CS 39
Theory of Computing

Nondeterministic Turing Machines
Amit Chakrabarti

A closure property
• If L_1 and L_2 are decidable, so is $L_1 \cup L_2$.
• Let M_i be a decider for L_i (i = 1, 2). Let M be the following 2-tape TM:
 $$M = \text{"On input } x, \text{
1. Copy } x \text{ to tape 2.}
2. \text{Simulate } M_1 \text{ on input } x, \text{ using tape 1.}
3. \text{If } M_1 \text{ accepts, then ACCEPT}
4. \text{Else}
4.1 \text{Simulate } M_2 \text{ on input } x, \text{ using tape 2.}
4.2 \text{If } M_2 \text{ accepts, then ACCEPT, else REJECT."}$$

Closure properties
• If L_1 and L_2 (over Σ) are decidable, so is
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - $\Sigma^* - L_1$
 - $L_1 L_2$
 - L_1^*
• Think how you might prove these.

Recap: configuration of a TM
• Recall: $TM = 7$-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$
 (States, InputAlph, TapeAlph, Transitions, StartState, AccState, RejState)
• $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$
• A configuration of a TM specifies three things
 - Current state
 - Tape contents
 - Head position
Recap: yielding

• If configuration C_2 is a successor of C_1, we say “C_1 yields C_2”.

• Note: TM is deterministic, so a configuration either yields a unique configuration or yields nothing.

Nondeterministic Turing Machines

• Abbreviated NDTM
• TM’s by default deterministic
 – *Always* say NDTM if you want nondeterminism
• 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})$, just like a TM
 – Except, $\delta : Q \times \Gamma \rightarrow 2^Q \times \Gamma \times \{L,R\}$
• This means, a configuration can now yield several different new configurations.

NDTM computation formalized

• Consider NDTM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})$
• We say M accepts $x \in \Sigma^*$ if
 – \exists sequence C_0, C_1, \ldots, C_t of configurations of M s.t.
 – $C_0 = q_0^x$
 – C_{i-1} yields C_i (for all i, $1 \leq i \leq t$)
 – C_t is an accepting configuration
• Behavior for $x \notin L$
 – Happy if M never enters accept state (recognizer)
 – Require M to always enter reject state (decider)

Uses of nondeterminism

• Simpler solutions for $\{ww : w \in \Sigma^*\}$
 – Use nondeterminism to guess midpoint and insert a ‘#’ symbol there. Then proceed as for $\{w#w : w \in \Sigma^*\}$.
 – Better yet, use two tapes *and* nondeterminism.
• Simpler proofs of closure properties
 – For L_1L_2 and L_1^*, just use nondeterminism to decide how to “break up” the input.
• But, to prove decidability, we want TMs, not NDTMs and not k-tape NDTMs!
Turning a NDTM into a TM

- Let M be a NDTM; design TM M' to simulate M.
- M' will try out every possible branch of M’s computation. A branch is a particular sequence of nondeterministic choices.
- M' will have three tapes
 - Tape 1: the input to M, never overwritten
 - Tape 2: the tape of M in the current branch
 - Tape 3: sequence of ints describing current branch

Representing the branches

The configuration C_6 is represented as “3,1”