
Approximating the Longest Increasing Sequence and Distance from

Sortedness in a Data Stream

Parikshit Gopalan∗

Georgia Tech.
parik@cc.gatech.edu

T.S. Jayram
IBM Almaden

jayram@almaden.ibm.com

Robert Krauthgamer
IBM Almaden

robi@almaden.ibm.com

Ravi Kumar
Yahoo! Research

ravi-kuma@yahoo-inc.com

May 15, 2006

Abstract

We revisit the well-studied problem of estimating the sortedness of a data stream. We study
the complementary problems of estimating the edit distance from sortedness (Ulam distance)
and estimating the length of the longest increasing sequence (LIS). We present the first sub-linear
space algorithms for these problems in the data stream model.

• We give a O(log2 n) space, one-pass randomized algorithm that gives a (4 + ε) approxima-
tion to the Ulam distance.

• We O(
√
n) space deterministic (1 + ε) one-pass approximation algorithms for estimating

the the length of the LIS and the Ulam distance.

• We show a tight lower bound of Ω(n) on the space required by any randomized algorithm
to compute these quantities exactly. This improves an Ω(

√
n) lower bound due to Vee et

al. and shows that approximation is essential to get space-efficient algorithms.

• We conjecture a space lower bound of Ω(
√
n) on any deterministic algorithm approximating

the LIS. We are able to show such a bound for a restricted class of algorithms, which
nevertheless captures all the algorithms described above.

Our algorithms and lower bounds use techniques from communication complexity and property
testing.

∗Work done in part while the author was at IBM Almaden

1 Introduction

In recent years, new computational models deigned for massive data sets, such as the data stream
model of computation have been studied intensively across various branches of computer science.
Much of this research focuses on revisiting basic algorithmic problems and designing streaming
algorithms for them which are highly efficient with regard to storage space and update time. A
problem that has received much attention in this model is estimating the sortedness of a data
stream [EKK+00, CMS01, AJKS02, GZ03].

It is well-known that one cannot hope for a sorting algorithm that is both space-efficient and
makes only a few passes. Thus, it is natural to ask if one can at least estimate how far from sorted
the data stream is. There are several scenarios where this problem arises. Consider for instance a
huge index of web-pages sorted by a ranking function which is updated dynamically (for instance
news stories). Since sorting is a relatively expensive operation, it is natural to look for an efficient
procedure that will estimate the sortedness of the data on the fly; i.e. in a single pass and with
very little storage space. On can run this relatively inexpensive procedure periodically, and based
on the outcome decide when to sort the data.

There are several metrics possible for measuring the distance from sortedness (e.g. inversion dis-
tance, `1 distance) and there are efficient algorithms known for many of them. Ajtai et al. [AJKS02]
and Gupta and Zane [GZ03] consider the problem of counting the number of inversions in a stream
of numbers. Cormode et al. [CMS01] give data-stream algorithms for transposition distance and
inversion distance. However, a natural metric which has proved harder for data stream algorithms
and for other related computational models such as sketching and property-testing, is the edit-
distance metric. This distance is also called the distance from monotonicity, or as Ulam distance
from identity in the context of permutations. We will henceforth refer to it as the Ulam distance
(see section 2 for precise definitions). This metric is particularly suited to measuring distance from
sortedness, since it takes a global view of the input and is unaffected by the presence of a few out
of place elements. But it is precisely this property that seems to make it harder to compute on a
data stream. The problem of estimating edit distance from sortedness on a data-stream was posed
as an open problem by Ajtai et al. [AJKS02] and Cormode et al. [CMS01].

This problem is closely related to the problem of computing the longest increasing subsequence
(LIS) in a data stream, since the best way to sort the input is to identify a longest increasing
subsequence and insert all the other elements into this subsequence. By abuse of notation, we will
use LIS to denote both the longest increasing sequence and its length. The problem of estimating
the LIS of an input sequence is again a well-studied problem with a long history (see the survey by
Aldous and Diaconis [AD99]). There is a classical algorithm for this problem, known as Patience
sorting, which can be viewed as a one-pass, O(n) space, streaming algorithm. A natural question
is whether once could have a more space-efficient algorithm for this problem. Vee et al. studied
this problem and showed a space lower-bound of Ω(

√
n) for exact computation. This leaves open

the possibility of a streaming algorithm for exactly computing the LIS (and hence also the Ulam
distance) using o(n) space.

1.1 Our Results

1.1.1 Lower Bounds for Exact Computation

We show a lower bound of Ω(n) for any deterministic or randomized algorithm exactly computing
the LIS of an n-element data stream. This also implies an Ω(n) lower bound for computing the
Ulam distance. Thus for both these problems, we show that Patience-sorting is essentially optimal

1

and getting a sub-linear space algorithm necessarily requires settling for approximation.

Theorem 1 Given a string σ of length 2n over the alphabet [4n], any randomized algorithm to
decide whether LIS(π) is n or n+ 1 requires space Ω(n) even if multiple passes are allowed.

To prove this bound, we first show that computing the AND of 2 bits reduces to computing
the LIS on a string of length 2. We extend this reduction to show that set-disjointness reduces to
computing the LIS. Further one can modify the reduction so that the lower bound holds even if
the input is a permutation.

1.1.2 Deterministic Approximation Algorithm for LIS

We give an algorithm to compute a (1−ε) approximation to LIS(σ) using O(
√

n
ε logm) space. One

can view our algorithm as a version of Patience-Sorting with only bounded space available.

Theorem 2 There is a one pass deterministic algorithm that computes a (1− ε) approximation to
the LIS, using space O(

√
n
ε logm) for any ε > 0.

To derive this algorithm, we first consider the following communication problem: Alice and Bob
are respectively given strings σ1 and σ2. Their goal is to approximately compute the LIS of the
string σ = σ1 ◦ σ2 of length n. We give an efficient protocol for this problem in the one-way model
where Alice sends a single message to Bob who then outputs the answer. The complexity of the
protocol is independent of the length n of the input. This protocol generalizes naturally to the
t-player case. Our algorithm may be viewed as a simulation of the protocol for

√
n players using

a data-stream algorithm. While this algorithm needs to know the length n of the data-stream in
advance, we also present a modification that uses slightly more space, but does not need to know
the length n.

One can derive an algorithm with similar parameters for Ulam distance.

1.1.3 Randomized Approximation Algorithm for Ulam Distance

For the problem of estimating the Ulam distance, we present a randomized algorithm that uses
only O(log2 n) space and gives a (4 + ε) approximation.

Theorem 3 There is a randomized algorithm that computes a 4 + ε approximation to the Ulam
distance from identity with probability 1− δ for arbitrarily small constant ε and δ. The space used
as well as the update time per element are O(log2 n) where n is the length of the data stream.

Again, this algorithm does not need to known n in advance. If n is known to us, then we can
get a high probability guarantee i.e δ can be taken to be inverse polynomial in n. The techniques
used in our algorithm build on a body of work in property testing. Property testing algorithms for
estimating the distance from monotonicity have been studied for sequences of numbers [EKK+00],
Boolean functions [GGL+00] and for other more general domains [FLN+02].

A first approach to computing the Ulam distance could be to relate it to the number of inversions
in σ. However, it is well known that these quantities can be far apart. Ergun et al. [EKK+00] show
that a variation of this idea can be used to give a lower-bound on the Ulam distance. They consider
the set of indices that are endpoints of an interval where the majority of elements are inverted w.r.t.
the endpoint, and show that the cardinality of this set is a lower bound. Extending this observation,
Ailon et al. [ACCL04] show that this quantity actually gives a factor-2 approximation to the Ulam
distance.

2

We show that it actually suffices to consider the set of indices that are right end-points of such
an interval (namely, where the majority of elements are inverted w.r.t. the endpoint), since the
cardinality of this set provides a factor-4 approximation to the Ulam distance. This difference is in
fact crucial to the design of a data-stream algorithm, since to decide whether a number is the right
end-point of some such interval, we only need to know the numbers that have come before it in the
data-stream. On the other hand, to decide if a number is the left end-point requires knowledge of
the numbers that will come in the future, which is undesirable in the data-stream model.

We then devise a sampling scheme to test whether the index is the right endpoint of such an
interval. Our sampling scheme is similar in spirit to the notion of Reservoir Sampling introduced
by Vitter [Vit85]. The latter solves the following problem: given access to a set of inputs arriving
in streaming fashion, we wish to produce, at any point in time, random elements from the set of all
inputs seen so far, using a a small storage (memory). Our sampling scheme is more complicated,
since we need produce samples from numerous different subsets of all the inputs seen so far, namely
from the last k inputs seen for numerous different values of k > 0.

Finally, it is well-known that any property testing algorithm can be simulated by a streaming
algorithm. Thus one can simulate the property testing algorithm of Ailon et al. [ACCL04] in
streaming fashion. However, the space required is linear in the input size.

1.1.4 Lower Bounds for Approximating the LIS

We believe that the problem of approximating the LIS is harder than the problem of approximating
the Ulam distance. As a first step in this direction, we conjecture that our approximation algorithm
for the LIS which uses space O(

√
n) is optimal.

Conjecture 4 Any deterministic one-pass streaming algorithm that computes a (1 + ε) approxi-
mation to the LIS requires space Ω(

√
n) for some constant ε > 0.

Part of the difficulty in proving this conjecture seems to arise from the following property
of multi-player communication protocols for LIS: as the number of players increases, the max
communication complexity of the protocols increases. Here max communication complexity refers
to the maximum message size sent by any player. In contrast, for most problems including set-
disjointness, the max communication reduces as the number of players increases. Indeed, the only
other problem that we are aware of that shares this behavior is the problem of approximately
counting the number of 1’s in a data-stream of length n. There is a lower bound of Ω(log n) for
deterministic streaming algorithms for this problem due to Ajtai [Ajt02], however the techniques
used are not from communication complexity.

We are able to establish this conjecture for limited classes of algorithms, which store some
subset of the sequence seen so far in their memory. This class captures all the of the algorithms
mentioned in this paper. Our result builds on a lower bound technique for streaming algorithms
due to Ajtai [Ajt02].

2 Preliminaries

Given a sequence σ of length n over an alphabet {1, · · · ,m}, an increasing sequence in σ is a
subsequence (i1, · · · , ik) so that

i1 < i2 · · · < ik, σ(i1) ≤ σ(i2) · · · ≤ σ(ik)

3

Let LIS(σ) denote the length of the longest increasing sequence in σ.
A sequence σ is monotone if σ(1) ≤ σ(2) · · · ≤ σ(n). We consider edit operations on a sequence

where a single edit operation involves deleting a single element of the sequence and inserting it in
a new place. For a sequence σ, the distance from monotonicity is the minimum number of edit
operations that must be performed to transform σ into a monotone sequence σ′ and is denoted by
Ed(σ). It holds that

LIS(σ) + Ed(σ) = n (1)

since the best way to make σ monotone is to identify a longest increasing subsequence and insert
all the other elements into this subsequence.

The Ulam distance between two permutations is the number of edit operations needed to convert
one permutation to the other, where a single edit operation involves deleting a character and
inserting it in a new place. Note that Ed(π) is just the Ulam distance between π and the identity
permutation. It measures of how far from sorted the permutation π is.

We use i, j, k to denote lengths of sequences and a, b, c to denote letters of the alphabet.

Definition 1 Given a sequence σ, for i ∈ {1, · · · , n} let Pσ(i) be the smallest letter a such that
there is an increasing sequence of length i in σ ending at a.

For i ≥ LIS(σ) there is no increasing sequence in σ of length i, so we will set Pσ(i) = ∞. When
the string σ is clear from the context, we will just use P (i). Note that Pσ(i) is an array of letters
and that it is monotone.

Definition 2 Given a sequence σ, for a ∈ {1, · · · ,m} let Lσ(a) be the largest i such that there is
an increasing sequence of length i in σ ending at or before a.

The array Lσ is an array of lengths, indexed by letters of the alphabet. Since our definition allows
for sequences that and at or before a, it follows that Lσ is also monotone. Also Lσ(m) = LIS(σ).

3 Lower Bounds for Exact Algorithms

We consider the communication complexity of the following problem: Alice is given the first half
of σ, Bob is given the second half and they wish to compute LIS(σ). We give a reduction from the
problem of computing the AND of two bits to computing the LIS when n = 2 and m = 4. Assume
Alice holds a bit x, Bob holds a bit y and they want to compute x∧ y. If x = 0 then σ(1) = 4 else
σ(1) = 2. If y = 0, then σ(2) = 1 else σ(2) = 3. It is easy to verify that LIS(σ) = 2 if x ∧ y = 1
and that LIS(σ) = 1 otherwise.

We can extend this to get a reduction from Set Disjointness to computing LIS(σ). Assume that
Alice and Bob have strings x = x1, · · · , xn and y = y1, · · · , yn respectively which represent the
incidence vectors of sets X,Y on [n]. Alice uses x to compute the string σ(i) for 1 ≤ i ≤ n using

σ(i) = 4(i− 1) + 4 if xi = 0
σ(i) = 4(i− 1) + 2 if xi = 1

Bob uses y to compute the string σ(n+ i) for 1 ≤ i ≤ n using

σ(n+ i) = 4(i− 1) + 1 if yi = 0
σ(n+ i) = 4(i− 1) + 3 if yi = 1

Let σ = σ(1) · · ·σ(2n).

4

Proposition 5 If the sets X and Y intersect then LIS(σ) = n + 1. If the sets are disjoint then
LIS(σ) = n.

Proof: Assume that X and Y are disjoint. We claim that any increasing sequence can contain
at most one element from each interval [4(i− 1) + 1, 4(i− 1) + 4] for 1 ≤ i ≤ n. This is because the
string σ contains precisely two elements in this interval σ(i) and σ(n+ i) and they are in increasing
order iff xi ∧ yi = 1. Hence when X ∩ Y is empty, only one of them can occur in any increasing
sequence and LIS(σ) ≤ n. Equality holds since σ(1), · · · , σ(n) is an increasing sequence.

On the other hand, assume that i ∈ X ∩ Y . The following is an increasing subsequence of σ:

σ(1), · · · , σ(i), σ(n+ i), · · · , σ(2n)

It is easy to check that in fact LIS(σ) = n+ 1. �

Theorem 1 follows from known lower bounds on the communication complexity of set-disjointness
[BYJKS02]. Note that the sequences use in the proof above are not permutations. However one
can get a reduction from the problem of computing the AND of two bits to computing the LIS
when n = m = 8. Assume Alice holds a bit x, Bob holds a bit y and they want to compute x ∧ y.
If x = 0 then σ(1) = 4 else σ(1) = 2. If y = 0, then σ(2) = 1 else σ(2) = 3. It is easy to verify that
LIS(σ) = 2 if x ∧ y = 1 and that LIS(σ) = 1 otherwise.

4 Deterministic Approximation Algorithms

4.1 Patience Sorting

Patience Sort is a dynamic program to exactly compute LIS(σ) and Ed(σ). It can be viewed as a
one-pass streaming algorithm.

Patience Sort
Set P (i) =∞ for all i.
For j ∈ [1, n]

Let σ(j) = a.
Find the largest i so that P (i) ≤ a.
Set P (i+ 1) = a.

Output the largest i so that P (i) 6=∞.

It is easy to see that Patience Sort computes P (i) correctly. The space used is LIS(σ) logm ≤
n logm. Another approach to computing LIS(σ) would be to keep track of L(a) for a ∈ {1, · · · ,m}.
The space needed for this would be m log n.

4.2 A Two Player Protocol to Approximate LIS

Consider the following problem in two-player communication complexity. Alice is given a string
σ1, Bob is given a string σ2 and they wish to compute a (1 − ε) approximation to LIS(σ) where
σ = σ1 ◦ σ2. We will give a one-way protocol for this problem which uses ε−1 logm + log n bits of
communication.

5

Two player Protocol for LIS
1. Alice runs Patience Sort on σ1. She computes Pσ1 and k1 = LIS(σ1).
2. She sends Bob Pσ1(i) for all i multiples of εk.
3. Bob computes the best extension of these sequences by σ2.
4. He outputs k which is the length of the longest sequence.

Lemma 6 The value k output by Bob satisfies k > (1− ε) LIS(σ).

Proof: Assume the LIS is of the form π1 ◦ π2 where π1 is a substring of σ1 and π2 is a substring
of σ2. Assume that |π1| = `1 and |π2| = `2 so that LIS(σ) = `1 + `2.

Let π(`1) = a and π2(1) = b so that a ≤ b. Choose `′1 to be a multiple of εk such that

`1 − εk ≤ `′1 ≤ `1

Since π1 is an increasing sequence,
π1(`′1) ≤ a

Let Pσ1(`′1) = a′. From the definition of Pσ1 ,

a′ ≤ π1(`′1)

Hence we have
a′ ≤ π1(`′1) ≤ a ≤ b

Thus Alice’s message tells Bob that σ1 contains an increasing sequence of length `′1 ending at a′ ≤ a.
Bob can extend this sequence by π2 to get an increasing sequence of length `′1 + `2. Thus

k ≥ `′1 + `2 ≥ `1 − εk1 + `2 ≥ LIS(σ)− εk1 ≥ (1− ε) LIS(σ)

The last inequality holds since LIS(σ) ≥ LIS(σ1). �

In fact, a stronger statement is true. Assume that at the end of the protocol we ask Bob to
estimate the value of L(a) for every a ∈ {1, · · · ,m}. For each a Bob outputs L′(a) = i where i ∈ S
is the largest index so that P ′(i) ≤ a. Then for every a, we have

L(a)− εk1 ≤ L′(a) ≤ L(a)

The proof is identical to that of Lemma 6.

4.3 Streaming Algorithm for Approximate LIS

We give an algorithm to compute a (1 − ε) approximation to LIS(σ) using O(
√

n
ε logm) space.

One can view this algorithm as a version of Patience Sort with only bounded space available. We
compute values P ′(i) which are meant to approximate P (i). However unlike in Patience Sort, we
want to ensure that the set of indices i for which P ′(i) is stored is never more than 2

√
n
ε in size.

Thus the algorithm proceeds similar to Patience Sort, except if the number of stored values exceeds
this bound. Then we do a cleanup operation, where we only retain the values of P ′ for

√
n
ε evenly

spaced indices i.

6

Streaming LIS
Set S = {0}, P ′(0) = 0.
For j ∈ 1, · · · , n

Let σ(j) = a.
Find the largest i ∈ S so that P ′(i) ≤ a. Set P ′(i+ 1) = a.
If i+ 1 6∈ S, add it to S.
If |S| > 2

√
n
ε (Cleanup)

Let k = max{i ∈ S}.
Set S = {

√
ε
nk, 2

√
ε
nk, · · · , k}.

Store P ′(i) only for i ∈ S.
Output k = max{i ∈ S}.

Note that we only store P ′ for some set of indices S. However we think of P ′ as a function on
the interval [1, k] where k is the largest value in S using the following definition: For i 6∈ S we set
P ′(i) = P ′(j) for the smallest j > i which lies in S. The motivation for this definition is that P ′(i)
is the smallest letter a so that the algorithm detects an increasing sequence of length i ending at
a. If P ′(j) = a and j > i then certainly we have P ′(i) ≤ a.

Proposition 7 The algorithm performs less than
√
εn cleanup operations.

Proof: Between two consecutive cleanup operations, the set S grows by
√

n
ε , hence the value of j

increases by at least this amount. Since the stream is of length n, in total there are no more than√
εn cleanup operations. �

Based on when the cleanups occur, we can break the string σ as σ1 ◦ σ2 · · ·σ√εn (the last few
might be empty). We bound the performance of the algorithm by comparing it to Patience Sort.
This is done by comparing the values of P ′ and P prior to every cleanup operation. Let P ′t denote
the function P ′ after processing σ1 ◦ · · · ◦ σt and prior to the tth cleanup. Let us denote Pσ1◦···σt by
Pt. Let kt be the largest value in S at this point. We have k1 ≤ k2 · · · ≤ kt since the algorithm
never discards the largest element in S. Also we have kt ≤ LIS(σ) since our algorithm detects an
increasing sequence of length kt.

The intuition for the analysis is that at every step, the algorithm maintains an additive approx-
imation to L(a). Each new cleanup operation causes the error to increase, but it can be bounded
by t

√
ε
nkt−1 after t cleanup operations.

Lemma 8 For 1 ≤ t ≤
√
εn,

P ′t

(
i− (t− 1)

√
ε

n
kt−1

)
≤ Pt(i)

Proof: The base case when t = 1 is trivial, since in this case P ′1(i) = P1(i). Assume by induction
that the claim holds for t− 1.

We now consider what happens to P and P ′ after processing the string σt. After the (t − 1)st

cleanup, the memory contains the value of P ′t−1 for all multiples of
√

ε
nkt−1. P ′t is obtained by

computing the best possible extensions of these sequences using σt.
Let Pt(i) = c. Consider the increasing sequence of length i ending at c. Split this sequence

into π1 ◦ π2 where π1 lies in σ1 ◦ · · ·σt−1 and π2 lies in σt. Assume that they have length `1 and
`2 respectively so that `1 + `2 = i. Let b be the first letter of π2 and a the last letter of π1 so that

7

a ≤ b ≤ c. We may assume that Pt−1(`1) = a, since if there is an increasing sequence of length
`1 that ends earlier than a, we could use it to replace π1. Applying the induction hypothesis to
P ′t−1(`1),

P ′t−1

(
`1 − (t− 2)

√
ε

n
kt−2

)
≤ Pt−1(`1) = a (2)

We can find `′1 which is a multiple of
√

ε
nkt−1 satisfying

`1 − (t− 2)
√
ε

n
kt−2 −

√
ε

n
kt−1 ≤ `′1 ≤ `1 − (t− 2)

√
ε

n
kt−2 (3)

Since kt−1 ≥ kt−2, we can lower bound `′1 by

`′1 ≥ `1 − (t− 1)
√
ε

n
kt−1 (4)

Since P ′t−1 is a monotone function on i ∈ [1, kt−1], from equations 2 and 3 we get

P ′t−1(`′1) ≤ P ′t−1(`1 − (t− 2)
√
ε

n
kt−2) ≤ Pt−1(`1) = a (5)

Since `′1 is a multiple of
√

ε
nkt−1, this value is stored in the memory even after the (t−1)st cleanup.

We can extend this sequence using π2 and get an increasing sequence ending at a of length

`′1 + `2 ≥ `1 − (t− 1)
√
ε

n
kt−1 + `2 ≥ i− (t− 1)

√
ε

n
kt−1

Hence we have

P ′t

(
i− (t− 1)

√
ε

n
kt−1

)
≤ a = Pt(i)

which completes the induction. �

Theorem 9 There is a one pass deterministic algorithm that computes a (1− ε) approximation to
the LIS, using space O(

√
n
ε logm) for any ε > 0.

Proof: Assume that LIS(σ) = k and the LIS ends at a so that P (k) = a. Assume that the total
number of cleanups is t ≤

√
εn. Applying Lemma 8, we get

P (k − t
√
ε

n
kt−1) ≤ a

Hence the algorithm detects an increasing sequence of length kt where

kt ≥ k − t
√
ε

n
kt−1 ≥ k − εkt−1 ≥ (1− ε)k

where the last inequality uses kt−1 ≤ k. �

8

4.4 Another Streaming Algorithm

The Algorithm in the last section needs to know the length n of the data stream in advance. In
this section, we give an algorithm that does not need to know n. However the space used becomes
O(n1/2+δ) where we can take any constant δ > 0. One can view the previous algorithm as a
simulation of a

√
εn-player one-way protocol which generalizes the two-player protocol in the last

section. Each players read
√

ε
n elements from the input an sends a sketch of the data stream so

far to the next player. Each player introduces an additive error of
√

ε
n LIS(σ). If the size of the

input is not known in advance, then a reasonable scheme would be to have the tth player read t
elements of the data stream. In this way, each player reads roughly

√
n elements. The problem

with this scheme is that the additive error grows as
∑

t
ε
t LIS(σ) which is unbounded as t goes to

infinity. To overcome this, we ensure that the additive error introduced by the th player is no more
than ε

t1+δ LIS(σ). Since
∑

t t
−(1+δ) converges, the total error is bounded by a constant fraction of

LIS(σ).

Streaming LIS
Set S = {0}, P ′(0) = 0, t = 1.
For j ∈ 1, · · · , n

Let σ(j) = a.
Find the largest i ∈ S so that P ′(i) ≤ a. Set P ′(i+ 1) = a.
If i+ 1 6∈ S, add it to S.
If |S| > 2 t

1+δ

ε (Cleanup)
Let k = max{i ∈ S}.
Set S = { ε

t1+δ k, 2 ε
t1+δ k, · · · , k}.

Store P ′(i) only for i ∈ S.
Set t = t+ 1.

Output k = max{i ∈ S}.

Since the gap between two cleanups is at least t1+δ, on an input of length n we have t = O(n
1

2+δ).
Hence the total space used can be bounded by O(ε−1n

1+δ
2+δ logm). The correctness is based on the

following Lemma whose proof is similar to that of Lemma 8. Again we break the string σ into
σ1 ◦ σ2 · · · . We define Pt, kt and P ′t as before.

Lemma 10 For 1 ≤ t ≤ n
1

2+δ ,

P ′t

i− εkt−1

t−1∑
j=1

1
j1+δ

 ≤ Pt(i)

Theorem 11 There is a one pass deterministic algorithm that computes a (1− ε′) approximation
to the LIS, using space O(n

1+δ
2+δ logm) for any ε′ > 0 which does not need to know the length of the

stream in advance.

Proof: Assume that LIS(σ) = k. By Lemma 10, the algorithm detects an increasing sequence of
length kt where

kt ≥ k − εkt−1

t−1∑
j=1

1
j1+δ

9

The sum
∑t−1

j=1
1

j1+δ is bounded above by an absolute constant depending only on δ. So by taking
ε sufficiently small, we can get

kt ≥ k − ε′kt−1 ≥ (1− ε′)k

�

5 Estimating Ulam Distance

5.1 A characterization via inversions

A pair of indices (i, j) is said to be inverted in σ if i > j but σ(i) < σ(j). For a given index i
let Inv(i) denote the set of indices j that are inverted with respect to i. We define a set R which
consists of all indices i that are the right end-points of a interval where the majority of elements
are inverted with respect to i. Formally

R = {i ∈ [n] | ∃ j s.t. majority of indices in [j, i-1] lie in Inv(i)}

We shall interpret majority as being a strict majority. In particular if (i − 1, i) is an inversion
then i ∈ R. More generally for δ ≤ 1/2 we define Rδ to consist of all indices i that are the right
end-points of a interval where a δ fraction of elements are inverted with respect to i.

Rδ = {i ∈ [n] | ∃ j s.t. more than δ fraction of indices in [j, i-1] lie in Inv(i)}

Lemma 12 The following bound holds for all δ ≤ 1/2:

Ed(σ)
2

≤ |R| ≤ |Rδ| ≤
Ed(σ)
δ

We first show that Ed(σ) ≤ 2|R|. We give an algorithm that deletes at most 2|R| indices and
returns an increasing subsequence of σ. Assume w.l.o.g that σ(n + 1) = m so n + 1 6∈ R. The
algorithm begins with i = n+ 1 and scans the string from right to left. If i− 1 6∈ R then it moves
to i − 1. Else it skips to the first j < i that is not in R or in Inv(i). It deletes all the indices in
[j + 1, i− 1].

Proposition 13 The algorithm deletes at most 2|R| indices and returns an increasing sequence.

Proof: We claim that a majority of the indices that are deleted at any step lie in R. To see this,
let i 6∈ R and let j be the largest index such that j < i and j does not belong to either of Inv(i) or
R. Every element in [j + 1, i− 1] lies in Inv(i) or R. But since i 6∈ R, at least half the indices from
[j + 1, i− 1] do not lie in Inv(i) hence they lie in R.

The algorithm returns a subsequence (i1, · · · , ik) so that (i`−1, i`) is not an inversion. Thus
consecutive elements are in the right order, so the entire sequence is monotone. �

The inclusion R ⊆ Rδ follows from the definition hence |R| ≤ |Rδ|. To prove the upper bound,
fix a set D ⊆ [n] of indices of size Ed(σ) so that deleting D leaves a monotone sequence. Note that
the set D may not unique. Define Sδ to consist of all indices i ∈ Dc that are the right end-points
of a interval where a δ fraction of elements lie in D.

Sδ = {i ∈ [n]|i ∈ Dc, ∃ j s.t. more than δ fraction of indices in [j, i-1] lie in D}

10

We say that such a j is a witness for the membership of i in Sδ. We give an algorithm than scans
left to right and computes the set Sδ. Start with the smallest index j ∈ D. Find the smallest index
k > j so that at most δ fraction of [j, k − 1] lies in D. Add the indices in [j, k − 1] ∩Dc to Sδ. Let
` be the smallest index greater than k that lies in D. Set j = ` and repeat.

Proposition 14 For any δ ≤ 1/2,

|Sδ| ≤ Ed(σ)
(

1
δ
− 1
)

Proof: Assuming that the set output by the algorithm is in fact Sδ, it is clear that

|D|+ |Sδ| ≤
1
δ
|D|

The bound follows since |D| = Ed(σ). We need to show that Sδ is computed correctly, this is
simple but tedious case analysis.

We show that the algorithm correctly computes the set Sδ ∩ [1, `−1]. It is easy to see that [1, j]
do not lie in Sδ. Fix an index i ∈ [j, k − 1] ∩ Dc. Since i < k so by the choice of k, at least a δ
fraction of [j, i− 1] lies in D which shows i ∈ Sδ.

To show k 6∈ Sδ, let j′ be a potential witness. If j′ ∈ [j, k − 1], partition the interval [j, k − 1]
into [j, j′ − 1] and [j′, k − 1]. By the choice of k, more than δ fraction of [j, j′ − 1] lies in D. If
the same holds for [j′, k − 1], then it also holds for [j, k − 1] but this contradicts the choice of k.
So j′ cannot be a witness. On the other hand, if j′ < i, then the ratio of elements from D only
decreases, so k 6∈ Sδ. Similarly, we can show that any i ∈ [k, ` − 1] does not lie in Sδ. Hence, the
algorithm correctly identifies the set Sδ ∩ [1, `− 1].

Also, if i > ` lies in Sδ, there is always a witness j ≥ `. This is because if j < ` is a witness,
we can partition the interval [j, i− 1] into [j, `− 1] and [`, i− 1]. The first interval has at most a δ
fraction from D since `− 1 6∈ Sδ. Hence [`, i− 1] contains more than δ fraction from D so ` serves
as a witness. �

Proposition 15 For any δ ≤ 1/2,

|Rδ| ≤
Ed(σ)
δ

Proof: We can partition R into R ∩D and R ∩Dc. Clearly

|R ∩D| ≤ |D| = Ed(σ)

We now bound the size of R ∩ Dc. Note that the set Dc forms an increasing sequence. Thus if
i, j ∈ Dc then they are not inverted. Hence for any i ∈ Dc, we have Inv(i) ⊆ D. Thus if i ∈ Rδ∩Dc

then i ∈ Sδ. Hence

|Rδ ∩Dc| ≤ |Sδ| ≤ Ed(σ)
(

1
δ
− 1
)

�

Both bounds are asymptotically tight. For the first bound, let k < n/4 and take the permutation

π = k + 1, · · · , n/2, n, · · · , n− k + 1, 1, · · · , k, n/2 + 1, · · · , n− k

Here Ed(π) = 2k whereas |R| = k. For the second bound, let k < δn. Consider the permutation

σ = n, n− 1, · · · , n− k + 1, 1, 2 · · · , n− k

One can verify in this case that Ed(σ) = k, whereas |Rδ| = k/δ − 2.

11

5.2 The Algorithm

This suggests a naive algorithm for estimating Ed(σ): for each interval I = [j, i− 1] ending in i, we
sample O(log i) elements from I and test whether a majority of them lie in Inv(i). To implement
this in a streaming algorithm, we maintain a bucket of elements sampled on the fly. This allows us
to generate independent samples from each interval, samples from different intervals however will
not be independent.

The algorithm reads the inputs from left to right, one element at a time. It will be convenient
to say that the algorithm reads element σ(i) at time i. The algorithm maintains a sample of the
elements already seen in a bucket B. The fact that σ(i) is retained in the bucket is denoted by
i ∈ B, but note that the algorithm actually maintains in B a record of the tuple 〈< i, σ(i)〉. The
algorithm keeps updating the bucket of samples so as to maintain the following distribution at each
time i:

Pr[j ∈ B at time i] = min
(

1,
C log(2i)
|j − i|

)
, for all j < i.

We denote this probability by p(j, i), and define it to be 1 for j = i. Note that for any j, p(j, i) ≥
p(j, i + 1). Assume that we have the right distribution at time i. To achieve it at time i + 1, we
add the element σ(i) to the bucket, and for each element σ(j) already in the bucket (j < i), we
retain it with probability p(j, i)/p(j, i+ 1).

The following proposition upper bounds the size of the sample that is retained, which immedi-
ately implies a similar bound on the space (storage requirement) of the algorithm.

Proposition 16 At time i, E[|B|] ≤ C log2(2i). Further |B| = O(log2 i) with probability i−C
′
.

Proof: Let Xj be the indicator variable for index j being in the bucket at time i. Note that the
various Xis are independent and |B| =

∑
j<iXj Since

Pr[Xj] = min
(

1,
C log i
|i− j|

)

E[|B|] =
∑
j<i

min
(

1,
C log(2i)
|i− j|

)
= ≤

∑
j<i

C log(2i)
|i− j|

≤ C log2(2i)

The high concentration claim can be proved by a martingale argument. �

We next describe a procedure using B to test whether a near-majority of elements from Ij =
[j, i− 1] lie in Inv(i).

TestBucket(j, i)

Set Sj ← ∅.
For k ∈ [j, i− 1],

If k ∈ B add it to Sj with probability p(j, i)/p(k, i).
If at least (1

2 − ε) fraction of Sj lies in Inv(i), return Fail
Else return Pass

The set Sj is our set of samples from Ij . It is easy to see that for all k ∈ Ij , we have Pr[k ∈
Sj] = p(j, i); furthermore, the events for different k (but the same j and i) are independent. We

12

use this to show that the ratio |Sj∩Inv(i)|
|Sj | is a fairly good approximation to |Ij∩Inv(i)|

|Ij | . We bound the

error probability of the test by (2i)−O(C) where the constant in the O(C) depends on ε. However
this can be compensated for by choosing C appropriately.

Lemma 17 If a majority of Ij lies in Inv(i), i.e. |Ij∩Inv(i)|
|Ij | > 1/2, then the probability TestBucket(j, i)

returns Fail is at least 1− (2i)−O(C).

Proof: Suppose |Ij ∩ Inv(i)| > |Ij |
2 . Hence

E[|Sj |] =
∑
k∈Ij

C log(2i)
|j − i|

= C log(2i)

E[|Sj ∩ Inv(i)] =
∑

k∈Ij∩Inv(i)

C log(2i)
|j − i|

≥ 1
2
C log(2i)

One can show using Chernoff bounds that with probability 1− i−O(C),

|Sj | ≤ (1 + ε/2)C log(2i)

|Sj ∩ Inv(i)| ≥ (1/2− ε/2)C log(2i)

In this case we have |Sj ∩ Inv(i)| ≥ (1/2− ε)|Sj | hence Test(B, i) will return Fail. �

Lemma 18 If less than (1/2 − 3ε) fraction of Ij lies in Inv(i), i.e. |Ij∩Inv(i)|
|Ij | < (1/2 − 3ε), then

the probability TestBucket(j, i) returns Pass is at least 1− (2i)−O(C).

Proof: Suppose |Ij ∩ Inv(i)| < (1/2− 3ε)|Ij |. Hence

E[|Sj |] =
∑
k∈Ij

C log(2i)
|j − i|

= C log(2i)

E[|Sj ∩ Inv(i)] =
∑

k∈Ij∩Inv(i)

C log(2i)
|j − i|

≤ (1/2− 3ε)C log(2i)

One can show using Chernoff bounds that with probability 1−(2i)−O(C) the following bounds hold,

|Sj | ≥ (1− ε)C log(2i)

|Sj ∩ Inv(i)| ≤ (1/2− 2ε)C log(2i)

Now we have |Sj ∩ Inv(i)| ≤ (1/2− ε)|Sj | hence Test(B, i) will return Pass. �

We now describe the algorithm to estimate the Ulam distance using Test B(i, j). We maintain
an estimate d which is initialized to d = 0. For each element i, we run Test B(i, j) for j < i. If
one of them returns fail, we increment d. We update the bucket B and move to input i+ 1. Let R̂
denote the set of indices i which cause d to increase.

Lemma 19 For every i, with probability 1−
∑

i(2i)
−O(C) the following inclusion holds

R ⊆ R̂ ⊆ R1/2−3ε

13

Proof: Assume that i ∈ R and let j be a witness to this. Then by Lemma 17 running Test B(i, j)
will return Fail with probability 1− (2i)−O(C). Hence Pr[i 6∈ R̂] ≤ (2i)−O(C).

Assume on the other hand that i 6∈ R1/2−3ε. Then for every j < i, fewer than 1/2− 3ε elements
in [j, i − 1] belong to Inv(i). By applying Lemma 18 and taking union bound over all i such
intervals, the chance that Test B(i, j) returns Fail on any of these intervals is (2i)−O(C). Hence
Pr[i ∈ R̂] ≤ (2i)−O(C).
�

Hence the inclusions hold with probability 1 −
∑

i(2i)
−O(C), which can be made larger than

1− δ for any fixed δ > 0 that we desire, by taking C to be a sufficiently large constant. By Lemma
12, we have |R| ≥ Ed(σ)/2 and |R1/2−3ε| ≤ 2

1−6ε Ed(σ). Hence with probability 1− δ we get a 4+ ε′

approximation to Ed(σ).
The description above performs Test B(i, j) for every j < i, so the update time for step i is

linear in i. We can reduce the update time to O(log3 i) by performing the test only for those
j ∈ B. This can be further reduced to O(log2 i) using an idea from [ACCL04]. We only try
js for which the length of the interval [j, i − 1] changes in scales of 1 + ε1. More precisely, take
T ′(i) = {1, (1 + ε1), · · · , i} and let T (i) = {j < i s.t. j − i ∈ T ′(i)}.

Proposition 20 If i ∈ R, then there exists j′ ∈ T (i) such that at least (1/2 − ε1) fraction of
elements from [j′, i− 1] lie in Inv(i).

Proof: Let j be a witness to the membership of i in R. Hence a majority of elements from
[j, i−1] are in Inv(i). Pick the smallest j′ ∈ T (i) such that j′ < j. It follows that |j− i| ≤ |j′− i| ≤
(1+ε1)|j− i|. Hence at least 1

2(1+ε1) > (1/2−ε1/2) fraction of elements from [j′, i] belong to Inv(i).
�

We can choose ε1 so that the analysis of Lemma 17 goes through even with the weaker assump-
tion that Ij ∩ Inv(i) ≥ (1/2− ε1/2)|Ij |. We summarize the entire algorithm below.

Algorithm UlamDist(σ)

Set d = 0, bucket B is empty.
For i ∈ [1, n],

Update bucket B.
For each j ∈ T (i)

If Test B(j, i) returns Fail,
Set d = d+ 1.
Skip to i+ 1.

Output d.

Theorem 21 Algorithm UlamDist(σ) computes a 4 + ε approximation to Ed(σ) with probability
1 − δ for arbitrarily small constant ε and δ. The space used is O(log2 n) where n is the length of
the data stream. The update time for element i is O(log2 i).

Note that if the length of the data stream n is known to us in advance, then we set the
distribution of samples in the bucket to be

Pr[j ∈ B] = p(j, i) = min
(

1,
C log(2n)
|j − i|

)
14

In this case, all the bounds stated above hold with probability 1− n−O(1). the space used and the
update time are O(log2 n).

5.3 Detailed description

Let describe the algorithm in more detail. C > 0 is a parameter to be determined. The math-
ematical analysis requires that it is larger than a suitable constant. Recall that we defined
p(j, i) = min(1, C2 logn

i−j). ε1 > 0 is a parameter that depends on the desired accuracy ε (e.g.,
ε1 = ε/3 suffices). To simplify notation, we will write explicitly rounding operations, but through-
out, all non-integral numerical values should be rounded downwards.

Algorithm UlamDist(σ)

1. Initialize the bucket B to be empty and set d← 0
2. For each i = 1, 2, . . . , n
3. Read the ith element (i.e. σ(i)) from the input

4. Remove from B each tuple 〈j, σ(j)〉 independently with probability 1− p(j,i)
p(j,i−1)

5. Add to B the tuple 〈i, σ(i)〉
6. For each j′ = 0, 1, . . . , log1+ε1 i

7. If TestBucket(i− (1 + ε1)j
′
, i) returns Fail

8. Set d← d+ 1 and continue to i+ 1 at step 2
9. Output d.

Procedure TestBucket(j, i)

1. Initialize the set S to be empty
2. For every tuple 〈k, σ(k)〉 in B
3. If j ≤ k ≤ i− 1
4. then add 〈k, σ(k)〉 to S with probability p(j, i)/p(k, i).
5. If at least (1

2 − ε1) fraction of the tuples 〈k, σ(k)〉 in S satisfy σ(k) > σ(i)
6. then return Fail
7. return Pass

Efficient sampling. We suggest a simple and efficient method for the random sampling of el-
ements (both to maintain the bucket B in Algorithm UlamDist and to select the sample S in
procedure TestBucket). When element j is first seen, the algorithm chooses for it a threshold
Zj ∈ [0, 1] uniformly at random.1 Now whenever we wish to sample the element σ(j) with prob-
ability p, we do it by testing whether Zj ≤ p. In particular, the element σ(j) is retained in the
bucket B at all times i for which Zj ≤ p(j, i), so line 4 in UlamDist in changed to removing element
j if Zj > p(j, i); thus, the random value Zj provides an “expiration time” at which element j is
to be discarded from B. Similarly, line 4 of procedure TestBucket is changed so that element k is
added to S if Zk ≤ p(j, i). Clearly, the algorithm needs to retain the threshold Zj only for elements
σ(j) that are retained in the bucket B, and thus these thresholds increase the storage requirement
only by a small constant factor. The important aspect is that the different Zj are independent; it

1In practice, Zj will be determined up to some precision, which may be increased during execution.

15

does not matter that the same Zj is used for different samples S in procedure TestBucket, since
we apply a union bound over the different executions of this procedure.

The advantage of this threshold value is that there is that it only one call to a random (or pseudo-
random) number generator every time a new element is input. In addition, it avoids probability of
the sort p(j, i)/p(j, i− 1) which are very close to 1 and thus it is effectively more expensive to draw
events according to such probabilities.

5.4 Alternative implementation

We describe an alternative algorithm in which we maintain O(log n) smaller buckets. In the sequel,
C1, C2, C3 > 0 are three parameters to be determined. The mathematical analysis requires that
they are larger than a suitable constant. We also define q(j, i) = min(1, C2

i−j). ε1 > 0 is a parameter
that depends on the desired accuracy ε (e.g., ε1 = ε/3 suffices). To simplify notation, we will write
explicitly rounding operations, but throughout, all non-integral numerical values should be rounded
downwards.

Algorithm UlamDistAlt(σ)

1. Set d← 0 and t← C1C3 log n and initialize t buckets B1, . . . , Bt to be empty
2. For each i = 1, 2, . . . , n
3. Read the ith element (i.e. σ(i)) from the input
4. For each s = 1, . . . t
5. Remove from Bs each tuple 〈j, σ(j)〉 independently with probability 1− q(j,i)

q(j,i−1)

6. Add to Bs the tuple 〈i, σ(i)〉
7. For each j′ = 0, 1, . . . , log1+ε1 i
8. Set S to be the empty set
9. For each s = 1, . . . t
10. Add to S the element returned by SampleOneBucket(Bs, j′, i)
11. If at least (1

2−ε1) fraction of the tuples 〈k, σ(k)〉 in S satisfy σ(k) > σ(i)
12. then d← d+ 1 and continue to i+ 1 at step 2
13. Output d.

Procedure SampleOneBucket(Bs, j, i)

1. Initialize the set S′ to be empty
2. For every tuple 〈k, σ(k)〉 in B
3. If j ≤ k ≤ i− 1
4. then add 〈k, σ(k)〉 to S′ with probability q(j, i)/q(k, i).
5. return a random element from S (if any)

As before, a simple and efficient sampling is possible by retaining for each element in each bucket
a random threshold value Zsj . We stress that it is important choose independently the thresholds
for different buckets Bs.

16

6 A Lower Bound for Approximating the LIS

We are interested in the one-way communication complexity of functions f in the following model:

• There are k players P1, · · · , Pk, each player is given part of the input.

• Player Pi sends a message to Pi+1, in the order P1, · · · , Pk−1. Players might choose to not
send anything when their turn comes.

• The protocol terminates when some player knows the value of f .

We are interested in the maximum communication complexity of a function denoted by Mk(f) and
the total communication complexity denoted by Tk(f).

Given a sequence of numbers x = x1, · · · , xk from the alphabet [m], define the (promise) function

h(x) = 0 if LIS(x) = 1
h(x) = 1 if LIS(x) ≥ k/2

We are interested in the communication complexity of h when player Pi gets number xi as input.
The motivation for this comes from the following function g defined on k2 numbers:

g(x1
1, · · · , x1

k, · · · , xk1, · · · , xkk) = ∨ki=1hi(x
i
1, · · · , xik)

In other words, g is the OR of k disjoint copies of h. Consider a protocol for computing g where
player j receives the numbers xij for i = 1, · · · k, i.e. he receives the jth number for each copy of h.

Lemma 22 Mk(g) is a lower bound on the space used by any deterministic one-pass streaming
algorithm that approximates the LIS.

Proof: Given number xij , define a number yij = m(i − 1) + xij . Thus the numbers yi1, · · · , yik lie
in the interval [m(i− 1) + 1, · · · ,mi]. From the sequence y = y1

1, · · · , yk1 , · · · , y1
k, · · · , ykk . It is easy

to verify the following condition:

g(x) = 0 ⇒ LIS(y) = k

g(x) = 1 ⇒ LIS(y) ≥ 1.5k

Thus a streaming algorithm using space S would imply a communication protocol to compute g(x)
using maximum communication S. �

The following claim would imply an Ω(
√
n) lower-bound for LIS:

Claim 23 Mk(g) = Ω(k).

An approach to proving this claim might be to show:

Claim 24 • Tk(h) = Ω(k).

• Tk(g) = Ω(k2).

Indeed if Tk(g) = Ω(k2), then Mk(g) = Ω(k). Since g is the OR of k disjoint copies of h, it is
reasonable to hope that Tk(g) = kTk(h). This is not implied by any direct-sum theorem that we
know of. However, one could hope that if we do prove an Ω(k) bound for Tk(h), the same proof
would give a bound for Tk(g). We will present a proof along these lines, which however requires
m = 2k. Finally, it appears that h is a simpler function than g, so without a non-trivial lower-bound
for h, such a bound for g seems hopeless.

17

6.1 A Lower-bound on Tk(h)

We show an Ω(k) lower bound for how many players have to send messages in the worst case. We
will ignore the issue of message size, players can send messages of any size. There is a protocol for
this problem where only the first k/2 + 1 players send messages. We will show that this is in fact
tight.

Theorem 25 In any protocol to compute h, there are inputs x where at least k/2 + 1 players send
messages.

Proof: The proof uses integers lying in the range {0, · · · , 3k − 1}. Using induction on j, we
construct inputs x = x1 · · ·xj and y = y1 · · · yj reaching player Pj+1 with the following properties:

1. x and y have the same transcript.

2. LIS(x) = 1; i.e. x is a decreasing sequence ending at some number a.

3. If t players have not sent messages, then y contains an IS of length t terminating at b where
b > a. Note that this need not be the LIS of y.

At each stage, the player will be given inputs from an interval [a, b]. Specifically, the player will
get either c0 = 2ai+bi

3 , or c1 = ai+2bi
3 as the input. To begin with, let a = 0, b = 3k.

• Base Case: We give P1 two inputs, c0 and c1. If for one of these two inputs (call it c), P1

sends a message to P2, we set x1 = y1 = c. Now we set a = c, b stays unchanged. Conditions
1-3 are satisfied by this choice of a, b where t = 0.

Else, P1 is silent on both inputs. Now set x = c0 and y = c1. Also let a = c0 and b = c1.
Conditions 1-3 are satisfied by this choice of a, b where t = 1.

• Inductive case: Assume that t players have been silent so far. Then conditions 1-3 are
satisfied for some inputs x and y. Again there are two cases to consider. If Pj sends a
message on some input c, then we set a = c, and b stays the same. We set x ← x · c and
y ← y · c. Note that y now contains a longer increasing sequence terminating at c, but we are
only concerned with the increasing sequence that terminates at b. Conditions 1-3 are satisfied
for t.

If player Pj does not send a message on both inputs, then we take a = c0, b = c1. We set
x← x · c0 and y ← y · c1. Now the conditions 1-3 are satisfied for t+ 1.

Now clearly if t ≥ k/2 then the protocol is wrong, so the Lemma follows. �

A corollary of this is that Tk(g) = Ω(k).

6.2 A Lower-bound on Mk(g)

We show that one can extend this argument to get a lower-bound on Mk(g).

Theorem 26 Mk(g) = Ω(k).

Proof: Assume that we have a protocol for g with max. communication bounded by δk for some
constant δ > 0 to be chosen later. Player j receives the jth argument for each problem hi, in other
words he gets x1

j , · · · , xkj . Using induction on j, we construct inputs x and y reaching player Pj+1

with the following properties:

18

1. x and y have the same transcript.

2. LIS(xi) = 1 for xi = xi1, · · · , xij ; i.e. xi is a decreasing sequence ending at some number ai.

3. The sequence yi = yi1, · · · , yij contains an IS of length ti terminating at bi where bi > a1.

4.
∑

i ti ≥ εjk where ε is some explicit function of δ.

We repeat the same inductive construction of inputs for k copies of the function h. For each
co-ordinate i, the input given to player j comes from the interval [ai, bi], it takes one of two possible
values, {2ai+bi

3 , ai+2bi
3 }. There are a total of 2k possible inputs to player Pj , which we identify with

the bit strings in {0, 1}k. Since the max. communication is at most δk, by the pigeonhole principle,
he sends the same message on 2(1−δ)k inputs. It particular, there are two strings r, s reaching the
same state where ri = 0 and si = 1 for εk co-ordinates and where ε is some explicit function of δ.
Call such co-ordinates ’bad’. We update x by extending it by the input corresponding to r, and y
by the input corresponding to s.

For every bad co-ordinate i, we can take xij = 2a`+b`
3 , whereas yij = a`+2b`

3 , and set ai = 2ai+bi
3 ,

bi = ai+2bi
3 . In other words, for bad co-ordinates we can increase the length of the LIS in yi. For

the other co-ordinates, we update the value of ai depending on whether ri is 0 or 1, but leave
bi unchanged. For such co-ordinates, even though there is a longer increasing sequence in yi, we
ignore it.

Since some εk increasing sequences are extended at every step, at the end we get
∑

i ti ≥ εk2

for some explicit constant ε > 0. In particular, for some i, we get ti > εk. Repeating the reduction
of Lemma 22, we get a δk lower bound on the space required for a (1 + ε) approximation to the
LIS. (The constant ε may not be 1/2, but it is some explicit constant that only depends on δ.)
�

6.3 Reducing the Size of the Alphabet

The above proof is modeled after Ajtai’s lower-bound for approximate counting. We reduced each
state to a single interval [a, b] for the function h and a rectangle [a1, b1]×· · ·×[ak, bk] for the function
g. However, it appears that this simplification causes us to require an exponential alphabet of size
m = 3k, since roughly the interval size can reduce to 1/3rd at every step.

To get around this seems to require a more detailed description of each state. The decreasing
sequences reaching a state can still be represented by a single number, that represents the end point
of the ’best’ decreasing sequence. But for the increasing sequences reaching a state, we need to
keep track of the entire profile of the sequences i.e. for every length `, we should keep track of the
best increasing sequence of length ` reaching that state. One might hope to show similar bounds
to the above, even when m = kO(1).

References

[ACCL04] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the
distance to a monotone function. In 8th International Workshop on Randomization
and Computation, (RANDOM’04), pages 229–236, 2004.

[AD99] David Aldous and Persi Diaconis. Longest Increasing Subsequences: From Patience
Sorting to the Baik-Deift-Johansson theorem. BAMS: Bulletin of the American Math-
ematical Society, 36, 1999.

19

[AJKS02] Mikls Ajtai, T.S. Jayram, Ravi Kumar, and D. Sivakumar. Approximate counting of
inversions in a data stream. In Proceedings of the 34th Annual ACM Symposium on
Theory of Computing (STOC’02), pages 370–379, 2002.

[Ajt02] Miklos Ajtai. Unpublished manuscript, 2002.

[BYJKS02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statis-
tics approach to data stream and communication complexity. 2002.

[CMS01] G. Cormode, S. Muthukrishnan, and S. C. Sahinalp. Permutation editing and match-
ing via embeddings. In Proceedings of 28th International Colloquium on Automata,
Languages and Programming (ICALP’01), pages 481–492, 2001.

[EKK+00] Funda Ergun, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh
Viswanathan. Spot-checkers. Journal of Computing and System Sciences, 60(3):717–
751, 2000.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Alex Samorodnitsky. Monotonicity testing over general poset domains. In Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC’02),
pages 474–483, 2002.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.
Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

[GZ03] Anupam Gupta and Francis Zane. Counting inversions in lists. In Proceedings of the
14th ACM-SIAM Symposium on Discrete Algorithms (SODA’03), pages 253–254, 2003.

[Vit85] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Transactions on Math-
ematical Software, 11(1):37–57, 1985.

20

