Here is a detailed, formal exposition of the conversion of a DFA into an equivalent regular expression, based on the dynamic programming idea we described in class. I am giving you these notes because this exposition differs quite a bit from that in your textbook. You are required to read and understand this material completely. For your exams, please be prepared to write proofs with this level of detail.

Theorem: If the language L is recognized by a DFA, then it is generated by a regular expression.

Proof: Let $M = (\{q_1, \ldots, q_n\}, \Sigma, \delta, q_1, F)$ be a DFA that recognizes L. For $i, j \in \{1, \ldots, n\}$ and $k \in \{0, \ldots, n\}$, let R_{ij}^k denote the set of all strings in Σ^* that take the DFA M from state q_i to state q_j without “going through” any state numbered higher than q_k. By “going through” we mean both entering and leaving, so the starting point q_i and the end point q_j are allowed to be numbered higher than q_k. To make this precise, we use a function $\hat{\delta} : Q \times \Sigma^* \rightarrow Q$ with the following “meaning:”

Imagine putting M into state q and then feeding it the string $w \in \Sigma^*$ as input. This leaves the DFA in a certain state after it processes the input; that state is denoted $\hat{\delta}(q, w)$.

A precise definition of $\hat{\delta}$ can be given using recursion, as follows:

\[
\hat{\delta}(q, \varepsilon) = q, \quad \forall q \in Q;
\]
\[
\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a), \quad \forall q \in Q, x \in \Sigma^*, a \in \Sigma.
\]

Using $\hat{\delta}$, we can define R_{ij}^k precisely:

\[
R_{ij}^k = \left\{ x \in \Sigma^* : \begin{array}{ll}
\hat{\delta}(q_i, x) = q_j & \\
\text{and } x \text{ does not have a prefix } y, & \\
\text{by } y \neq \varepsilon, & \\
\text{and } y \neq x, & \\
\text{such that } \hat{\delta}(q_i, y) = q_m & \text{where } m > k.
\end{array} \right\}
\]

Now we shall prove, by induction on k, that each of the sets R_{ij}^k is generated by a regular expression. The base case is $k = 0$. According to the definition, a string in R_{ij}^0 must take M from q_i to q_j without going through any intermediate states at all, because every state of M is numbered higher than q_0. This makes it clear that

\[
R_{ij}^0 = \{ a \in \Sigma : \delta(q_i, a) = q_j \}, \quad \text{if } i \neq j, \text{ and}
\]
\[
R_{ii}^0 = \{ \varepsilon \} \cup \{ a \in \Sigma : \delta(q_i, a) = q_i \}.
\]

The important thing is that these are finite sets, so each of them is generated by a simple regular expression that simply lists out all the strings in the set and combines them using “\cup.”

We now turn to the induction step. Suppose $1 \leq k \leq n$. The strings in R_{ij}^k can be divided into two classes: those that do not take M through state q_k and those that do. The strings in the former class clearly do not take M through any state numbered higher than q_{k-1}; therefore these strings are in fact in R_{ij}^{k-1}. It is also clear that a string which takes M from q_i to q_j avoiding states numbered higher than q_{k-1} also avoids states numbered higher than q_k; so, R_{ij}^{k-1} is exactly the set of strings in the former class.

Now let us focus on the latter class; let x be a string in this latter class. When M is put in state q_i and fed the input x, it must, at some point, reach state q_k for the first time and, at some point, leave q_k for the last time. In other words, it must be possible to write

\[
x = uww
\]

where u takes M from q_i to q_k without going through any state numbered higher than q_{k-1} and w does the same from state q_k to q_j. In other words, $u \in R_{ik}^{k-1}$ and $w \in R_{kj}^{k-1}$.

What about v? It takes M from q_k to q_k without going through any state numbered higher than q_k, but it may go through q_k itself several times (zero or more times), say t times. Then we can clearly write

\[
v = v_1v_2 \ldots v_{t+1}
\]
where each \(v_r \) (for \(r \in \{1, \ldots, t + 1\} \)) takes \(M \) from \(q_k \) to \(q_k \) without going through \(q_k \). In other words, each \(v_r \in R_{kk}^{k-1} \) and so \(v \in (R_{kk}^{k-1})^* \). Combining this with our observations about \(u \) and \(w \), we have

\[
x =uvw \in R_{ik}^{k-1}(R_{kk}^{k-1})^*R_{kj}^{k-1}.
\]

Thus, the strings in \(R_{ij}^k \) in the latter class all belong to \(R_{ik}^{k-1}(R_{kk}^{k-1})^*R_{kj}^{k-1} \). It is also clear that, conversely, a string in \(R_{ik}^{k-1}(R_{kk}^{k-1})^*R_{kj}^{k-1} \) definitely takes \(M \) through state \(q_k \) and never through a state numbered higher than \(q_k \). Therefore, \(R_{ik}^{k-1}(R_{kk}^{k-1})^*R_{kj}^{k-1} \) is exactly the set of strings in the latter class.

Combining the two classes of strings in \(R_{ij}^n \), we get

\[
R_{ij}^k = R_{ij}^{k-1} \cup R_{ik}^{k-1}(R_{kk}^{k-1})^*R_{kj}^{k-1}.
\]

By our induction hypothesis, each of the sets on the right-hand side of this equation is generated by a regular expression. Combining these regular expressions using the union, concatenation and star operators gives us a regular expression for \(R_{ij}^k \). This completes the induction step.

Having completed our induction proof, we address the question of writing a regular expression for the language \(L \). Clearly, \(x \in L \) iff \(x \) takes \(M \) from its start state \(q_1 \) to some final state \(q_i \in F \) without going through a state numbered higher than \(q_n \) (there are no states numbered higher than \(q_n \)!). Thus,

\[
L = \bigcup_{q_i \in F} R^n_{ij},
\]

and since we have proved that each set \(R^n_{ij} \) is generated by a regular expression, and the above union is a finite union, we see that \(L \) is also generated by a regular expression. This completes the proof of the theorem. QED.

Exercise: Show that the above proof can in fact be modified to yield a dynamic programming algorithm that takes as input a description of a DFA and outputs a regular expression equivalent to it.