Configuration of a TM

- Recall: TM = 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})\)
- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}\)
- A configuration of a TM specifies three things
 - Current state
 - Tape contents
 - Head position

Configurations

- A configuration is a string \(uqv\) in \((\Gamma \cup Q)^*\).
- It means
 - The TM is in state \(q\)
 - The tape contains \(uv\) followed by \(\infty\) blanks
 - The head is over the first character of \(v\).
- The configuration is accepting if \(q = q_{\text{acc}}\).
Successor of a configuration

- Suppose $u, v \in \Gamma^*$ and $a, b \in \Gamma$ and $q \in Q$.
- The successor of the configuration $uaqbv$ is
 - $uacrv$, if $\delta(q,b) = (r,c,R)$
 - $uracv$, if $\delta(q,b) = (r,c,L)$.
- Special case: The successor of qbv is
 - crv, if $\delta(q,b) = (r,c,R)$
 - rcv, if $\delta(q,b) = (r,c,L)$.
- Special case: If $q \in \{q_{acc}, q_{rej}\}$, then uqv has no successor.

Yielding

- If configuration C_2 is a successor of C_1, we say “C_1 yields C_2”.
- Note: TM is deterministic, so a configuration either yields a unique configuration or yields nothing.

TM computation formalized

- Consider TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$.
- We say M accepts $x \in \Sigma^*$ if
 - \exists sequence C_0, C_1, \ldots, C_t of configurations of M s.t.
 - $C_0 = q_0^x$
 - C_{i-1} yields C_i (for all i, $1 \leq i \leq t$)
 - C_t is an accepting configuration
- When does M reject x? Two choices:
 - Require M to enter reject state
 - Leave this definition as is (i.e., can’t accept \Rightarrow reject)

Deciders vs Recognizers

- Two types of TMs for lang L over alphabet Σ
- Deciders
 - If $x \in L$, then accept.
 - If $x \notin L$, then reject.
 - Never “loop”, i.e., always halt for any $x \in \Sigma^*$.
- Recognizers
 - If $x \in L$, then accept.
 - If $x \notin L$, either reject or “loop”.
- Note: “loop” \Rightarrow failure to halt; not repetition
Deciders vs Recognizers

• Clearly, every decider is a recognizer.
• Call a language
 – Decidable if there is a decider TM for it
 – Turing-recognizable if there is a recognizer TM for it
• Every decidable language is Turing-recognizable
• Converse is false:
 – ∃ undecidable languages that are Turing-recognizable
 – Can’t prove this today, but eventually…

Multitape Turing Machines

• Like a TM except that it has k tapes, for some fixed k. Therefore, it has k heads, one per tape.
• In one step, the TM
 – reads k tape symbols which determine its next state,
 – writes back k symbols, one on each tape,
 – moves heads left/right independent of each other.
• Transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L,R\}^k$
• E.g., $\delta(q_0, a, b, a) = (q_{14}, c, b, f, R, L, L)$. $k = 3$

Computation of a multitape TM

• Start with input followed by ∞ blanks on tape 1 and only blanks on tapes 2, 3, …, k.
• Start with all heads being at left ends of their respective tapes.
• Run TM; accept/reject as usual.
• Think how you might accept the language of palindromes using a 2-tape TM.

Palindromes using 2-tape TM

• “On input w,
 – Scan input on tape 1; put head at right end.
 – Scan tape 1 right-to-left; copy input onto tape 2. (At this point, tape 2 holds w^R.)
 – Move head 2 to left end of tape 2.
 – Scan tapes 1 and 2 left-to-right, check for equality.
 – Accept if $w = w^R$, reject otherwise.”
• This is an implementation description, rather than a formal description, of the TM.
Multitape = Single-tape

- Proof uses very important idea of simulation.
- Let \(M \) be a \(k \)-tape TM, for some fixed \(k \).
- We shall build a (single-tape) TM \(M' \) that will simulate \(M \), i.e.,
 - accept if and only if \(M \) accepts,
 - reject if and only if \(M \) rejects.

Proof of multitape = single-tape

- \(M' \) formats its tape to represent all \(k \) tapes of \(M \).
- E.g., with \(k = 3 \), \(\Gamma = \{a,b,c,\} \):
 - Tape 1: \(c a c b a b \) \(\ldots \) Head on third char
 - Tape 2: \(a a a b \) \(\ldots \) Head on first char
 - Tape 3: \(c b a b \) \(\ldots \) Head on fourth char
 - becomes, for \(M' \),
 - Tape: \(# c a C c b a b \ # a a a b \ # c b a B \ # \)
- Thus, each char in \(\Gamma \) has a “marked” version.

Proof of multitape = single-tape

- Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej}) \) be a \(k \)-tape TM.
- Then, we can simulate it with the following TM \(M' = (Q', \Sigma, \Gamma', \delta', q'_0, q'_{acc}, q'_{rej}) \)...
 - \(Q' = \)
 - \(\Gamma' = \Gamma \times \{\text{Unmarked}, \text{Marked}\} \cup \{\#\} \)
 - \(\delta' = \)
 - \(\ldots \ldots \)
 - Ah, forget it! Go for implementation description.