Recap: P and NP

- P = \{L \subseteq \Sigma^*: L is decided by a TM in polynomial time\}
- NP = \{L \subseteq \Sigma^*: L is decided by a NDTM in polynomial time\}
- In CS 25 you (essentially) learnt techniques to show that various languages ∈ P.
- How do we show that a language ∈ NP?

The Hamiltonian Path Problem

- Input: A graph G = (V, E)
- Question: Does G have a Hamiltonian path?
- Definition: A Hamiltonian path of G is a path that covers all vertices of G.
- To turn this into a language, define
 \[\text{HAMPATH} = \{ \langle G \rangle: G \text{ is a graph that has a Hamiltonian path} \} \]

The Vertex Cover Problem

- Input: A graph G = (V, E) and an integer k > 0
- Q: Does G have a vertex cover of size ≤ k?
- Definition: A vertex cover of G is a subset of V that covers every edge in E.
- To turn this into a language, define
 \[\text{VC} = \{ \langle G,k \rangle: G \text{ is a graph that has a vertex cover of size } \leq k \} \]
Proof that HAMPATH ∈ NP

• “On input ⟨G⟩, where G = (V, E) is a graph:
 1. Let n = |V|.
 2. Guess a permutation v₁, v₂, …, vₙ of V.
 3. For i = 1 to (n-1):
 3.1. If {vᵢ, vᵢ₊₁} ∉ E, then REJECT.
 4. ACCEPT.”

• Clearly polynomial time.
• Uses nondeterminism in step 2.

Proof that VC ∈ NP

• “On input ⟨G,k⟩, where G = (V, E)… :
 1. Guess a subset C = {v₁, v₂, …, vₖ} of V.
 2. For each edge {u,v} ∈ E:
 3.1. If u ∉ C and v ∉ C, then REJECT.
 3. ACCEPT.”

• Clearly polynomial time.
• Uses nondeterminism in step 1.

Do we need to guess?

• We showed that HAMPATH, VC ∈ NP.

• Their (nondeterministic) algorithms used the power to guess in a crucial way.

• Enumerating all guesses
 – all permutations, in case of HAMPATH
 – all k-sized subsets, in case of VC
 could take exponential time in the input size.

More examples of NP problems

• SATISFIABILITY, a.k.a. SAT:
 – Input: A formula, i.e., the AND of a set of Boolean clauses, e.g.
 • x₁ ∨ ¬x₂ ∨ x₃
 • ¬x₁ ∨ ¬x₂
 • x₄ ∨ x₅ ∨ ¬x₇ ∨ x₁
 – Question: Is the formula satisfiable? I.e., is there a TRUE/FALSE assignment to the xᵢ’s that makes the formula true?

• Note: Every clause must be satisfied.
Proof that $\text{SAT} \in \text{NP}$

- $\text{SAT} = \{\langle \phi \rangle : \phi$ is a satisfiable formula$\} $
- “On input $\langle \phi \rangle$,
 1. Guess a Boolean value (TRUE/FALSE) for each variable that occurs in ϕ.
 2. If the guessed values satisfy all the clauses of ϕ, then ACCEPT, else REJECT.”
- Deterministic algorithm? Enumerating all guesses could take $2^{O(n)}$ time, where $n = |\langle \phi \rangle|$.

More examples of NP problems

- The SUBSET-SUM problem:
 - Input: A finite set of integers S and a target integer t.
 - Question: Is there a subset $T \subseteq S$ such that the sum of the elements of T equals t?
- Again, clearly in NP: just guess a subset and verify that it sums to t.

Polynomial time reductions

- We’ve now seen several problems that are in NP but don’t seem to be in P:
 - HAMPATH, VC, SAT, SUBSET-SUM
- We shall see: if we could somehow solve one of these problems in P-time, we could solve all of them in P-time.
- How? Via P-time reductions.
 - i.e., reductions that run in polynomial time.

NP-completeness

- A language L is said to be NP-complete if
 1. $L \in \text{NP}$
 2. Every language in NP can be P-time reduced to L.
- In other words, the power to solve L gives us the power to solve everything in NP!
 - Here “solve” means “solve in polynomial time.”
- In still other words, if $L \in \text{P}$ then $\text{P} = \text{NP}$.
What it means to be NP-complete

• Suppose we’ve proven (somehow) that a language L is NP-complete.
• This suggests that L can’t be decided in P-time.
 – Because, if L could be decided thus, then so could every problem in NP…
 – …such as these one thousand problems that generations of brilliant computer scientists have been unable to solve…
• Suggests, but does not prove.

How to prove NP-completeness

• A language L is said to be \textit{NP-complete} if
 (1) $L \in \text{NP}$
 (2) Every language in NP can be P-time reduced to L.
• Suppose we’ve proven (somehow) that SAT is NP-complete. We wish to prove that VC is, too.
• Prove (1). For (2), just reduce SAT to VC!
 Any NP language \rightarrow SAT \rightarrow VC

NP-completeness of VC

• We’ve already proven (1) VC \in NP
• For (2), we’ll use several steps:
 – First, we reduce SAT to 3SAT.
 – Then, we reduce 3SAT to IND-SET.
 – Finally, we reduce IND-SET to VC.
 – Each of these reductions will run in polynomial time.

SAT \rightarrow 3SAT

• 3SAT is just like SAT, except that each clause in the formula is required to have exactly 3 literals.
 - $x_1 \lor \neg x_2 \lor x_3$
 - $\neg x_1 \lor \neg x_2 \lor x_5$
 - $x_4 \lor x_2 \lor x_5$
• To convert an arbitrary formula into this form, need to deal with
 – clauses that have only 1 or 2 literals,
 – clauses that have 4 or more literals.
SAT → 3SAT

- Clauses with too few literals
 - Replicate literals to bring the number up to 3,
 - E.g., \((\neg x_1 \lor x_3) \rightarrow (\neg x_1 \lor x_5 \lor x_1)\).
- Clauses with too many literals
 - Split into multiple clauses, using new “link” literals.
 - E.g., \((x_1 \lor x_2 \lor x_3 \lor x_4) \rightarrow (x_1 \lor x_2 \lor z) \lor (\neg z \lor x_3 \lor x_4)\)
 - Replace \((x_1 \lor \ldots \lor x_k)\) with \((k-2)\) new clauses:
 \((x_1 \lor x_2 \lor z_1) \lor (\neg z_1 \lor x_3 \lor z_2) \lor \ldots \lor (\neg z_{k-3} \lor x_{k-1} \lor x_k)\)
- Check that all this can be done in P-time.

3SAT → IND-SET

- The IND-SET problem asks whether a given input graph has an *independent set* of a given size.
 - An *independent set* is a set of vertices such that no two of them are adjacent.
- Thus, the larger an independent set, the more interesting it is. Can we find the *largest*?
- Decision (yes/no) version: Given \(G\) and \(k\), does \(G\) have an independent set of size \(\geq k\)?

3SAT → IND-SET

- Must convert 3cnf-formula \(\phi\) into \(G\) and \(k\), s.t.
 - If \(\phi\) satisfiable, then \(G\) has an i.s. of size \(k\).
 - If \(\phi\) unsatisfiable, then \(G\) doesn’t have i.s. of size \(k\).
- Idea: turn
 \((x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_5) \land (x_4 \lor x_2 \lor \neg x_3)\)
 into

```
 x_1 ┌─┐ ┌─┐ ┌─┐
 └─┘ └─┘ └─┘
 x_2 ┌─┐ ┌─┐ ┌─┐
 └─┘ └─┘ └─┘
 x_3 ┌─┐ ┌─┐ ┌─┐
 └─┘ └─┘ └─┘
 x_4 ┌─┐ ┌─┐ ┌─┐
 └─┘ └─┘ └─┘
 x_5
```

- Formally, “On input \(\langle \phi \rangle\):
 - Let \(C_1, \ldots, C_k\) be the clauses of \(\phi\).
 - Create a \(3k\)-vertex graph \(G\) where each vertex corresponds to a literal in some \(C_i\) as follows:
 - Draw \(k\) disjoint triangles, one per clause.
 - Then add extra edges connecting each pair of contradicting literals.
 - Output \(\langle G, k \rangle\).”
- Why does this work? Prove it!
IND-SET \rightarrow VC

- **Theorem:** Suppose G has n vertices. Then G has an independent set of size k iff G has a vertex cover of size $(n - k)$.
 - Proof sketch: The vertices not in an independent set form a vertex cover.
- **This theorem leads to a very simple reduction:**

 “On input $\langle G, k \rangle$
 1. Let $n =$ number of vertices of G.
 2. Output $\langle G, n-k \rangle$.”

Recap

- **We have shown these reductions:**

 SAT \rightarrow 3SAT \rightarrow IND-SET \rightarrow VC
- **Therefore, if we could show SAT is NP-complete**
 - we would have shown that 3SAT is NP-complete.
 - we would have shown that IND-SET is NP-complete.
 - we would have shown that VC is NP-complete.
- **Eventually: Cook-Levin theorem,** which proves from scratch that SAT is NP-complete.

Very important reading assignment

- **Read Sipser, pages 248-253.**
- **Read Sipser, section 7.5 completely.**
 - There you will find proofs that HAMPATH and SUBSET-SUM are NP-complete.
 - We will not be doing these proofs in class, but you are responsible for knowing and understanding them.