Please think carefully about how you are going to organise your answers before you begin writing. Make sure your answers are complete, clean, concise and rigorous.

1. Design pushdown automata (PDAs) for each of the following languages:

1.1. \(\{ x \in \{0,1\}^* : x \text{ contains more 0's than 1's} \} \). [10 points]

1.2. \(\{ x \in \{0,1\}^* : |x| \text{ is odd and the middle symbol of } x \text{ is a 0} \} \). [10 points]

1.3. \(\{ x \in \{0,1,2\}^* : N_0(x) = N_1(x) \text{ or } N_1(x) = N_2(x) \} \). Here \(N_i(x) \) denotes the number of occurrences of the character \(i \) in the string \(x \). [10 points]

2. This set of problems develops some theory around regular languages that we have not discussed in class. Here is your chance to build your theoretical skills by doing some basic independent work. For these problems you will need to be familiar with the notions of equivalence relations, discussed in Section 0.2 of your textbook, which was required reading prior to Lecture #3.

2.1. For a language \(A \) over alphabet \(\Sigma \), define the relation \(\equiv_A \) on strings in \(\Sigma^* \) as follows: \(\forall w \in \Sigma^* (xw \in A \iff yw \in A) \). In other words, \(x \equiv_A y \) means that any string \(w \) which extends \(x \) to a string in \(A \) also extends \(y \) to a string in \(A \), and vice-versa. Note that \(x \) and \(y \) are not necessarily strings from \(A \); they are strings from \(\Sigma^* \).

For example, consider the language \(B = (01)^* \) over the alphabet \(\{0,1\} \). We have \(010 \not\equiv_B 011 \) because taking \(w = 1 \), we get \(010w = 01101 \not\in B \) whereas \(011w = 01111 \not\in B \). Similarly, \(01 \not\equiv_B 101 \) (take \(w = \varepsilon \)). However, \(010 \equiv_B 0101010 \) (convince yourself of this).

Prove that \(\equiv_A \) is an equivalence relation. [5 points]

2.2. The relation \(\equiv_A \) is called the left equivalence relation of the language \(A \). An equivalence relation on a set partitions the set into disjoint subsets called equivalence classes in the following way: two elements belong to the same class if they are related by the equivalence relation. Thus, \(\equiv_A \), which is a relation on \(\Sigma^* \), partitions \(\Sigma^* \) into equivalence classes: these are called the left equivalence classes of the language \(A \).

For example, consider the language \(C = \{ x \in \{0,1\}^* : |x| \text{ is even} \} \) over the alphabet \(\{0,1\} \). Convince yourself that any two even-length strings are related by \(\equiv_C \) as are any two odd-length strings. Also, no odd-length string is related by \(\equiv_C \) to an even-length string. Since every string in \(\{0,1\}^* \) is either odd-length or even-length, we see that \(C \) has exactly two left equivalence classes: (1) odd-length strings, i.e., \(\{0,1\}^* \setminus C \), and (2) even-length strings, i.e., \(C \).

Similarly, convince yourself that the language \(B = (01)^* \) over the alphabet \(\{0,1\} \) has three equivalence classes, which are: (1) \(B \), (2) \((01)^*0 \), and (3) \(\{0,1\}^* \setminus (B \cup (01)^*0) \).

Describe the left equivalence classes of the language \(L_1 = \{a, aa, aaa, b, ba, baa\} \) over the alphabet \(\{a, b\} \). You will find that there are five equivalence classes and that exactly one of the five is an infinite set. [5 points]
2.3. Describe the left equivalence classes of the language \(L_2 = a^* b^* c^* \) over the alphabet \(\{a, b, c\} \). [5 points]

2.4. Describe the left equivalence classes of the language \(L_3 = (ab \cup ba)^* \) over the alphabet \(\{a, b\} \). [10 points]

2.5. Describe the left equivalence classes of the language \(L_4 = \{0^n1^n : n \geq 0\} \) over the alphabet \(\{0, 1\} \). [10 points]

2.6. For a language \(A \) over alphabet \(\Sigma \) and a string \(x \in \Sigma^* \), let \([x]_A \) denote the left equivalence class (of \(A \)) to which \(x \) belongs. For instance, consider the sets \(X_1 = (01)^* \), \(X_2 = (01)^*0 \) and \(X_3 = \{0, 1\}^* - (01)^*(\epsilon \cup 0) \), which are the left equivalence classes of the language \(B \) from Problem 2.2. Then:
 - \([010]_B \) denotes the set \(X_2 \),
 - \([01010]_B \) also denotes this same set,
 - \([\epsilon]_B \) and \([0101]_B \) both denote the set \(X_1 \),
 - and so on.

Thus, as you can see, there is rarely one unique way to write a left equivalence class as \([x]_A \): there are usually many choices for \(x \). These choices are called representatives of the equivalence class.

Prove that for any \(x \in \Sigma^* \) and \(a \in \Sigma \), the class \([xa]_A \) is completely determined by the class \([x]_A \) and the alphabet symbol \(a \); i.e., prove that the particular \(x \) we pick as a representative of \([x]_A \) is immaterial. [5 points]

2.7. Suppose a language \(A \) over alphabet \(\Sigma \) has finitely many left equivalence classes: \([x_1]_A, [x_2]_A, \ldots, [x_n]_A \), for some \(n \geq 1 \). Prove that \(A \) is regular! [10 points]

2.8. Wasn’t that cool?

Now, let \(A \) be a regular language over the alphabet \(\Sigma \). Prove that \(A \) has only finitely many distinct left equivalence classes. The function \(\tilde{\delta} \) we defined in class (and in the lecture notes) might be useful in writing a formal rigorous proof. [10 points]

2.9. Using one or more of the results you proved above, give an alternate proof that the language \(\{0^n1^n : n \geq 0\} \) is not regular. [5 points]

2.10. Using left equivalence classes, give an alternate proof that \(\{x \in \{0, 1\}^* : x \text{ is a palindrome}\} \) is not regular. [5 points]

Challenge Problems

CP4: Let \(R \) and \(S \) be regular expressions over some alphabet \(\Sigma \). In this problem, we shall use “\(R \)” for the regular expression as well as the language it generates. Suppose \(\epsilon \notin R \). Let \(X \) be an unknown language over \(\Sigma \) satisfying

\[
X = RX \cup S.
\]

Prove that this equation (in the unknown \(X \)) has a unique solution, which can be written as a regular expression in terms of \(R \) and \(S \). Why was it important to assume that \(\epsilon \notin R \)?