Configuration of a TM

- Recall: TM = 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})\)

 \((\text{States}, \text{InputAlph}, \text{TapeAlph}, \text{Transitions}, \text{StartState}, \text{AccState}, \text{RejState})\)

- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}\)

- A configuration of a TM specifies three things
 - Current state
 - Tape contents
 - Head position

Configurations

- A configuration is a string \(uqv\) in \((\Gamma \cup Q)^*\).

- It means
 - The TM is in state \(q\)
 - The tape contains \(uv\) followed by \(\infty\) blanks
 - The head is over the first character of \(v\).

- The configuration is accepting if \(q = q_{\text{acc}}\).
Successor of a configuration

- Suppose \(u, v \in \Gamma^* \) and \(a, b \in \Gamma \) and \(q \in Q \).
- The successor of the configuration \(uaqbv \) is
 - \(uacrv \), if \(\delta(q,b) = (r,c,R) \)
 - \(uracv \), if \(\delta(q,b) = (r,c,L) \).
- Special case: The successor of \(qbv \) is
 - \(crv \), if \(\delta(q,b) = (r,c,R) \)
 - \(rcv \), if \(\delta(q,b) = (r,c,L) \).
- Special case: If \(q \in \{q_{acc}, q_{rej}\} \), then \(uqv \) has no successor.

Yielding

- If configuration \(C_2 \) is a successor of \(C_1 \), we say “\(C_1 \) yields \(C_2 \)”.
- Note: TM is deterministic, so a configuration either yields a unique configuration or yields nothing.

TM computation formalized

- Consider TM \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej}) \)
- We say \(M \) accepts \(x \in \Sigma^* \) if
 - \(\exists \) sequence \(C_0, C_1, \ldots, C_t \) of configurations of \(M \) s.t.
 - \(C_0 = q_0^x \)
 - \(C_{i-1} \) yields \(C_i \) (for all \(i, 1 \leq i \leq t \))
 - \(C_t \) is an accepting configuration
- When does \(M \) reject \(x \)? Two choices:
 - Require \(M \) to enter reject state
 - Leave this definition as is (i.e., can’t accept \(\Rightarrow \) reject)

Deciders vs Recognizers

- Two types of TMs for lang \(L \) over alphabet \(\Sigma \)
 - **Deciders**
 - If \(x \in L \), then accept.
 - If \(x \notin L \), then reject.
 - Never “loop”, i.e., always halt for any \(x \in \Sigma^* \).
 - **Recognizers**
 - If \(x \in L \), then accept.
 - If \(x \notin L \), either reject or “loop”.
- Note: “loop” \(\Rightarrow \) failure to halt; not repetition
Deciders vs Recognizers

- Clearly, every decider is a recognizer.
- Call a language
 - Decidable if there is a decider TM for it
 - Turing-recognizable if there is a recognizer TM for it
- Every decidable language is Turing-recognizable
- Converse is false:
 - \exists undecidable languages that are Turing-recognizable
 - Can’t prove this today, but eventually…

Multitape Turing Machines

- Like a TM except that it has k tapes, for some fixed k. Therefore, it has k heads, one per tape.
- In one step, the TM
 - reads k tape symbols which determine its next state,
 - writes back k symbols, one on each tape,
 - moves heads left/right independent of each other.
- Transition function $\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k$
- E.g., $\delta(q_0, a, b, a) = (q_1, c, b, f, R, L, L)$. $k = 3$

Computation of a multitape TM

- Start with input followed by ∞ blanks on tape 1 and only blanks on tapes 2, 3, …, k.
- Start with all heads being at left ends of their respective tapes.
- Run TM; accept/reject as usual.
- Think how you might accept the language of palindromes using a 2-tape TM.

Palindromes using 2-tape TM

- “On input w,
 - Scan input on tape 1; put head at right end.
 - Scan tape 1 right-to-left; copy input onto tape 2.
 (At this point, tape 2 holds w^R.)
 - Move head 2 to left end of tape 2.
 - Scan tapes 1 and 2 left-to-right, check for equality.
 - Accept if $w = w^R$, reject otherwise.”
- This is an implementation description, rather than a formal description, of the TM.
Multitape = Single-tape

- Proof uses very important idea of simulation.
- Let \(M \) be a \(k \)-tape TM, for some fixed \(k \).
- We shall build a (single-tape) TM \(M' \) that will simulate \(M \), i.e.,
 - accept if and only if \(M \) accepts,
 - reject if and only if \(M \) rejects.

Proof of multitape = single-tape

- \(M' \) formats its tape to represent all \(k \) tapes of \(M \).
- E.g., with \(k = 3 \), \(\Gamma = \{a,b,c,_\} \):

<table>
<thead>
<tr>
<th>Tape 1:</th>
<th>Tape 2:</th>
<th>Tape 3:</th>
</tr>
</thead>
<tbody>
<tr>
<td>c a c c b a b _ _ _ ...</td>
<td>a a a b _ _ _ ...</td>
<td>c b a b _ _ _ ...</td>
</tr>
<tr>
<td>Head on third char</td>
<td>Head on first char</td>
<td>Head on fourth char</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 becomes, for \(M' \),

 Tape: # c c a C c b a b _ # A a a b _ # c b a B _ #

- Thus, each char in \(\Gamma \) has a “marked” version.

Proof of multitape = single-tape

- Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej}) \) be a \(k \)-tape TM
- Then, we can simulate it with the following TM \(M' = (Q', \Sigma, \Gamma', \delta', q_0', q_{acc}', q_{rej}') \)...

 | \(Q' \) = |
 | \(\Gamma' = \Gamma \times \{\text{Unmarked, Marked}\} \cup \{\#\} \) |
 | \(\delta' = \) |
 | \(\ldots \ldots \) |
 |
 - Ah, forget it! Go for implementation description.