \(s \in L \) (for \(m = 0 \) and \(n = p \)) and \(|s| \geq p \), so let \(s = xyz \) as specified
by the Pumping Lemma. Since \(|xy| \leq p \), \(y \) must lie entirely within the sequence of 1’s. Hence,
\(xz = 1^p |y| 0^p \) should belong to \(L \) by the Lemma, but it does not since \(p - |y| \neq p \), giving us
our contradiction.

5.2. \(L = \{0^n1^n : m \text{ divides } n \} \).

Nonregular. Assume, to get a contradiction, that \(L \) is regular. Let \(s = 0^p1^p \), where \(p \) is the
pumping length. Again, let \(s = xyz \) as specified by the Pumping Lemma. Since \(|xy| \leq p \), \(y \)
must lie entirely within the sequence of 0’s. Hence, \(xy2^z = 0^p+|y|1^p \) should belong to \(L \) by
the Lemma, but does not since \(p + |y| > p \) so it certainly does not divide \(p \), giving us our
contradiction.

5.3. \(L = \{xwx^R : x, w \in \{0,1\}^* \text{ and } |x|, |w| > 0 \} \).

Regular. Careful observation will reveal that a string is in \(L \) if and only if it starts and ends
with the same symbol and is of length at least three. \(L \) is therefore captured by the regular
expression \(0(0 \cup 1)^{+} 0 \cup 1(0 \cup 1)^{+} 1 \).

5.4. \(L = \{0^p : n \geq 0 \} \).

Nonregular. Assume, to get a contradiction, that \(L \) is regular. Let \(s = 0^p \), where \(p \) is the
pumping length. Let \(s = xyz \) as specified by the Pumping Lemma. Then by the Lemma,
\(xy^2z \in L \). However, clearly \(|xy^2z| > |xyz| = 2^p \), yet \(|xy^2z| < 2^{p+1} \) since \(|y| \leq |xy| \leq p < 2^p \),
so \(xy^2z \notin L \), giving us our contradiction.

5.5. \(L = \{w \in \Sigma_2^* : \text{the bottom row of } w \text{ is the reverse of the top row of } w \} \).

Nonregular. Assume, to get a contradiction, that \(L \) is regular. Let \(s = [0]^p [1] [0]^p \), where \(p \)
is the pumping length. Let \(s = xyz \) as specified by the Pumping Lemma. Since \(|xy| < p \), \(y \)
lies entirely in the first sequence of \([0]^p \)’s. Hence, \(xz = [0]^{p-|y|} [1] [0]^p \) does not belong to \(L \),
contradicting the Lemma.

5.6. \(L = \{0^n1^n : m, n \geq 0 \text{ and } m \neq n \} \).

Nonregular. Assume, to get a contradiction, that \(L \) is regular. Let \(R \) denote the language
captured by the regular expression \(0^*1^* \). Then \(L \cup R \), and therefore \(L \cup \bar{R} \), must be regular
since the set of all regular languages is closed under union and complementation. But the
latter expression is precisely the language \(\{0^n1^n : n \geq 0 \} \), which we know to be nonregular,
giving us our contradiction.