Simple computers

- The basic question: What is a computer?
- We’ll start by looking at very simple computers.
 - Input: anything
 - Output: YES or NO
 (ACCEPT or REJECT)
- Each such computer **recognizes a language**.

Languages

- **What is a “language”?**
 - [Merriam-Webster] “a systematic means of communicating ideas or feelings by the use of conventionalized signs…”
 - Examples: English, Spanish, Mandarin, Swahili, …
 - More examples: Pascal, Scheme, C, Perl, …
- **For our purposes, a language is a set of strings.**
 - English = (“Hello.”, “Come here.”, “Programming is fun.”, “In God we trust.”, “Don’t tase, bro!”, …)
 - Perl = \{p : p is a syntactically correct Perl program\}
 - L = \{“a”, “b”, “aa”, “bb”, “ab”, “ba”\}

Precise definitions

- A language is a set of **strings**.
- A string is a sequence of characters/symbols.
 - Note: sequence (ordered) versus set (unordered)
 - When writing a string, omit commas.
 - “abc” instead of (a,b,c).
- A character/symbol is an element of an **alphabet**.
- An alphabet is any **nonempty finite** set.
 - Alphabets usually denoted by Greek caps: \(\Sigma\) or \(\Gamma\).
Operations on strings

- Let \(w, x \) be strings over alphabet \(\Sigma \).
 - \(|w| = \text{length of } w = \text{number of chars in } w \).
 - \(wx = w \circ x = \text{concatenation: } w \text{ followed by } x \).
 - \(w^R = \text{reverse of } w \).
 - Special: \(\varepsilon = \text{empty string} \).

Terminology

- We speak of a string or language *over* a certain alphabet.
 - Thus, “abracadabra” is a string over the alphabet \{a, b, c,..., y, z\}.
 - “καλημερα” is a string over the alphabet \{α, β, γ,..., ι, ω\}.
 - \{a, b, aa, bb, ab, ba\} is a language over the alphabet \{a, b\}. It’s also a language over the alphabet \{a,..., z\}.

Prefixes and suffixes

- Any “initial segment” of a string \(w \) is called a *prefix* of \(w \).
- Let us make this precise and mathematical: “initial segment” is imprecise, though intuitive.
- **Definition:** The string \(x \) is a prefix of the string \(w \) iff \(w = xy \) for some string \(y \).
- Even more precisely: … iff \(\exists \ y \ (w = xy) \).
- How do you think we should define suffixes?
Practice

- Is c a prefix of $caccba$?
 - Yes, if $x = c$, take $y = accba$ to get $caccba = xy$.
- Is $caccba$ a prefix of $caccba$?
 - Yes, if $x = caccba$, take $y = e$ to get $caccba = xy$.
- Is ε a prefix of $caccba$?
 - Yes, if $x = \varepsilon$, take $y = caccba$ to get $caccba = xy$.
 - Same reasoning shows that ε is a prefix of any string.
- Is ε a prefix of ε?
 - Sure!

More practice

- If x is a prefix of w, is x^R a prefix of w^R?
 - No; take $w = abcdef$, $x = ab$
 - Then $w^R = fedcba$, $x^R = ba$; not a prefix! But...
 - It seems x^R is a suffix of w^R. Can you prove this?
- Can you express $(xy)^R$ in terms of x^R and y^R?
 - $(xy)^R = y^R x^R$
- If x is a string what do x^2, x^3, etc. denote?
 - $x^2 = xx$, $x^3 = xxx$, etc. Thus, $(abc)^2 = abcabc$.

On to Finite Automata