
CS 39
Winter 2004
Theory of Computation

Homework 8
Due Mar 9, 2005

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

Note: This homework is optional. Not turning it will have no negative effect at all.
But do attempt the problems for your own edification and for preparation for the final exam.

Please think carefully about how you are going to organise your answers before you begin writing. Make sure your answers
are complete, clean, concise and rigorous. You may use, without proof, any result from Chapter 7 of Sipser’s book.

1. Do problem 7.33 from Sipser’s book. [10 points]

2. Let DOUBLESAT = {〈φ〉 : φ has at least two satisfying assignments}. Show that DOUBLESAT is NP-complete.
[15 points]

3. A burglar enters a room full of goodies with his knapsack and has to figure out what items to pack into it before
running off with his loot. He wants to maximize the total worth of his loot, of course, but is constrained by the fact
that his knapsack can only hold objects with total weight upto a certain maximum. If he overloads the knapsack, it
will be ripped apart and all his loot will be lost. The burglar’s little problem can be abstracted into a computational
problem of great importance: the KNAPSACK problem.

Formally, an input to KNAPSACK consists of a number n of objects, integer weights w1, . . . , wn of the objects, integer
values v1, . . . , vn, and a maximum weight capacity W . The goal is to pick a subset of objects with total weight ≤ W
while maximizing the total value of this subset. To turn this into a decision (yes/no) problem, we specify a target
value V and ask if it is possible to achieve or exceed this target. Thus:

KNAPSACK =

{
〈n, w1, . . . , wn, v1, . . . , vn,W, V 〉 : ∃S ⊆ {1, . . . , n}

(∑
i∈S

wi ≤ W
∧ ∑

i∈S

vi ≥ V

)}
.

3.1. Intuitively, the burglar should prefer objects that have high value per unit weight. Thus, it is tempting to try
to solve KNAPSACK using the following algorithm: (1) sort the objects in decreasing order of vi/wi and (2)
consider the objects in this sorted order and, for each object considered, add it to the knapsack if the total
weight after the addition would stay ≤ W . Prove that this algorithm, although polynomial time, fails to solve
KNAPSACK. (Provide a specific counterexample.) [10 points]

3.2. Prove that KNAPSACK is NP-complete. No wonder that algorithm did not work! [15 points]

4. Prove that MAXCUT is NP-complete by solving problems 7.22 and 7.23 from Sipser’s book. [25 points]

5. Prove that if P were equal to NP, then the RSA cryptosystem could be broken in polynomial time. (First state
a precise mathematical problem that could be solved in polynomial time and explain why solving it would lead to
breaking the cryptosystem. Then prove that your mathematical problem can be solved in polynomial time, assuming
P = NP.) [15 points]

Page 1 of 1

