Your textbook (Sipser) states, in Lemma 2.21, that any context-free grammar (CFG) can be converted into an equivalent pushdown automaton (PDA). The proof given there takes a CFG G and constructs a certain “3-state” PDA* M, and gives intuition for why $L(M) = L(G)$. The textbook stops short of giving a full formal proof, though. Here is a formal proof.

Theorem: For the PDA M constructed in the textbook (Figure 2.24), we have $L(M) = L(G)$.

Proof: First, we introduce some notation. For $y \in \Sigma^*$ and $\gamma \in (V \cup \Sigma)^*$, we let $M[y, \gamma]$ denote the statement “M can be in state q_{loop}, having read the prefix y of the input string, and with γ on its stack.” Note that $M[x, \varepsilon]$ iff M can make the transition to q_{accept} after reading x, i.e., iff $x \in L(M)$.

Part 1: $L(G) \subseteq L(M)$: Suppose $x \in L(G)$. Then $S \Rightarrow x$ in n steps for some positive integer n, via a leftmost derivation. Let $S = s_0 \Rightarrow s_1 \Rightarrow s_2 \Rightarrow \cdots \Rightarrow s_n = x$ be such a leftmost derivation. Suppose

$$s_i = y_i A_i \gamma_i,$$

where $y_i \in \Sigma^*$, $A_i \in V$, and $\gamma_i \in (V \cup \Sigma)^*$, for $0 \leq i < n$,

and $y_n = x$, $A_n = \gamma_n = \varepsilon$.

In other words, A_i denotes the leftmost variable in s_i (or ε, in the case $i = n$ when s_i has no variables). We claim that $M[y_i, A_i \gamma_i]$ for all i, $0 \leq i \leq n$. In particular, this proves that $M[x, \varepsilon]$, i.e., that $x \in L(M)$. The proof of the claim is by induction on i.

The base case is $i = 0$. The transition out of q_{start} shows that M can be in state q_{loop} having read no input and with $S\varepsilon$ on its stack, i.e., $M[\varepsilon, S]$, Note that $y_0 = \gamma_0 = \varepsilon$ and $A_0 = S$; therefore $M[y_0, A_0 \gamma_0]$.

For the induction step, suppose we have shown $M[y_i, A_i \gamma_i]$, for some i with $0 \leq i < n$. The derivation step $s_i \Rightarrow s_{i+1}$ must expand the leftmost variable in s_i, i.e., A_i. Let $A_i \rightarrow \alpha_i$ be the CFG rule used in this step. Then

$$y_{i+1} A_{i+1} \gamma_{i+1} = s_{i+1} = y_i A_i \gamma_i.$$

Since y_i is a prefix of y_{i+1}, we can write $A_i \gamma_i = z_i A_{i+1} \gamma_{i+1}$ for some $z_i \in \Sigma^*$ (note, in particular, that this continues to hold even if $i + 1 = n$). This implies $y_{i+1} = y_i z_i$. Since M has a loop transition at state q_{loop} that can pop A_i and push A_{i+1}, we have $M[y_i, A_i \gamma_i]$, i.e., $M[y_i, z_i A_{i+1} \gamma_{i+1}]$. Finally, since M has a loop transition at q_{loop} that can read any input character in the stack while popping A off the stack, and since $y_i z_i = y_{i+1}$ is a prefix of the input x, we have $M[y_i z_i, A_{i+1} \gamma_{i+1}]$, i.e., $M[y_{i+1}, A_{i+1} \gamma_{i+1}]$. This completes the induction step and the proof of Part 1.

Part 2: $L(M) \subseteq L(G)$: The proof of this is similar to the proof in Part 1. The details are left to you as an exercise. (It’s good practice; please try writing out the details.)

In fact, the number of states could be much greater than 3, once we unroll the shorthand notation that allows us to push multiple symbols on the stack in a single move.