
CR-precis: A deterministic summary structure
for update data streams

Sumit Ganguly1 and Anirban Majumder2?

1 Indian Institute of Technology, Kanpur
2 Lucent Technologies, Bangalore

Abstract. We present deterministic sub-linear space algorithms for a
number of problems over update data streams, including, estimating fre-
quencies of items and ranges, finding approximate frequent items and
approximate φ-quantiles, estimating inner-products, constructing near-
optimal B-bucket histograms and estimating entropy. We also present
new lower bound results for several problems over update data streams.

1 Introduction

The data streaming model [2, 26] presents a computational model for a variety of
monitoring applications, for example, network monitoring, sensor networks, etc.,
where data arrives rapidly and continuously and has to be processed in an online
fashion using sub-linear space. Some examples of fundamental data streaming
primitives include, estimating the frequency of items (point queries) and ranges
(range-sum queries), finding approximate frequent items, approximate quantiles
and approximate hierarchical heavy hitters, estimating inner-product, construct-
ing approximately optimal B-bucket histograms, estimating entropy, etc.. We
view a data stream as a sequence of arrivals of the form (i, v), where, i is the
identity of an item belonging to the domain D = {0, 1, . . . , n − 1} and v is a
non-zero integer that depicts the change in the frequency of i. v ≥ 1 signifies v
insertions of the item i and v ≤ −1 signifies |v| deletions of i. The frequency of an
item i is denoted by fi and is defined as the sum of the changes to its frequency
since the inception of the stream, that is, fi =

∑
(i,v) appears in stream v. If fi ≥ 0

for all i (i.e., deletions correspond to prior insertions) then the corresponding
streaming model is referred to as the strict update streaming model, whereas, the
model in which frequencies can take arbitrary positive, zero or negative values is
called the general update streaming model. The insert-only model refers to data
streams with no deletions, that is, v > 0.

Randomized algorithms dominate the landscape of sub-linear space algo-
rithms for problems over update streams. There are no deterministic sub-linear
space algorithms known for a variety of basic problems over update streams,
including, estimating the frequency of items and ranges, finding approximate
frequent items and approximate φ-quantiles, finding approximate hierarchical
? Work done while at IIT Kanpur.

heavy hitters, constructing approximately optimal B-bucket histograms, esti-
mating inner-products, estimating entropy, etc.. Deterministic algorithms are of-
ten indispensable, for example, in a marketing scenario where frequent items cor-
respond to subsidized customers, a false negative would correspond to a missed
frequent customer, and conversely, in a scenario where frequent items correspond
to punishable misuse [21], a false positive results in an innocent victim.

We now review a data structure introduced by Gasieniec and Muthukrishnan
[26] (page 31) that we use later. We refer to this structure as the CR-precis struc-
ture, since the Chinese Remainder theorem plays a crucial role in the analysis.
The structure is parameterized by a height k and width t. Choose t consecutive
prime numbers k ≤ p1 < p2 < . . . < pt and keep a collection of t tables Tj , for
j = 1, . . . , t, where, Tj has pj integer counters, numbered from 0, 1, . . . , pj − 1.
Each stream update of the form (i, v) is processed as follows.

for j := 1 to t do { Tj [i mod pj] := Tj [i mod pj] + v }
Lemma 1 presents the space requirement of a CR-precis structure and is
implicit in [26] (pp. 31) and is proved by a direct application of the prime number
theorem [27]. Let L1 =

∑
i|fi|.

Lemma 1. The space requirement of a CR-precis structure with height param-
eter k ≥ 12 and width parameter t ≥ 1 is O(t(t + k

ln k) log(t + k
ln k)(log L1)) bits.

The time required to process a stream update is O(t) arithmetic operations. ut
[26] (pp. 31) uses the CR-precis structure to present a k-set structure [15] using
space O(k2(log k)(log L1)) bits. k-set structures using space O(k(log N)(log N +
log L1)) bits are presented in [15].

Contributions. We present deterministic, sub-linear space algorithms for each
of the problems mentioned above in the model of update streams using the
CR-precis structure. We also present improved space lower bounds for some
problems over update streams, namely, (a) the problem of estimating frequencies
with accuracy φ over strict update streams is shown to require Ω(φ−1(log m) log
(φn)) space (previous bound was Ω(φ−1 log(φn)) [4]), and, (b) all the above
problems except for the problems of estimating frequencies of items and range-
sums, are shown to require Ω(n) space in the general update streaming model.

2 Review

In this section, we review basic problems over data streams. For strict update
streams, let m =

∑
i fi and for general update streams, L1 =

∑
i|fi|.

The point query problem with parameter φ is the following: given i ∈ D, ob-
tain an estimate f̂i such that |f̂i−fi| ≤ φL1. For insert-only streams, the Misra-
Gries algorithm [25], rediscovered and refined in [12, 4, 22], uses dφ−1e log m bits
and satisfies fi ≤ f̂i ≤ fi + φm. The Lossy Counting algorithm [23] for insert-
only streams returns f̂i satisfying fi ≤ f̂i ≤ fi + φm using dφ−1e log(φm) log m
bits. The Sticky Sampling algorithm [23] extends the Counting Samples algo-
rithm [16] and returns f̂i satisfying fi − φm ≤ f̂i ≤ fi with probability 1 − δ

using space O(dφ−1e log(δ−1) log m) bits. The Count-Min sketch algorithm re-
turns f̂i that satisfies (a) fi ≤ f̂i ≤ fi + φm with probability 1 − δ for strict
update streams, and, (b) |f̂i−fi| ≤ φL1 using O(dφ−1e(log δ−1) log L1) bits. The
Countsketch algorithm [6] satisfies |f̂i − fi| ≤ (dφ−1eF res

2 (dφ−1e))1/2 ≤ φL1

with probability 1 − δ using space O(dφ−1e(log δ−1 log L1) bits, where, F res
2 (s)

is the sum of the squares of all but the top-s frequencies in the stream. [4] shows
that any algorithm satisfying |f̂i − fi| ≤ φm must use Ω(dφ−1e log φn) bits.

Given a parameter 0 < φ < 1, an item i is said to be φ-frequent if |fi| ≥
φL1. [11, 22] show that finding all and only frequent items requires Ω(n) space.
Therefore low-space algorithms find ε-approximate frequent items, where, 0 <
ε < 1 is another parameter: return i such that |fi| ≥ φL1 and do not return any
i such that |fi| < (1− ε)φL1 [6, 11, 9, 12, 16, 22, 25, 23, 28]. Algorithms for finding
frequent items with parameters φ and ε typically use point query estimators
with parameter εφ

2 and return all items i such that f̂i > (1− ε
2)φL1. A superset

of ε-approximate frequent items is typically found using the technique of dyadic
intervals [10, 9], reviewed below.

A dyadic interval at level l is an interval of size 2l from the family of intervals
{[i2l, (i+1)2l− 1], 0 ≤ i ≤ n

2l − 1}, for 0 ≤ l ≤ log n, assuming that n is a power
of 2. The set of dyadic intervals at levels 0 through log n form a complete binary
tree, whose root is the level log n dyadic interval [0, n− 1] and whose leaves are
the singleton intervals. Each dyadic interval Il with level 1 ≤ l ≤ log n has two
children that are dyadic intervals at levels l − 1. If Il = [i2l, (i + 1)2l − 1], for
0 ≤ i ≤ n

2l , then, the left child of Il is [2i n
2l+1 , (2i + 1) n

2l+1 − 1] and the right
child is [(2i + 1) n

2l+1 , (2i + 2) n
2l+1 − 1]. Given a stream, one can naturally extend

the notion of item frequencies to dyadic interval frequencies. The frequency of
a dyadic interval Il at level l is the aggregate of the frequencies of the level 0
items that lie in that interval , that is, fIl

=
∑

x∈Il
fx. The efficient solution

to a number of problems over strict update streams, including the problem of
finding approximate frequent items, is facilitated by using summary structures
for each dyadic level l = 0, 1, . . . , dlog φne [10]. For the problem of ε-approximate
φ-frequent items, we keep a point query estimator structure corresponding to
accuracy parameter εφ for each dyadic level l = 0, . . . , dlog(φn)e. An arrival over
the stream of the form (i, v) is processed as follows: for each l = 0, 1, . . . , blog φnc,
propagate the update ((i % 2l), v) to the structure at level l. Since, each item
i belongs to a unique dyadic interval at each level l, the sum of the interval
frequencies at level l is m. If an item i is frequent (i.e., fi ≥ φm), then for each 1 ≤
l ≤ log n, the unique dyadic interval Il that contains i at level l has frequency at
least fi and is therefore also frequent at level l. To find ε-approximate φ-frequent
items, we start by enumerating O(dφ−1e) dyadic intervals at level blog φnc. Only
those candidate intervals are considered whose estimated frequency is at least
(1 − ε

2)φn. We then consider the left and the right child of these candidate
intervals, and repeat the procedure. In general, at level l, there are O(dφ−1e)
candidate intervals, and thus, the total number of intervals considered in the
iterations is O(dφ−1e log(φn)).

The hierarchical heavy hitters problem [8, 13] is a useful generalization of the
frequent items problem for domains that have a natural hierarchy (e.g., domain
of IP addresses). Given a hierarchy, the frequency of a node X is defined as the
sum of the frequencies of the leaf nodes (i.e., items) in the sub-tree rooted at
X. The definition of hierarchical heavy hitter node (HHH) is inductive: a leaf
node x is an HHH node provided fx > φm. An internal node is an HHH node
provided that its frequency, after discounting the frequency of all its descendant
HHH nodes, is at least φm. The problem is, (a) to find all nodes that are HHH
nodes, and, (b) to not output any node whose frequency, after discounting the
frequencies of descendant HHH nodes, is below (1 − ε)φm. This problem has
been studied in [8, 10, 13, 21]. As shown in [8], this problem can be solved by
using a simple bottom-up traversal of the hierarchy, identifying the frequent
items at each level, and then subtracting the estimates of the frequent items at
a level from the estimated frequency of its parent [8]. Using Count-Min sketch,
the space complexity is O((εφ2)−1(log((δεφ2)−1 log n))(log n)(log m)) bits. [21]
presents an Ω(φ−2) space lower bound for this problem, for fixed ε ≤ 0.01.

Given a range [l, r] from the domain D, the range frequency is defined as
f[l,r] =

∑r
x=l fx. The range-sum query problem with parameter φ is: return

an estimate f̂[l,r] such that |f̂[l,r] − f[l,r]| ≤ φm. The range-sum query problem
can be solved by using the technique of dyadic intervals [19]. Any range can be
uniquely decomposed into the disjoint union of at most 2 log n dyadic intervals
of maximum size (for e.g., over the domain {0, . . . , 15}, the interval [3, 12] =
[3, 3]+ [4, 7]+ [8, 11]+ [12, 12]). The technique is to keep a point query estimator
corresponding to each dyadic level l = 0, 1, . . . , log n−1. The range-sum query is
estimated as the sum of the estimates of the frequencies of each of the constituent
maximal dyadic intervals of the given range. Using Count-Min sketch at each
level, this can be accomplished using space O(φ−1 log(log(δ−1n))(log n)(log m))
bits and with probability 1− δ [10].

Given 0 ≤ φ ≤ 1 and j = 1, 2, . . . , dφ−1e, an ε-approximate jth φ-quantile
is an item aj such that (jφ − ε)m ≤ ∑n−1

i=aj
fi ≤ (jφ + ε)m. The problem has

been studied in [10, 20, 18, 24]. For insert-only streams, [20] presents an algorithm
requiring space O((log(εφ)−1) log(εφm)). For strict update streams, the problem
of finding approximate quantiles can be reduced to that of estimating range sums
[18] as follows. For each k = 1, 2, . . . , φ−1, a binary search is performed over the
domain to find an item ak such that the estimated range sum f̂[ak,n−1] lies
between (kφ− ε)m and (kφ+ ε)m. [10] uses Count-Min sketches and the above
technique to find ε-approximate φ-quantiles with confidence 1 − δ using space
O(εφ−1 log2 n((log (εφδ)−1) + log log n)).

A B-bucket histogram h divides the domain D = {0, 1, . . . , n − 1} into B
non-overlapping intervals, say, I1, I2, . . . , IB and for each interval Ij , chooses a
value vj . Then h[0 . . . n − 1] is the vector defined as hi = vj , where, Ij is the
unique interval containing i. The cost of a B-bucket histogram h with respect
to the frequency vector f is defined as ||f − h||. Let hopt denote an optimal
B-bucket histogram satisfying ||f − hopt|| = minB-bucket histogram h ||f − h||. The
problem is to find a B-bucket histogram ĥ such that ||f− ĥ|| ≤ (1+ε)||f−hopt||.

An algorithm for this problem is presented in a seminal paper [17] using space
and time poly (B, 1

ε , log m, log n) (w.r.t. L2 distance ‖f − h‖2).
Given two streams R and S with item frequency vectors f and g respectively,

the inner product f · g is defined as
∑

i∈D fi · gi. The problem is to return an
estimate P̂ satisfying |P̂ − f · g| ≤ φmRmS . The problem finds applications
in database query processing. The work in [1] presents a space lower bound of
s = Ω(φ−1) for this problem. Randomized algorithms [1, 7, 14] match the space
lower bound, up to poly-logarithmic factors. The entropy of a data stream is
defined as H =

∑
i∈D|fi| log L1

|fi| . The problem is to return an ε-approximate

estimate Ĥ satisfying |Ĥ −H| ≤ εH. For insert-only streams, [5] presents a ran-
domized estimator that uses space O(ε−2(log δ−1) log3 m) bits and also shows an
Ω(ε−2(log(ε−1))−1) space lower bound for estimating entropy. [3] presents a ran-
domized estimator for update streams using space O(ε−3 log5 m(log ε−1)(log δ−1)).

We note that sub-linear space deterministic algorithms over update streams
are not known for any of the above-mentioned problems.

3 CR-precis structure for update streams

In this section, we use the CR-precis structure to present algorithms for a
family of problems over update streams.

An application of the Chinese Remainder Theorem. Consider a CR-precis struc-
ture with height k and width t. Fix x, y ∈ {0, . . . , n− 1} where x 6= y. Suppose
x and y collide in the tables indexed by J , where, J ⊂ {1, 2, . . . , t}. Then,
x ≡ y mod pj , for each j ∈ J . By the Chinese Remainder theorem, x ≡ y
mod

(∏
j∈J pj

)
. Therefore, |J | < logk n, otherwise,

∏
j∈J pj ≥ klogk n = n, which

is a contradiction, since, x, y ∈ {0, 1, . . . , n− 1} and are distinct. Therefore, for
any given x, y ∈ {0, 1, . . . , n− 1} such that x 6= y,

|{j | y ≡ x mod pj and 1 ≤ j ≤ t}| ≤ logk n− 1 . (1)

3.1 Algorithms for strict update streams

In this section, we use the CR-precis structure to design algorithms over strict
update streams.

Point Queries. Consider a CR-precis structure with height k and width t. The
frequency of x ∈ D is estimated as: f̂x = mint

j=1 Tj [x mod pj]. The accuracy
guarantees are given by Lemma 2.

Lemma 2. For 0 ≤ x ≤ n− 1, 0 ≤ f̂x − fx ≤ (logk n−1)
t (m− fx).

Proof. Clearly, Tj [x mod pj] ≥ fx. Therefore, f̂x ≥ fx. Further,

tf̂x ≤
t∑

j=1

Tj [x mod pj] = tfx +
t∑

j=1

∑

y 6=x
y≡x mod pj

fy .

Thus, t(f̂x − fx) =
t∑

j=1

∑

y 6=x
y≡x mod pj

fy =
∑

y 6=x

∑

j:y≡x mod pj

fy

=
∑

y 6=x

fy|{j : y ≡ x mod pj}| ≤ (logk n− 1)(m− fx), by (1) . ut

If we let k = dφ−1e and t = dφ−1e logdφ−1e n, then, the space requirement of the
point query estimator is O(φ−2(logdφ−1e n)2(log m)) bits. A slightly improved
guarantee that is often useful for the point query estimator is given by Lemma
3, where, mres(s) is the sum of all but the top-s frequencies [3, 6].

Lemma 3. Consider a CR-precis structure with height s and width 2s logs n.
Then, for any 0 ≤ x ≤ n− 1, 0 ≤ f̂x ≤ mres(s)

s .

Proof. Let y1, y2, . . . , ys denote the items with the top-s frequencies in the stream
(with ties broken arbitrarily). By (1), x conflicts with each yj 6= x in at most
logs n buckets. Hence, the total number of buckets at which x conflicts with any
of the top-s frequent items is at most s logs n. Thus there are at least t−s logs n
tables where, x does not conflict with any of the top-s frequencies. Applying the
proof of Lemma 2 to only these set of t− s logs n ≥ s logs n tables, the role of m
is replaced by mres(s). ut
We obtain deterministic algorithms for estimating range-sums, finding approx-
imate frequent items, finding approximate hierarchical heavy hitters and ε-
approximate quantiles over strict update streams, by using the corresponding
well-known reductions to point query estimators. The only change is that the
use of randomized summary structures is replaced by a CR-precis structure.
Theorem 4 summarizes the space versus accuracy guarantees for these problems.

Theorem 4. There exist deterministic algorithms over the strict update stream-
ing model for the problems mentioned in Figure 1 using the space and per-update
processing time depicted there. ut

Estimating inner product. Let mR =
∑

i∈D fi and let mS =
∑

i∈D gi. We main-
tain a CR-precis structure for each of the streams R and S, that have the
same height k, same width t and use the same prime numbers as the table sizes.
For j = 1, 2, . . . , t, let Tj and Uj respectively denote the tables maintained for
streams R and S corresponding to the prime pj respectively. The estimate P̂ for
the inner product is calculated as P̂ = mint

j=1

∑pj

b=1 Tj [b]Uj [b].

Problem Space Time

1. ε-approx. φ-frequent O(λ2(logλ n)(log λ) O(λ logλ n log n)
items (λ = d(εφ)−1e) log(λ−1n) (log m))

2. Range-sum: parameter O(ρ2(logρ n) (log ρ O(ρ(logρ n) (log n))
φ, (ρ = dφ−1e) + log logρ n))(log m) log n)

3. ε-approx. φ-quantile O(λ2(log5 n)(log m) O
`
λ(log2 n)

(λ = d(εφ)−1e) (log log n + log λ)−1) (log log n + log λ)−1)
´

4. ε-approx. φ-hierarchical O(τ2(logτ n)2 O(τ(log n)(logτ n))
heavy hitters. h = height, (log τ + log log n) log m)
(τ = (εφ2)−1h)

5. ε-approx. B-bucket O
`
(ε−2B2)(log3 n) O((ε−1B)(log2 n)

histogram (log−1(ε−1B))(log m) (log−1(ε−1B))

Fig. 1. Space and time requirement for problems using CR-precis technique.

Lemma 5. f · g ≤ P̂ ≤ f · g +
(

logk n−1
t

)
mRmS.

Proof. For j = 1, . . . , t,
∑pj−1

b=0 Tj [b]Uj [b] ≥
∑pj−1

b=0

∑
x≡b mod pj

fxgx = f · g.

Thus, P̂ ≥ f · g. Further,

tP̂ ≤
t∑

j=1

pj∑

b=1

Tj [b]Uj [b] = t(f · g) +
t∑

j=1

∑

x6=y
x≡y mod pj

fxgy

= t(f · g) +
∑

x,y:x 6=y

fxgy

∑

j:x≡y mod pj

1

≤ t(f · g) + (logk n− 1)(mRmS − f · g), by (1). ut

Estimating entropy. We use the CR-precis structure to estimate the entropy
H over a strict update stream. For parameters k and t to be fixed later, a
CR-precis structure of height k ≥ 2 and width t is maintained. Also, let
0 < ε < 1 be a parameter. First, we use the point query estimator to find all
items x such that f̂x ≥ m

εt . The contribution of these items, called dense items,
to the estimated entropy is given by Ĥd =

∑
x:f̂x> m

εt
f̂x log m

f̂x
. Next, we remove

the estimated contribution of the dense items from the tables. To ensure that
the residues of dense frequencies remain non-negative, the estimated frequency
is altered. Since, 0 ≤ f̂x−fx ≤ (m−fx)

t , fx ≥ f̂x−m−f̂x

t−1 = f ′x (say), the tables are
modified as follows: Tj [x mod pj] := Tj [x mod pj]− f ′x, for each x s.t. f̂x ≥
m
εt and j = 1, . . . , t. Ĥs estimates the contribution to H by the non-dense or
sparse items: Ĥs = avgt

j=1

∑
1≤b≤pj and Tj [b]≤ m

ε2t
Tj [b] log m

Tj [b]
. The final esti-

mate is returned as Ĥ = Ĥd + Ĥs.
Analysis. The main part of the analysis concerns the accuracy of the estima-
tion of Hs. Let Hd and Hs denote the (true) contributions to entropy due
to dense and sparse items respectively, that is, Hd =

∑
x dense fx log m

fx
and

Hs =
∑

x sparse fx log m
fx

. A standard case analysis [3, 5] (Case 1: fx ≤ m/e and

Case 2: fx > m/e, where, e = 2.71828..) is used to show that |Ĥd −Hd| ≤ 2
t Hd.

Define gx = fx, if x is a sparse item and gx = fx − f ′x, if x is a dense item. Let
m′ =

∑
x gx and let H(g) =

∑
x:fx>0 gx log m

gx
. Suppose x maps to a bucket b in

table Tj . Then, fx ≤ Tj [b] and

pj∑

b=1

Tj [b] log
m

Tj [b]
≤

pj∑

b=1

∑

x mod pj=b

gx log
m

Tj [b]
= H(g) .

Thus, Ĥs ≤ H(g). Since, H(g) may contain the contribution of the residues of
the dense items, Hs ≤ H(g). The contribution of the residues of dense items to
H(g) is bounded as follows. Let x be a dense item. Define h(a) = y log m

y . For

t > 1
ε2 , and since, fx ≥ m

εt , h(gx

m) ≤ h
(

m−fx

mt

)
≤ εh(fx). Since, Therefore,

H(g) =
∑

x

g(x) log
m

gx
= Hs +

∑

x dense

mh(gx) ≤ Hs +
∑

x dense

mεh(fx) = Hs + εHd .

Further, for 0 ≤ x ≤ n− 1, let Sx =
∑t

j=1(Tj [x mod pj]− gx). Then

Sx =
t∑

j=1

∑

y 6=x
y≡x mod pj

gy =
∑

y 6=x

fy|{j : y ≡ x mod pj}| ≤ (m′ − gx)(log n− 1) (2)

Define a bucket b in a table Tj to be dense if Tj [b] > m
ε2t and c = ε2t. Then,

tĤs =
t∑

j=1

∑

1≤b≤pj

b not dense

Tj [b] log
m

Tj [b]

≥
t∑

j=1

∑

1≤b≤pj

b not dense

∑

x:x≡b mod pj and gx≥1

gx log c

= tm′ log c−
∑

x

gx log c |{j : Tj [x mod pj] is dense }|

= tm′ log c−
∑

x

gx(log c) bSx/(c−1m− gx)c

≥ tm′ log c−
∑

x

gxc(1− ε)−1(log c)(logk N) by (2) and since, gx ≤ εc−1m

≥ tm′ log c−m′c(1− ε)−1(log c)(logk N)

≥ tm′ log c
(
1− ε2(1− ε)−1 logk N

)
(3)

Lemma 6. For each 0 < ε < 1 and α > 1, there exists a deterministic algorithm
over strict update streams that returns Ĥ satisfying H(1−ε)

α ≤ H ≤ (1+ ε√
log N

)H

using space O(log2 N
ε4 m

2
α (log m + log ε−1)(log m)) bits.

Proof. By earlier argument,

Ĥd + Ĥs ≤ (1 + 2t−1)Hd + H(g) ≤ (1 + 2t−1)Hd + εHd + Hs

≤ (1 + 2t−1 + ε)(Hd + Hs) .

Further, since, H(g) ≤ m′ log m, using (3) we have,

Ĥd + Ĥs ≥ (1− 2t−1)Hd + Hs
log c

log m
(1− ε2(1− ε)−1 logk N) .

The lemma follows by letting ε = ε
2
√

log N
and t = m1/α

ε2 . ut

Lower bounds for computation over strict update streams. In this sec-
tion, we improve on the existing space lower bound of Ω(φ−1 log(φn)) for point
query estimation with accuracy parameter φ [4].

Lemma 7. For φ > 8√
n
, a deterministic point query estimator with parameter

φ over strict update streams requires Ω(φ−1(log m) log(φn)) space.

Proof. Let s = dφ−1e. Consider a stream consisting of s2 distinct items, orga-
nized into s levels 1, . . . , s with s items per level. The frequency of an item at
level l is set to tl = 2l−1. Let φ′ = φ

16 and let A be a deterministic point query
estimator with accuracy parameter φ′. We will apply A to obtain the identi-
ties of the items, level by level. Initially, the stream is inserted into the data
structure of A. At iteration r = 1, . . . , s in succession, we maintain the invariant
that items in levels higher than s − r + 1 have been discovered and their exact
frequencies are deleted from A. Let l = s− r + 1. At the beginning of iteration
r, the total frequency is m = ml =

∑l
u=1(stu) ≤ s

∑l
u=1 2l−1 < s2l. At itera-

tion r, we use A to return the set of items x such that f̂x ≥ Ul = 2l−1 − 2l−4.
Therefore, (a) estimated frequencies of items in level l cross the threshold Ul,
since, f̂x ≥ fx−φ′m ≥ 2l−1− φ2ls

16 ≥ Ul, and, (b) estimated frequencies of items
in level l − 1 or lower do not cross Ul, since, f̂y ≤ fy + φ′m ≤ 2l−2 + 2l−3 < Ul.
After s iterations, the level by level arrangement of the items can be recon-
structed. The number of such arrangements is

(
n

s s... s

)
and therefore A requires

space log
(

n
s s... s

)
= Ω(s2 log n

s) = Ω(s(log m)(log n
s)), since, n > 64s2 and

m = ms = s2s+1. ut
Lemma 8. For φ > 8n−1/2, any point query estimator for strict update streams
with parameter φ and confidence 0.66 requires Ω(φ−1(log m)(log(φn))) bits.

Proof. We reduce the bit-vector indexing problem to a randomized point query
estimator. In the bit-vector indexing problem, bit vector v of size |v| is presented
followed by an index i between 1 and |v|. The problem is to decide whether
v[i] = 1. It is known to require space Ω(|v|) by a randomized algorithm that
gives the correct answer with probability 2

3 . Let s = dφ−1e, |v| = s2dlog(dn
s e)e

and ρ = dlogdn
s ee. We can isomorphically view the vector v[1 . . . |v|] as a set

of contiguous segments τ of size ρ each, starting at positions 1 modulo ρ. The
s2 possible starting positions can be represented as (aτ , bτ), where, aτ , bτ ∈
{0, 1, . . . , s− 1}. Map each such segment to an item from the domain s22ρ with
2dlog se+ ρ bit binary address aτ ◦ bτ ◦ τ , where, ◦ represents bit concatenation.
The frequency of the item is set to 2aτ . The bit vector is isomorphically mapped
to a set of s2 items of frequencies between 1 and 2s−1, such that there are exactly
s items with frequency 2l, for l = 0, 1, . . . , s − 1. If the error probability of the
point estimator is at most 1− 1

3s2 , then, using the argument of Lemma 7, the set of
all the s2 items and their frequencies are correctly retrieved with error probability
bounded by s2

3s2 = 1
3 . That is, the bit vector is effectively reconstructed and the

original bit vector index query can be answered. The above argument holds
for every choice of the 1-1 onto mappings of the s2 starting positions of ρ-size
segments to (aτ , bτ). In particular, it holds for the specific map when the query
index i belongs to a segment τ0 whose starting position is mapped to the highest
level, i.e., bτ0 = s−1. In this case, a single invocation of the point query suffices.
Thus the space required is Ω(s2 log n

s) = Ω(φ−1(log m)(log φn)). ut

3.2 General update streaming model

In this section, we consider the general update streaming model. Lemma 9
presents the property of point query estimator for general update streams.

Lemma 9. Consider a CR-precis structure with height k and width t. For
x ∈ D, let f̂x = 1

t

∑t
j=1 Tj [x mod pj]. Then, |f̂x − fx| ≤ (logk n−1)

t (L1 − |fx|).
Proof. tf̂x =

∑t
j=1 Tj [x mod pj] = tfx+

∑t
j=1

∑{fy | y 6= x and y ≡ x mod pj}.

Thus, t|f̂x − fx| = |
t∑

j=1

∑

y 6=x
y≡x mod pj

fy| = |
∑

y 6=x

∑

j:y≡x mod pj

fy|

≤
∑

y 6=x

∑

j:y≡x mod pj

|fy| ≤ (logk n− 1) (F1 − |fx|) , by (1) ut

Similarly, we can obtain an estimator for the inner-product of streams R and S.
Let L1(R) and L1(S) be the L1 norms of streams R and S respectively.

Lemma 10. Consider a CR-precis structure of height k and width t. Let
P̂ = 1

t

∑t
j=1

∑pj

b=1 Tj [b]Uj [b]. Then, |P̂ − f · g| ≤ (logk n−1)
t L1(R)L2(S). ut

Lower bounds for computations over general update streams. We now
present space lower bounds for problems over general update streams.

Lemma 11. Deterministic algorithms for the following problems in the general
update streaming model requires Ω(n) bits: (1) finding ε-approximate frequent
items with parameter s for any ε < 1

2 , (2) finding ε-approximate φ-quantiles for
any ε < φ/2, (3) estimating the kth norm Lk = (

∑n−1
i=0 |fi|k)1/k, for any real

value of k, to within any multiplicative approximation factor, and (4) estimating
entropy to within any multiplicative approximation factor.

Proof. Consider a family F of sets of size n
2 elements each such that the intersec-

tion between any two sets of the family does not exceed n
8 . It can be shown3 that

there exist such families of size 2Ω(n). Corresponding to each set S in the family,
we construct a stream str(S) such that fi = 1 if i ∈ S and fi = 0, otherwise.
Denote by str1 ◦ str2 the stream where the updates of stream str2 follow the
updates of stream str1 in sequence. Let A be a deterministic frequent items algo-
rithm. Suppose that after processing two distinct sets S and T from F , the same
memory pattern of A’s store results. Let ∆ be a stream of deletions that deletes
all but s

2 items from str(S). Since, L1(str(S) ◦ ∆) = s
2 , all remaining s

2 items
are found as frequent items. Further, L1(str(T)◦∆) ≥ n

2 − s
2 , since, |S∩T | ≤ n

8 .
If s < n

3 , then, F1
s > 1, and therefore, none of the items qualify as frequent.

Since, str(S) and str(T) are mapped to the same bit pattern, so are str(S) ◦∆
and str(T) ◦∆. Thus A makes an error in reporting frequent items in at least
one of the two latter streams. Therefore, A must assign distinct bit patterns to
each str(S), for S ∈ F . Since, |F| = 2Ω(n), A requires Ω(log(|F|)) = Ω(n) bits,
proving part (1) of the lemma.

Let S and T be sets from F such that str(S) and str(T) result in the same
memory pattern of a quantile algorithm Q. Let ∆ be a stream that deletes all
items from S and then adds item 0 with frequency f0 = 1 to the stream. now
all quantiles of str(S) ◦ ∆ = 0. str(T) ◦ ∆ has at least 7n

8 distinct items, each
with frequency 1. Thus, for every φ < 1

2 and ε ≤ φ
2 the kth φ quantile of the

two streams are different by at least kφn. Part (3) is proved by letting ∆ be an
update stream that deletes all elements from str(S). Then, Lk(str(S) ◦∆) = 0
and Lk(str(T) ◦∆) = Ω(n1/k).

Proceeding as above, suppose ∆ is an update stream that deletes all but one
element from str(S). Then, H(str(S) ◦ ∆) = 0. str(T) ◦ ∆ has Ω(n) elements
and therefore H(str(T) ◦∆) = log n + Θ(1). The multiplicative gap log n : 0 is
arbitrarily large—this proves part (4) of the lemma. ut

References

1. N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. “Tracking Join and Self-Join
Sizes in Limited Storage”. In Proc. ACM PODS, 1999.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. “Models and Issues
in Data Stream Systems”. In Proc. ACM PODS, 2002.

3. L. Bhuvanagiri and S. Ganguly. “Estimating Entropy over Data Streams”. In Proc.
ESA, pages 148–159, 2006.

4. P. Bose, E. Kranakis, P. Morin, and Y. Tang. “Bounds for Frequency Estimation
of Packet Streams”. In SIROCCO, pages 33–42, 2003.

5. A. Chakrabarti, G. Cormode, and A. McGregor. “A Near-Optimal Algorithm for
Computing the Entropy of a Stream”. In Proc. ACM SODA, 2007.

6. M. Charikar, K. Chen, and M. Farach-Colton. “Finding frequent items in data
streams”. In Proc. ICALP, 2002, pages 693–703.

3 number of sets that are within a distance of n
8

from a given set of size n
2

is
Pn

8
r=0

`
n/2

r

´2 ≤ 2
`

n/2
n/8

´2
. Therefore, |F| ≥ (n

n/2)

2(n/2
n/8)

2 ≥ 2n/2

2(3e)n/8 = 1
2

`
16
3e

´n/8
.

7. G. Cormode and M. Garofalakis. “Sketching Streams Through the Net: Distributed
Approximate Query Tracking”. In Proc. VLDB, September 2005.

8. G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. “Finding Hierarchical
Heavy Hitters in Data Streams”. In Proc. VLDB, 2003.

9. G. Cormode and S. Muthukrishnan. “What’s New: Finding Significant Differences
in Network Data Streams”. In IEEE INFOCOM, 2004.

10. G. Cormode and S. Muthukrishnan. “An Improved Data Stream Summary: The
Count-Min Sketch and its Applications”. J. Algorithms, 55(1):58–75, April 2005.

11. G. Cormode and S. Muthukrishnan. “What’s hot and what’s not: tracking most
frequent items dynamically”. ACM Trans. Database Syst., 30(1):249–278, 2005.

12. E. D. Demaine, A. López-Ortiz, and J. I Munro. “Frequency estimation of internet
packet streams with limited space”. In Proc. ESA, 2002.

13. C. Estan, S. Savage, and G. Varghese. “Automatically inferring patterns of resource
consumption in network traffic”. In Proc. ACM SIGCOMM, pages 137–148, 2003.

14. S. Ganguly, D. Kesh, and C. Saha. “Practical Algorithms for Tracking Database
Join Sizes”. In Proc. FSTTCS, 2005.

15. S. Ganguly and A. Majumder. “Deterministic K-set Structure”. In Proc. ACM
PODS, 2006.

16. P. B. Gibbons and Y. Matias. “New Sampling-Based Summary Statistics for Im-
proving Approximate Query Answers”. In Proc. ACM SIGMOD, 1998.

17. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
“Fast Small-space Algorithms for Approximate Histogram Maintenance”. In Proc.
ACM STOC, 2002.

18. A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. “How to Summarize
the Universe: Dynamic Maintenance of Quantiles”. In Proc. VLDB, 2002.

19. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. “Surfing Wavelets
on Streams: One-pass Summaries for Approximate Aggregate Queries”. In Proc.
VLDB, September 2001.

20. M. Greenwald and S. Khanna. “Space-efficient online computation of quantile
summaries”. In SIGMOD, 2001.

21. J. Hershberger, N. Shrivastava, S. Suri, and C.D. Toth. “Space Complexity of
Hierarchical Heavy Hitters in Multi-Dimensional Data Streams”. In Proc. ACM
PODS, 2005.

22. R.M. Karp, S. Shenker, and C.H. Papadimitriou. “A Simple Algorithm for Finding
Frequent Elements in Streams and Bags”. ACM TODS, 28(1):51–55, 2003.

23. G. Manku and R. Motwani. “Approximate Frequency Counts over Data Streams”.
In Proc. VLDB, pages 346–357, August 2002.

24. G. Manku, S. Rajagopalan, and B. Lindsay. “Random sampling techniques for
space efficient online computation of order statistics of large datasets”. In Proc.
ACM SIGMOD, 1999.

25. J. Misra and Gries. D. “Finding repeated elements”. Sci. Comput. Programm.,
2:143–152, 1982.

26. S. Muthukrishnan. “Data Streams: Algorithms and Applications”. Foundations
and Trends in Theoretical Computer Science, Vol. 1, Issue 2, 2005.

27. J.B. Rosser. “Explicit bounds on some functions on prime numbers”. Amer. J.
Math., 63(1941).

28. R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda, M-Y. Kao,
and G. Memik. “Monitoring Flow-level High-speed Data Streams with Reversible
Sketches”. In IEEE INFOCOM, 2006.

