
Space-Efficient Online Computation of Quantile
Summaries

Michael Greenwald
�

Computer & Information Science Department
University of Pennsylvania

200 South 33rd Street
Philadelphia, PA 19104

greenwald@cis.upenn.edu

Sanjeev Khanna
y

Computer & Information Science Department
University of Pennsylvania

200 South 33rd Street
Philadelphia, PA 19104

sanjeev@cis.upenn.edu

ABSTRACTAn �-approximate quantile summary of a sequen
e of N el-ements is a data stru
ture that
an answer quantile queriesabout the sequen
e to within a pre
ision of �N .We present a new online algorithm for
omputing �-approxi-mate quantile summaries of very large data sequen
es. Thealgorithm has a worst-
ase spa
e requirement of O(1� log(�N)).This improves upon the previous best result of O(1� log2(�N)).Moreover, in
ontrast to earlier deterministi
 algorithms, ouralgorithm does not require a priori knowledge of the lengthof the input sequen
e.Finally, the a
tual spa
e bounds obtained on experimentaldata are signi�
antly better than the worst
ase guaranteesof our algorithm as well as the observed spa
e requirementsof earlier algorithms.
1. INTRODUCTIONWe study the problem of spa
e-eÆ
ient
omputation of quan-tile summaries of very large data sets in a single pass. Aquantile summary
onsists of a small number of points fromthe input data sequen
e, and uses those quantile estimates togive approximate responses to any arbitrary quantile query.Summaries of large data sets have long been used by pro-grammers motivated by limited memory resour
es. Elemen-tary summaries, su
h as running averages or standard de-viation, are typi
ally suÆ
ient only for simple appli
ations.The mean and varian
e are often either insuÆ
iently de-s
riptive, or are too sensitive to outliers and other anoma-�Supported in part by DARPA under Contra
t #F39502-99-1-0512, and by the National S
ien
e Foundation underGrant ANI-00-81901.ySupported in part by an Alfred P. Sloan Resear
h Fellow-ship.

lous data. For su
h
ases, online algorithms are ne
essary togenerate quantile summaries that use little spa
e and pro-vide reasonably a

urate approximations to the distributionfun
tion indu
ed by the input data sequen
e [6, 1, 5, 13, 2℄.
1.1 Quantile Estimation for Database Appli-

cationsRe
ent work (e.g. [8, 9, 12℄) has highlighted the importan
eof quantile estimators for database users and implementors.Quantile estimates are used to estimate the size of interme-diate results, to allow query optimizers to estimate the
ostof
ompeting plans to resolve database queries. Paralleldatabases attempt to partition the data into value rangessu
h that the size of all partitions are roughly equal. Quan-tile estimates
an be used to
hoose the ranges without in-spe
ting the a
tual data. Quantile estimates have severalother uses in databases as well. User-interfa
es may esti-mate result sizes of queries, and provide feedba
k to users.This feedba
k may prevent expensive and in
orre
t queriesfrom being issued, and may
ag dis
repan
ies between theuser's model of the database and its a
tual
ontent. Quan-tile estimates are also used by database users to
hara
terizethe distribution of real world data sets.The existing body of work has also identi�ed parti
ularproperties that quantile estimators require in order to beuseful for these database appli
ations | properties that maynot be stri
tly ne
essary when estimating quantiles in otherdomains. Some of the desirable properties are as follows.(1) The algorithm should provide tunable and expli
it a pri-ori guarantees on the pre
ision of the approximation. Wesay that a quantile summary is �-approximate if it
an beused to answer any quantile query to within a pre
ision of�N . In other words, for any given rank r, an �-approximatequantile summary returns a value whose rank r0 is guaran-teed to be within the interval [r � �N; r + �N ℄. (2) Thealgorithm should be data independent. Neither its guaran-tees should be a�e
ted by the arrival order or distributionof values, nor should it require a priori knowledge of thesize of the dataset. (3) The algorithm should exe
ute in asingle pass over the data. (4) The algorithm should have assmall a memory footprint as possible. We note here that thememory footprint applies to temporary storage during the
omputation. We
an always
onstru
t an �-approximatesummary of size O(1=�) as follows. We �rst
onstru
t an�=2-approximate summary. For i from 0 to 2� , query this

summary for ea
h i �2 quantile. It is easy to see that the setof responses
onstitutes an �-approximate summary.
1.2 Previous WorkSeveral earlier works have made progress towards meetingthe above-mentioned requirements. Manku, Rajagopalan,and Lindsay [8℄ present a single-pass algorithm that
on-stru
ts an �-approximate quantile summary. The algorithmstri
tly guarantees a pre
ision of �N , but it requires an ad-van
e knowledge of N , the size of the data set. It requiresO(1� log2(�N)) spa
e. In [8℄ the same authors present analgorithm that does not require an advan
e knowledge ofN . However, they must give up the deterministi
 guaran-tee on a

ura
y. Instead, they provide only a probabilisti
guarantee that the quantile estimates are within the desiredpre
ision.Gibbons, Matias, and Poosala [4℄ estimate quantiles undera di�erent error metri
, but their algorithm requires mul-tiple passes over the data. Similarly, Chaudhuri, Motwani,and Narsayya [3℄ require multiple passes and only provideprobabilisti
 guarantees.Munro and Paterson [10℄, building on the earlier work ofPohl [7℄, showed that any algorithm that exa
tly
omputesthe �-quantile of a sequen
e of N data elements in only ppasses, requires a spa
e of
(N1=p). Thus the notion ofapproximate quantiles is inherently ne
essary for obtainedsub-linear spa
e algorithms.Many resear
hers have also addressed the problem of deter-mining the smallest number of
omparisons that are ne
es-sary for
omputing a �-quantile. We refer the reader to ani
e survey arti
le by Paterson [11℄ for an overview of resultsin this area.
1.3 Our ResultsWe design and analyze a new online algorithm for
omput-ing an �-approximate quantile summary of large data se-quen
es. The algorithm has a worst-
ase spa
e requirementof O(1� log(�N)), thus improving upon the previous best re-sult of O(1� log2(�N)). Moreover, in
ontrast to earlier deter-ministi
 algorithms, our algorithm does not require a prioriknowledge of the length of the input sequen
e.Our approa
h is based on a novel data stru
ture that e�e
-tively maintains the range of possible ranks for ea
h quantilethat we store. This di�ers from previous approa
hes thatimpli
itly assumed that the error in stored quantiles wasdistributed roughly uniformly throughout the distributionof observed values. By expli
itly maintaining the possiblerange of rank values for ea
h quantile, our algorithm is ableto adaptively handle new observations: values observed neartightly
onstrained quantiles are more likely to be droppedand new values observed near loosely
onstrained quantilesare more likely to be stored. Intuitively speaking, the im-proved behavior of our algorithm is based on the fa
t (whi
hwe prove) that no input sequen
e
an be \bad" a
ross the en-tire distribution at on
e. In other words, an input sequen
e
annot persistently present new observations that must bestored without allowing us to safely delete old stored obser-vations.

We also note here that our algorithm
an be parallelized ina straightforward manner to deal with the s
enario wherea system of P independent pro
essors analyzes P disjointstreams derived from a parent sequen
e. Due to spa
e
on-siderations, we will omit the details of this implementationin this version.Finally, we study the performan
e of our algorithm from anempiri
al perspe
tive. The a
tual spa
e bounds obtainedon experimental data are signi�
antly better than both theworst
ase guarantees of our algorithm as well as the ob-served spa
e requirements of earlier algorithms. For exam-ple, when summarizing uniformly random data with � =0:001 and N = 107, our algorithm used an order of magni-tude less memory than the best previously known algorithm.
2. THE NEW ALGORITHMWe will assume without any loss of generality that a newobservation arrives after ea
h unit of time and thus we willuse n to denote both the number of observations (elementsof the data sequen
e) that have been seen so far as well asthe
urrent time. Our algorithm maintains a summary datastru
ture S = S(n) at all times, and we denote by s = s(n),the total spa
e used by it. Finally, we denote the givenpre
ision requirement by �.
2.1 The Summary Data StructureAt any point in time n, the data stru
ture S(n)
onsists ofan ordered sequen
e of tuples whi
h
orrespond to a sub-set of the observations seen thus far. For ea
h observationv in S, we maintain impli
it bounds on the minimum andthe maximum possible rank of the observation v among the�rst n observations. Let rmin(v) and rmax(v) denote respe
-tively the lower and upper bounds on the rank of v amongthe observations seen so far. Spe
i�
ally, S
onsists of tu-ples t0; t1; :::; ts�1 where ea
h tuple ti = (vi; gi;�i)
onsistsof three
omponents: (i) a value vi that
orresponds to oneof the elements in the data sequen
e seen thus far, (ii) thevalue gi equals rmin(vi) � rmin(vi�1), and (iii) �i equalsrmax(vi)� rmin(vi). We ensure that, at all times, the max-imum and the minimum values are part of the summary.In other words, v0 and vs�1 always
orrespond to the min-imum and the maximum elements seen so far. It is easy tosee that rmin(vi) = Pj�i gj and rmax(vi) =Pj�i gj +�i.Thus gi + �i � 1 is an upper bound on the total numberof observations that may have fallen between vi�1 and vi.Finally, observe that Pi gi equals n, the total number ofobservations seen so far.Answering Quantile Queries: A summary of the aboveform
an be used in a straightforward manner to provide�-approximate answers to quantile queries. The propositionbelow forms the basis of our approa
h.Proposition 1. Given a quantile summary S in the aboveform, a �-quantile
an always be identi�ed to within an errorof maxi(gi +�i)=2.Proof. Let r = d�ne and let e = maxi(gi + �i)=2. Wewill sear
h for an index i su
h that r � e � rmin(vi) andrmax(vi) � r+ e. Clearly, su
h a value vi approximates the

�-quantile to within the
laimed error bounds. We now ar-gue that su
h an index i must always exist. First,
onsiderthe
ase r > n� e. We have rmin(vs�1) = rmax(vs�1) = n,and therefore i = s� 1 has the desired property. Otherwise,when r � n � e, we
hoose the smallest index j su
h thatrmax(vj) > r + e. It follows that r � e � rmin(vj�1). Ifr� e > rmin(vj�1) then rmax(vj) = rmin(vj�1)+ gj +�j >rmin(vj�1) + 2e; a
ontradi
tion to our assumption thate = maxi(gi + �i)=2. By assumption, rmax(vj�1) � r + e,therefore j � 1 is an example of an index i with the abovedes
ribed property.The following is an immediate
orollary.Corollary 1. If at any time n, the summary S(n) sat-is�es the property that maxi(gi + �i) � 2�n, then we
ananswer any �-quantile query to within an �n pre
ision.At a high level, our algorithm for maintaining the quantilesummary pro
eeds as follows. Whenever the algorithm seesa new observation, it inserts in the summary a tuple
or-responding to this observation. Periodi
ally, the algorithmperforms a sweep over the summary to \merge" some of thetuples into their neighbors so as to free up spa
e. The heartof the algorithm is in the merge phase where we maintainseveral
onditions that allow us to bound the spa
e used byS at any time. By Corollary 1, it suÆ
es to ensure that at alltimesmaxi(gi+�i) � 2�n. Motivated by this
onsideration,we will say that an individual tuple is full if gi+�i = b2�n
.The
apa
ity of an individual tuple is the maximum numberof observations that
an be
ounted by gi before the tuplebe
omes full.Bands: In order to minimize the number of tuples in oursummary, our general strategy will be to delete tuples withsmall
apa
ity and preserve tuples with large
apa
ity. Themerge phase will free up spa
e by merging tuples with small
apa
ities into tuples with \similar" or larger
apa
ities. Wesay that two tuples, ti and tj , have similar
apa
ities, iflog
apa
ity(ti) � log
apa
ity(tj).This notion of similarity partitions the possible values of� into bands. Roughly speaking, we try to divide the �sinto bands that lie between elements of (0; 122�n; 342�n; : : :2i�12i 2�n; : : : 2�n�1; 2�n). (These boundaries
orrespond to
apa
ities of 2�n; �n; 12 �n; : : : 12i �n; : : :, 8; 4; 2; 1.) As we willsee shortly, it is useful to de�ne bands in a way that ensuresthe property that if two �s are ever in the same band, theynever appear in di�erent bands as n in
reases. Therefore,for � from 1 to dlog 2�ne, we let p = b2�n
 and we de�neband� to be the set of all � su
h that p�2��(p mod 2�) <� � p� 2��1 � (p mod 2��1). The (p mod 2�) term holdsthe borders between bands stati
 as n in
reases. We de�neband0 to simply be p. As a spe
ial
ase, we
onsider the�rst 1=2� observations, with � = 0, to be in a band of theirown. Figure 1 shows the band boundaries as 2�n goes from24 to 34. We will denote by band(ti; n) the band of �i attime n, and by band�(n) all tuples (or equivalently, the �values asso
iated with these tuples) that have a band valueof �.

11111111112222222222333332�n 012345678901234567890123456789012342425262728293031323334Figure 1: Band boundaries as 2�n progresses from24 to 34. The rightmost band in ea
h row is band 0.Proposition 2. At any point in time n and for any � �1, band�(n)
ontains either 2� or 2��1 distin
t values of �.Proof. The band�(n) is bounded below by 2�n � 2� �(2�n mod 2�) and above by 2�n � 2��1 � (2�n mod 2��1).If 2�n mod 2� < 2��1, then 2�n mod 2� = 2�n mod 2��1,and band�(n)
ontains 2� � 2��1 = 2��1 distin
t valuesof �. If 2�n mod 2� � 2��1, then 2�n mod 2� = 2��1 +(2�n mod 2��1), and band�(n)
ontains 2��1 + 2��1 = 2�distin
t values of �.A Tree Representation: We will �nd it useful to imposea tree stru
ture over the tuples. Given a summary S =ht0; t1; :::; ts�1i, the tree T asso
iated with S
ontains a nodeVi for ea
h ti and a spe
ial root node R. The parent of anode Vi is the node Vj su
h that j is the least index greaterthan i with band(tj) > band(ti). If no su
h index exists,then the node R is set to be the parent. All
hildren (andall des
endants) of a given node Vi have � values larger than�i. The following two properties of T
an be easily veri�ed.Proposition 3. The
hildren of any node in T are al-ways arranged in non-in
reasing order of band in S.Proposition 4. For any node V , the set of all its de-s
endants in T forms a
ontiguous segment in S.
2.2 OperationsWe now des
ribe the various operations that we perform onour summary data stru
ture. We start with a des
ription ofexternal operations:
2.2.1 External OperationsQUANTILE(�) To
ompute an �-approximate �-quantilefrom the summary S(n) after n observations,
om-pute the rank, r = d�ne. Find i su
h that bothr�rmin(vi) � �n and rmax(vi)�r � �n and return vi.

INSERT(v) Find the smallest i, su
h that vi�1 � v < vi,and insert the tuple (v; 1; b2�n
), between ti�1 and ti.In
rement s. As a spe
ial
ase, if v is the new minimumor the maximum observation seen, then insert (v; 1; 0).INSERT(v) maintains
orre
t relationships between gi, �i,rmin(vi) and rmax(vi). Consider that if v is inserted beforevi, the value of rmin(v) may be as small as rmin(vi�1) + 1,and hen
e gi = 1. Similarly, rmax(v) may be as large as the
urrent rmax(vi), whi
h in turn is bounded by b2�n
. Notethat rmin(vi) and rmax(vi) get in
reased by 1 after insertion.COMPRESS()for i from s� 2 to 0 doif ((BAND(�i; 2�n) � BAND(�i+1; 2�n)) &&(g�i + gi+1 +�i+1 < 2�n)) thenDELETE all des
endants of ti and the tuple ti itself;end ifend forend COMPRESSFigure 2: Pseudo-
ode for COMPRESS
2.2.2 Internal OperationsDELETE(vi) To delete the tuple (vi; gi;�i) from S, re-pla
e (vi; gi;�i) and (vi+1; gi+1;�i+1) by the new tu-ple (vi+1; gi + gi+1;�i+1), and de
rement s.DELETE()
orre
tly maintains the relationships be-tween gi, �i, rmin(vi) and rmax(vi). Deleting vi has noe�e
t on rmin(vi+1) and rmax(vi+1), so DELETE(vi)should simply preserve rmin(vi+1) and rmax(vi+1). Therelationship between rmin(vi+1) and rmax(vi+1) is pre-served as long as �i+1 is un
hanged. Sin
e rmin(vi+1) =Pj�i+1 gj , and we delete gi, we must in
rease gi+1 bygi to keep rmin(vi+1). All other entries are unalteredby this operation.COMPRESS() The operation COMPRESS tries to mergetogether a node and all its des
endants into either itsparent node or into its right sibling. The property thatwe must ensure is that the tuple that results after thismerging is not full. By Proposition 4, we know thata node and its
hildren always form a
ontiguous se-quen
e of tuples in S(n). Let g�i denote the sum ofg-values of the tuple ti and all its de
endants in T. Itis easy to see that merging ti and its des
endants (byDELETEing them) into ti+1 would result in ti+1 be-ing updated to (vi+1; g�i + gi+1;�i+1). We would liketo ensure that this resulting tuple is not full. We saythat a pair of adja
ent tuples ti; ti+1 2 S(n) is merge-able if (g�i + gi+1 + �i+1 < 2�n) and band(ti; n) �band(ti+1; n). At a high level, the COMPRESS op-eration iterates over the tuples in S(n) from right toleft, and whenever it �nds a mergeable pair ti; ti+1, itmerges ti as well as all tuples that are des
endants ofti in T(n) into ti+1. Note that pairs of tuples that arenot mergeable at some point in time may be
ome soat a later point in time as the term b2�n
 in
reasesover time. Figure 2 gives pseudo-
ode des
ribing thisoperation.

Note that sin
e DELETE() and COMPRESS() never alterthe � of surviving tuples, it follows that �i of any quantileentry remains un
hanged on
e it has been inserted.COMPRESS() inspe
ts tuples from right (highest index) toleft. Therefore, it �rst
ombines
hildren (and their entiresubtree of des
endants) into parents. It
ombines siblingsonly when no more
hildren
an be
ombined into the parent.Initial StateS ;; s = 0; n = 0.AlgorithmTo add the n+ 1st observation, v, to summary S(n):if (n � 0 mod 12�) thenCOMPRESS();end ifINSERT(v);n = n+ 1;Figure 3: Pseudo-
ode for the algorithm
2.3 AnalysisIt is easy to see that the data stru
ture above maintainsan �-approximate quantile summary at ea
h point in time.The INSERT as well as COMPRESS operations always en-sure that gi + �i � 2�n at any point in time. We willnow establish that the total number of tuples in the sum-mary S after n observations have been seen is bounded by(11=2�) log(2�n).We start by de�ning a notion of
overage. We say that atuple t in the quantile summary S
overs an observation v atany time n if either the tuple for v has been dire
tly mergedinto ti or a tuple t that
overed v has been merged into ti.Moreover, a tuple always
overs itself. It is easy to see thatthe total number of observations
overed by ti is exa
tlygiven by gi = gi(n). The lemmas below give some simpleproperties
on
erning
overage of observations by varioustuples.Lemma 1. At no point in time, a tuple from band �
ov-ers an observation from a band > �.Proof. Suppose at some time n, the event des
ribedin the lemma o

urs. The COMPRESS subroutine nevermerges a tuple ti into an adja
ent tuple ti+1 if the band ofti is greater than the band of ti+1. Thus the only way inwhi
h this event
an o

ur is if it at some point in time, saym, we have band(ti;m) � band(ti+1;m) and at the
urrenttime n, we have band(ti; n) > band(ti+1; n). We now ar-gue that this
annot o

ur sin
e if at any point in time `,band(ti; `) = band(ti+1; `), then for all n � `, we must haveband(ti; n) = band(ti+1; n). The borders between bands arestati
, ex
ept when two bands
ombine (forever). Band 0 isalways new. If 2�n � 2��1 mod 2�, then � and �+ 1
om-bine into the �+1 band (� is a unique band for given n). Allbands > � + 1 remain the same. Be
ause band 0 is alwaysnew, all bands � < � be
ome �+1. In other words, bordersare always removed, never added.

Lemma 2. At any point in time n, and for any integer �,the total number of observations
overed
umulatively by alltuples with band values in [0::�℄ is bounded by 2�=�.Proof. By Proposition 2, ea
h band�(n)
ontains at most2� distin
t values of �. There are no more than 1=2� ob-servations with any given �, so at most 2�=2� observationswere inserted with � 2 band� . By Lemma 1, no obser-vations from bands > � will be
overed by a node from �.Therefore the nodes in question
an
over, at most, the totalnumber of observations from all bands � �. Summing overall � � � yields an upper bound of 2�+1=2� = 2�=�.The next lemma shows that for any given band value �, onlya small number of nodes
an have a
hild with that bandvalue.Lemma 3. At any time n and for any given �, there areat most 3=2� nodes in T(n) that have a
hild with band valueof �. In other words, there are at most 3=2� parents of nodesfrom band�(n).Proof. Let mmin and mmax, respe
tively denote the ear-liest and the latest times at whi
h an observation in band�(n)
ould be seen. It is easy to verify that mmin = (2�n �2�� (2�n mod 2�))=2� and mmax = (2�n�2��1 � (2�n mod2��1))=2�. Thus, any parent of a node in band�(n) musthave �i < 2�mmin.Fix a parent node Vi with at least one
hild in band�(n) andlet Vj be the rightmost su
h
hild. Denote by mj the timeat whi
h the observation
orresponding to Vj was seen.We will show that at least a (2�=3)-fra
tion of all observa-tions that arrived after time mmin
an be uniquely mappedto the pair(Vi; Vj). This in turn implies that no more than3=2� su
h Vi's
an exist, thus establishing the lemma. Themain idea underlying our proof is that the fa
t that COM-PRESS() did not merge Vj into Vi implies there must bea large number of observations that
an be asso
iated withthe parent-
hild pair (Vi; Vj).We �rst argue that g�j (n) +Pi�1k=j+1 gk(n) � g�i�1(n). Ifj = i � 1, it is trivially true. Otherwise, observe that anytuple tk that lies between tj and ti must belong to a bandless than or equal to � | else Vk, and not Vi, would be theparent of Vj . Therefore, Pi�1k=j+1 gk(n) � g�i�1(n) and the
laim follows.Now sin
e COMPRESS() did not merge Vj into Vi, it mustbe the
ase that g�i�1(n)+gi(n)+�i > 2�n. Using the
laimabove, we
an
on
lude that g�j (n)+Pi�1k=j+1 gk(n)+gi(n)+�i > 2�n. Also, at time mj , we had gi(mj) + �i < 2�mj .Sin
e mj is at most mmax, it must be thatg�j (n) + i�1Xk=j+1 gk(n) + (gi(n)� gi(mj)) > 2�(n�mmax):Finally observe that for any other su
h parent-
hild pairVi0 and Vj0 , the observations
ounted above by (Vj ; Vi) and

(Vj0 ; Vi0) are distin
t. Sin
e there are at most n�mmin totalobservations that arrived aftermmin, we
an bound the totalnumber of su
h pairs by (n�mmin)=(2�(n �mmax)) whi
his easily veri�ed to be at most 3=2�.Given a full pair of tuples (ti�1; ti), we say that the tupleti�1 is a left partner and ti is a right partner in this full pair.Lemma 4. At any time n and for any given �, there areat most 4=� tuples from band�(n) that are right partners ina full tuple pair.Proof. Let X be the set of tuples in band�(n) that par-ti
ipate as a right partner in some full pair. We �rst
onsiderthe
ase when tuples in X form a single
ontiguous segmentin S(n). Let ti; :::; ti+p�1 be a maximal
ontiguous segmentof band�(n) tuples in S(n). Sin
e these tuples are alive inS(n), it must be the
ase thatg�j�1 + gj +�j > 2�n i � j < i+ p:Adding over all j, we geti+p�1Xj=i g�j�1 + i+p�1Xj=i gj + i+p�1Xj=i �j > 2p�n:In parti
ular, we
an
on
lude that2 i+p�1Xj=i�1 g�j + i+p�1Xj=i �j > 2p�n:The �rst term in the LHS of the above inequality
ountstwi
e the number of observations
overed by nodes in band�(n)or by one of its des
endants in the tree T(n). Using Lemma 2,this sum
an be bounded by 2(2�=�). The se
ond term
anbe bounded by p(2�n � 2��1) sin
e the largest possible �value for a tuple with a band value of � or less is (2�n�2��1).Substituting these bounds, we get2�+1� + p(2�n� 2��1) > 2p�nSimplifying above, we get p < 4=� as
laimed by the lemma.Finally, the same argument applies when nodes in X indu
emultiple segments in S(n); we simply
onsider the abovesummation over all su
h segments.Lemma 5. At any time n and for any given �, the maxi-mum number of tuples possible from ea
h band�(n) is 11=2�.Proof. By Lemma 4 we know that the number of band�(n)nodes that are right partners in some full pair
an be bounded

N # Our Algorithm (tuple
ount) Our Algorithm (spa
e requirement) MLR Algorithm�! .1 .05 .01 .005 .001 .1 .05 .01 .005 .001 .1 .05 .01 .005 .001105: 61 120 496 902 3290 183 360 1488 2706 9870 275 468 1519 2859 8334106: 76 156 664 1230 4983 228 468 1992 3690 14949 378 702 2748 4664 15155107: 94 185 835 1578 6662 282 555 2505 4734 19986 600 1032 3708 7000 27475108: 110 224 1067 2063 9148 330 672 3201 6189 27444 765 1477 5960 10320 37026109: 124 266 1249 2407 11074 372 798 3747 7221 33222 924 1880 7650 14742 59540Table 1: Number of tuples stored and spa
e requirements for \hard input" sequen
es. For MRL algorithm,we assume that ea
h quantile stored takes only one unit of spa
e.by 4=�. Any other band�(n) node either does not parti
i-pate in any full pair or o

urs only as a left partner. We �rst
laim that ea
h parent of a band�(n) node
an have at mostone su
h node in band�(n). To see this, observe that if a pairof non-full adja
ent tuples ti; ti+1, where ti+1 2 band�(n),is not merged then it must be be
ause band(ti; n) is greaterthan �. But Proposition 3 tells us that this event
an o

uronly on
e for any �, and therefore, Vi+1 must be the uniqueband�(n)
hild of its parent that does not parti
ipate in afull pair. It is also easy to verify that for ea
h parent node,at most one band�(n)
an parti
ipate only as a left partnerin a full pair. Finally, observe that only one of the above twoevents
an o

ur for ea
h parent node. By Lemma 3, thereare at most 3=2� parents of su
h nodes, and thus the totalnumber of band�(n) nodes
an be bounded by 11=2�.Theorem 1. At any time n, the total number of tuplesstored in S(n) is at most (11=2�) log(2�n).Proof. There are at most 1 + blog 2�n
 bands at timen. There
an be at most 3=2� total tuples in S(n) frombands 0 and 1. For the remaining bands, Lemma 5 boundsthe maximum number of tuples in ea
h band. The resultfollows.
3. EMPIRICAL MEASUREMENTSWe now des
ribe some empiri
al results
on
erning the per-forman
e of our algorithm in pra
ti
e. We experimentedwith three di�erent
lasses of input data: (1) A \hard
ase"for our algorithm, (2) \sorted" input data, and (3) \random"input data. The \sorted" and \random" input sequen
eswere
hosen for two reasons. First, \random" should yieldsome insight into the behavior of this algorithm on \aver-age" inputs, or after some randomization. Se
ond, thesetwo s
enarios were used to produ
e the experimental resultsin [8℄. The MRL algorithm [8℄ is the best previously knownalgorithm.We observed during these runs that, in pra
ti
e, the algo-rithm used substantially less spa
e than indi
ated by ouranalysis from the previous se
tion. The observed spa
e re-quirements also turn out to be better than those requiredby the MRL algorithm. Moreover, when we run our algo-rithm with the same spa
e as used by the MRL algorithm,the observed error is signi�
antly better than that of theMRL algorithm. We will refer to this later variant as thepre-allo
ated variant of our algorithm. In
ontrast, we willrefer to the basi
 version of the algorithm where we allo
atea new quantile entry only when the observed error is aboutto ex
eed the desired �, as the adaptive variant.

Our implementation of the algorithm di�ered slightly fromthat des
ribed in Se
tion 2 in two ways. First, new observa-tions were inserted as a tuple (v; 1; gi +�i � 1) rather thanas (v; 1; b2�n
). The latter approa
h is used in the previousse
tion stri
tly to simplify theoreti
al analysis of the spa
e
omplexity. Se
ond, rather than running COMPRESS afterevery 1=2� observations, instead, for ea
h observation in-serted into S, one tuple was deleted, when possible. Whenno tuple
ould be deleted without
ausing its su

essor tobe
ome overfull, the size of S grew by 1. Note that bypreallo
ating a large enough number of stored quantiles, noin
rease in spa
e need ever take pla
e, assuming you knowN in advan
e.For ea
h experiment we measured both the maximum spa
eused to produ
e the summary, and the observed pre
isionof the results. We measured spa
e
onsumption by
ount-ing the number of stored tuples. When
omparing our spa
e
onsumption to the MRL algorithm, we pessimisti
ally mul-tiplied the number of stored tuples by 3 to a

ount for ourre
ording the value and both the min and max rank of ea
hstored element.
3.1 Hard InputWe
onstru
t here data sequen
es in adversarial manner forour algorithm. At ea
h time step, we generate the nextobservation so that it falls in the largest
urrent \gap" inour quantile summary.We su

essively fed observations to our summary, with noadvan
e hint about the total number of observations to beseen. We measured the maximum amount of spa
e requiredas the size of the input sequen
e in
reased to 109. Table 1reports the results of this experiment for N ranging overpowers of 10 from 105 to 109.Note that the required number of quantiles stored is approx-imately a fa
tor of 11 lower than the worst-
ase bound we
omputed in the previous se
tion of this paper. Also notethat the number of quantiles we store is signi�
antly lowerthan the number used by the MRL algorithm. Even aftermultiplying our tuple
ount by a fa
tor of 3, we almost al-ways require less spa
e than MRL. The only ex
eption is in� = :001 and N = 105, where the spa
e
ost of our algorithmex
eeds that of the MRL algorithm.
3.2 Sorted InputThe se
ond s
enario, \sorted", measures the behavior of thesummary when the data arrives in sorted order. We �xed� = :001 and
onstru
ted summaries of sorted sequen
es ofsizes 105; 106, and 107. We
omputed the a
tual maximum

Observed �qi # MRL Our algorithm, Preallo
ated Our algorithm,AdaptiveN ! 105 106 107 105 106 107 105 106 107jSj 8334 15155 27475 2778 5052 9158 756 756 756Max � 0.00035 0.000194 0.000167 0.00027 0.000128 0.000090 0.00095 0.000899 0.0008191 0.00015 0.000199 0.000091 0.00021 0.000020 0.000077 0.00074 0.000057 0.0006182 0.00006 0.000050 0.000120 0.00024 0.000056 0.000009 0.00039 0.000259 0.0002033 0.00006 0.000210 0.000062 0.00010 0.000052 0.000031 0.00010 0.000744 0.0006654 0.00024 0.000161 0.000001 0.00001 0.000016 0.000005 0.00040 0.000860 0.0000025 0.00002 0.000033 0.000070 0.00002 0.000092 0.000050 0.00016 0.000494 0.0002306 0.00022 0.000166 0.000053 0.00012 0.000048 0.000014 0.00027 0.000716 0.0006327 0.00000 0.000037 0.000085 0.00024 0.000060 0.000066 0.00007 0.000388 0.0004888 0.00010 0.000084 0.000043 0.00012 0.000096 0.000035 0.00021 0.000829 0.0000909 0.00019 0.000207 0.000095 0.00006 0.000124 0.000014 0.00033 0.000000 0.00003810 0.00013 0.000060 0.000100 0.00012 0.000088 0.000050 0.00055 0.000036 0.00035411 0.00005 0.000098 0.000013 0.00002 0.000000 0.000014 0.00005 0.000542 0.00018512 0.00004 0.000096 0.000001 0.00008 0.000004 0.000022 0.00017 0.000093 0.00001013 0.00006 0.000107 0.000045 0.00014 0.000008 0.000044 0.00039 0.000263 0.00022014 0.00002 0.000116 0.000038 0.00020 0.000008 0.000056 0.00022 0.000732 0.00066515 0.00003 0.000098 0.000049 0.00023 0.000028 0.000041 0.00008 0.000316 0.000425Table 2: Spa
e and pre
ision measurements for \sorted"
ase.error over all possible quantile queries, and
hose to query 15quantiles at rank qi16N , for qi = [1::15℄, to study the behaviorat spe
i�
 quantiles.We
ompared three algorithms for
onstru
ting the sum-mary. First, we used the MRL algorithm to
ompute a sum-mary where we preallo
ated the storage required by MRLas a fun
tion of N and �. Se
ond, we pre-allo
ated the sameamount of storage required by MRL (1/3 as many storedquantiles as MRL, though), and ran our algorithm withoutallo
ating any more quantiles. Finally, we ran our algorithmin the adaptive mode; we started with 12� stored quantilesand only allo
ated extra storage if it was impossible to deleteexisting quantiles without ex
eeding a pre
ision of :001n.Table 2 reports the results of this experiment. jSj reportsthe number of stored quantiles needed to a
hieve the desiredpre
ision. The row labeled \max" reports the maximum er-ror of all possible quantile queries on the summary. In orderto give an indi
ation of the behavior of this algorithm forspe
i�
 quantiles, the remaining rows list the approximationerror of the response to the query for the qi=16th quantile.To interpret the entries in Table 2,
onsider the .5 quan-tile (50th p
tile, or 8/16). For a sequen
e of 105 elements,the adaptive algorithm uses only 756 tuples, but returns avalue with an approximation error of .00021. MRL storesover eight times as many quantiles, and returns a value witherror .00010, almost twi
e as a

urate. Our preallo
atedalgorithm stores only one third as many tuples as MRL,but returns a value with an approximation error of .00012 {
omparable a

ura
y but using only one third the numberof tuples.In fa
t, however, the error on any individual quantile is notrepresentative of the error as a whole | had we
hosen toinspe
t the 1/4 quantile instead of 1/2, then our algorithmwould have been 24 times as a

urate as MRL! Had we
ho-sen 3/4, then MRL would have been twi
e as a

urate asours. Of the 15 quantiles we sampled, we outperformedMRL on 6 out of 15 for a sequen
e of size 105, 10 out of 15

for size 106, and 11 out of 15 for 107. Individual queries arehighly sensitive to how
lose the quantile query happens tobe to some single stored quantile. On average, in
ompari-son to MRL using the same storage, our algorithm reportedbetter worst-
ase observed error, and
omparable observederror (we perform slightly worse for N = 105, but slightlybetter for N = 106 and 107). Both algorithms a
hievedhigher pre
ision than demanded by the a priori spe
i�
a-tion.The most interesting result is that our adaptive algorithmseems to require only 756 stored quantiles, regardless of thesize of the input sequen
e. Closer experimentation revealedthat the algorithm only needs all 756 stored quantiles at afairly early stage in the
omputation | the ex
ess storageredu
es the observed error, slightly. One
an see this byobserving the maximum error in Table 2. For a desired� = :001, one would expe
t that the maximum observederror would be approximately equal to .001, too. However,for 105 the maximum error is only :000955 and as N getslarger the maximum error gets smaller.The maximum error o�ers another interesting insight intothe behavior of our algorithm. Note that the optimal valuefor maximum error in all
ases is 1=(2jSj) (this o

urs only ifthe stored quantiles are distributed evenly among all values,and we know their rank pre
isely). For example, for 756quantiles, the optimal max error is .00066. For 2778 quan-tiles, the ideal maximum error is .00018. Our algorithmdelivers a maximum error within a fa
tor of 2 of optimal. In
ontrast, the optimal max error of 8334 stored quantiles is5:99 � 10�5, yet the MRL algorithm delivers a max error 6times as large. In fa
t, for MRL, the dis
repan
y betweenthe ideal max error and observed max error seems to growas N (and jSj) gets larger; for N = 107, the observed maxerror is more than 9 times the optimal value.
3.3 Random InputThe third s
enario, \random", sele
ts ea
h datum by se-le
ting an element (without repla
ement) from a uniformdistribution of all the remaining elements in the data set.

That is, the values in the data set
an have an arbitrarilyskewed distribution, but the order in whi
h the values areobserved by the summary is
hosen by the uniform randompro
ess.As in the sorted
ase, we �xed � = :001 and summarized se-quen
es of lengths 105; 106, and 107. We again
omputed themaximum error, the quantiles at rank qi16N , for qi = [1::15℄,and measured the a
tual maximum storage requirement to
ompute the summary. In
ontrast to the sorted input
asewhere a single experiment was suÆ
ient to determine theexpe
ted behavior, random input requires running severaltrials to illuminate expe
ted behavior. We ran ea
h experi-ment 50 times and report the min, max, mean and standarddeviation for every measurement. Tables 3 through 5 reportthese results.The observed � of our preallo
ated algorithm is roughly twi
eas a

urate as MRL, although our advantage seems to in-
rease steadily as N gets larger. Not surprisingly, the ob-served � of our adaptive algorithm stays
lose to 0.001 re-gardless of how large N gets. The observed storage require-ments, however, may be surprising. These are on
e againthe most interesting results of our \random" s
enario. Itappears that for uniformly random input the required spa
eis independent of N , the size of the dataset, and dependentonly upon �. In all our experiments, a :001-approximatesummary of a random input was a
hieved with roughly 920tuples.
4. CONCLUDING REMARKSWe presented a new online algorithm for
omputing quantilesummaries of very large sequen
es of data in a spa
e-eÆ
ientmanner. Our algorithm improves upon the earlier results intwo signi�
ant ways. First, it improves the spa
e
omplexityby a fa
tor of
(log(�N)). Se
ond, it does not require apriori knowledge of the parameter N | that is, it allo
atesmore spa
e dynami
ally as the data sequen
e grows in size.An obvious question is whether or not the spa
e
omplexitya
hieved by our algorithm is asymptoti
ally optimal. Webelieve that the answer is in the aÆrmative indeed.Our empiri
al study of the new algorithm provides eviden
ethat our algorithm
ompares favorably with the previousalgorithms in pra
ti
e as well. A
urious trend observed inour experiments is that on random inputs, the spa
e require-ments of the algorithm seem only to depend on the error pa-rameter � and be
ome independent of the sequen
e lengthN . It will be interesting to analyti
ally verify this behaviorand to understand the minimal
hara
teristi
s of the datasequen
es that lead to su
h improved spa
e requirements.
5. REFERENCES[1℄ Rakesh Agrawal and Arun Swami. A one-passspa
e-eÆ
ient algorithm for �nding quantiles. Pro
.7th Int. Conf. Management of Data, COMAD,28{30 De
ember 1995.[2℄ Khaled Alsabti, Sanjay Ranka, and Vineet Singh. Aone-pass algorithm for a

urately estimating quantilesfor disk-resident data. Pro
eedings of the 23rd Intl.Conferen
e on Very Large Data Bases, Athens,

Gree
e, 26{29 August 1997, pages 346{355, Los Altos,CA 94022, USA, 1997. Morgan Kaufmann Publishers.[3℄ Surajit Chaudhuri, Rajeev Motwani, and VivekNarasayya. Random sampling for histogram
onstru
tion: how mu
h is enough? In ACM SIGMOD'98, volume 28, pages 436{447, Seattle, WA, June 1{4,1998.[4℄ Phillip B. Gibbons, Yossi Matias, and ViswanathPoosala. Fast in
remental maintenan
e of approximatehistograms. In Pro
eedings of the 23rd Intl. Conf. VeryLarge Data Bases, VLDB, pages 466{475. MorganKaufmann, 25{27 August 1997.[5℄ Mi
hael B. Greenwald. Pra
ti
al algorithms for selfs
aling histograms or better than average data
olle
tion. Performan
e Evaluation, 27&28:19{40,O
tober 1996.[6℄ R. Jain and I. Chlamta
. The P 2 algorithm fordynami

al
ulation of quantile and histogramswithout storing observations. Communi
ations of theACM, 28(10):1076{1085, O
tober 1986.[7℄ I. Pohl. A minimum storage algorithm for
omputingthe median. IBM Resear
h Report RC 2701, November1969.[8℄ Gurmeet Singh Manku, Sridhar Rajagopalan, andBru
e G. Lindsay. Approximate medians and otherquantiles in one pass and with limited memory. ACMSIGMOD '98, volume 28, pages 426{435, Seattle, WA,June 1998.[9℄ Gurmeet Singh Manku, Sridhar Rajagopalan, andBru
e G. Lindsay. Random sampling te
hniques forspa
e eÆ
ient online
omputation of order statisti
s oflarge datasets. In ACM SIGMOD '99, volume 29,pages 251{262. Philadelphia, PA, June 1999.[10℄ J. I. Munro and M.S. Paterson. Sele
tion and sortingwith limited storage. Theoreti
al Computer S
ien
e,vol. 12: 315{323; 1980.[11℄ M.S. Paterson. Progress in sele
tion. Te
hni
al Report,University of Warwi
k, Coventry, UK, 1997.[12℄ Viswanath Poosala, Venkatesh Ganti, and Yannis E.Ioannidis. Approximate query answering usinghistograms. Bulletin of the IEEE Te
hni
al Committeeon Data Engineering, 22(4):6{15, De
ember 1999.[13℄ Viswanath Poosala, Peter J. Haas, Yannis E.Ioannidis, and Eugene J. Shekita. Improvedhistograms for sele
tivity estimation of rangepredi
ates. In ACM SIGMOD 96, volume 26, pages294{305, Montreal, Quebe
, Canada, June 4{6, 1996.

qi # MRL Our Algorithm, Preallo
ated Our Algorithm, AdaptivejSj ! 8334 2778 [898-939℄, 919.18�8.63[range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdevMax � [4.3-5.2℄ 0.0004698�2.02e-05 [2.9-2.95℄ 0.0002920�0.24e-05 [8.25-8.70℄ 0.0008487�0.91e-051 [0.0-3.2℄ 0.0000928�7.38e-05 [0.1-2.5℄ 0.0001074�7.19e-05 [0.1-7.8℄ 0.0003222�1.88e-042 [0.0-3.0℄ 0.0001130�7.58e-05 [0.2-2.5℄ 0.0001216�6.42e-05 [0.1-7.0℄ 0.0003216�1.88e-043 [0.0-3.5℄ 0.0001104�8.86e-05 [0.0-2.7℄ 0.0001220�7.36e-05 [0.2-7.7℄ 0.0003406�2.07e-044 [0.0-2.8℄ 0.0001040�6.93e-05 [0.0-2.7℄ 0.0001236�7.44e-05 [0.1-7.6℄ 0.0002952�1.98e-045 [0.0-3.7℄ 0.0001172�8.81e-05 [0.0-2.6℄ 0.0000844�6.07e-05 [0.1-6.6℄ 0.0003102�1.88e-046 [0.1-3.0℄ 0.0001046�7.69e-05 [0.0-3.3℄ 0.0000912�7.41e-05 [0.2-6.7℄ 0.0002986�1.64e-047 [0.2-3.6℄ 0.0001346�7.97e-05 [0.0-2.5℄ 0.0001078�6.45e-05 [0.0-6.9℄ 0.0003090�1.89e-048 [0.1-3.8℄ 0.0000982�8.86e-05 [0.0-3.1℄ 0.0001134�7.08e-05 [0.0-7.7℄ 0.0002910�1.94e-049 [0.0-2.7℄ 0.0001222�7.37e-05 [0.0-2.5℄ 0.0001074�7.62e-05 [0.0-6.6℄ 0.0002910�1.75e-0410 [0.0-3.4℄ 0.0001278�7.68e-05 [0.0-2.3℄ 0.0000912�6.01e-05 [0.0-7.0℄ 0.0002740�1.69e-0411 [0.1-3.1℄ 0.0001204�7.87e-05 [0.0-2.8℄ 0.0000954�7.31e-05 [0.1-6.9℄ 0.0002790�1.84e-0412 [0.1-2.4℄ 0.0001040�6.83e-05 [0.0-2.4℄ 0.0000940�6.71e-05 [0.2-8.2℄ 0.0003566�2.32e-0413 [0.0-3.0℄ 0.0000878�6.83e-05 [0.0-2.3℄ 0.0001114�6.49e-05 [0.2-7.6℄ 0.0003446�2.01e-0414 [0.0-3.1℄ 0.0000982�8.05e-05 [0.0-2.5℄ 0.0001196�6.80e-05 [0.4-8.2℄ 0.0003424�1.99e-0415 [0.0-2.8℄ 0.0001000�7.12e-05 [0.0-2.8℄ 0.0001330�8.24e-05 [0.1-6.2℄ 0.0002952�1.86e-04Table 3: N = 100; 000; Samples = 50; random order.qi # MRL Our Algorithm, Preallo
ated Our Algorithm, AdaptivejSj ! 15155 5052 [900-939℄ 919.38�8.92[range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdevMax � [3.02-3.63℄ 0.0003275�1.44e-05 [1.495-1.520℄ 15.04e-05�0.06e-05 [7.835-8.215℄ 0.0008004�0.82e-051 [0.02-3.00℄ 0.0001194�7.88e-05 [0.05-1.41℄ 5.41e-05�3.37e-05 [0.00-7.78℄ 0.0003173�2.12e-042 [0.09-3.19℄ 0.0001248�7.69e-05 [0.04-1.41℄ 5.79e-05�3.65e-05 [0.06-6.94℄ 0.0003259�1.80e-043 [0.01-2.90℄ 0.0001253�7.27e-05 [0.01-1.28℄ 5.73e-05�3.71e-05 [0.15-7.11℄ 0.0003172�1.87e-044 [0.01-2.71℄ 0.0001092�7.47e-05 [0.02-1.43℄ 5.57e-05�3.46e-05 [0.07-7.04℄ 0.0003546�1.97e-045 [0.12-2.84℄ 0.0001260�7.44e-05 [0.03-1.36℄ 5.45e-05�3.59e-05 [0.02-7.06℄ 0.0002907�1.78e-046 [0.01-3.20℄ 0.0000984�7.68e-05 [0.01-1.22℄ 5.89e-05�3.26e-05 [0.29-6.57℄ 0.0002972�1.76e-047 [0.01-2.79℄ 0.0001256�7.52e-05 [0.01-1.38℄ 5.03e-05�3.58e-05 [0.09-6.30℄ 0.0002951�1.60e-048 [0.05-3.27℄ 0.0001299�6.03e-05 [0.01-1.21℄ 4.55e-05�3.37e-05 [0.11-7.10℄ 0.0002892�1.73e-049 [0.22-3.27℄ 0.0001268�7.75e-05 [0.05-1.24℄ 5.88e-05�3.57e-05 [0.04-7.15℄ 0.0003015�2.04e-0410 [0.13-3.74℄ 0.0001389�8.64e-05 [0.03-1.61℄ 7.14e-05�3.88e-05 [0.02-7.07℄ 0.0002924�2.04e-0411 [0.09-3.01℄ 0.0001431�7.67e-05 [0.00-1.38℄ 5.81e-05�3.58e-05 [0.11-6.43℄ 0.0002989�2.01e-0412 [0.03-3.32℄ 0.0001446�8.64e-05 [0.00-1.46℄ 4.86e-05�3.33e-05 [0.20-6.71℄ 0.0003378�1.66e-0413 [0.04-2.84℄ 0.0001339�7.25e-05 [0.00-1.34℄ 5.30e-05�3.42e-05 [0.04-6.69℄ 0.0003128�1.70e-0414 [0.04-2.74℄ 0.0001288�8.91e-05 [0.03-1.43℄ 5.65e-05�3.60e-05 [0.02-7.03℄ 0.0003146�1.86e-0415 [0.02-2.92℄ 0.0001284�8.82e-05 [0.02-1.67℄ 5.45e-05�3.86e-05 [0.05-6.46℄ 0.0002797�1.72e-04Table 4: N = 1; 000; 000; Samples = 50; random order.qi # MRL Our Algorithm, Preallo
ated Our Algorithm, AdaptivejSj ! 27475 9158 [899-939℄ 918.42�8.71[range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdevMax � [2.032-2.641℄ 2.35e-04�1.18e-05 [0.799-0.806℄ 8.01e-05�1.8e-07 [7.628-8.016℄ 7.82e-04�9.75e-061 [0.026-1.466℄ 4.98e-05�3.29e-05 [0.002-0.712℄ 2.74e-05�1.96e-05 [0.187-6.123℄ 2.87e-04�1.65e-042 [0.022-1.922℄ 6.32e-05�4.98e-05 [0.001-0.764℄ 2.94e-05�2.22e-05 [0.166-6.814℄ 3.04e-04�1.80e-043 [0.019-1.750℄ 5.90e-05�4.62e-05 [0.002-0.656℄ 2.93e-05�1.80e-05 [0.008-7.040℄ 3.68e-04�1.91e-044 [0.024-1.953℄ 6.19e-05�4.37e-05 [0.003-0.615℄ 2.98e-05�1.65e-05 [0.096-7.149℄ 2.98e-04�1.81e-045 [0.022-1.892℄ 7.02e-05�5.03e-05 [0.011-0.722℄ 2.99e-05�1.63e-05 [0.111-7.297℄ 2.56e-04�1.80e-046 [0.026-1.766℄ 6.61e-05�4.65e-05 [0.008-0.655℄ 2.60e-05�1.86e-05 [0.021-6.618℄ 3.27e-04�1.72e-047 [0.038-1.987℄ 5.75e-05�4.33e-05 [0.025-0.688℄ 3.30e-05�1.63e-05 [0.009-5.620℄ 2.14e-04�1.47e-048 [0.004-1.801℄ 5.69e-05�4.29e-05 [0.006-0.712℄ 2.69e-05�2.01e-05 [0.043-7.718℄ 3.17e-04�1.96e-049 [0.012-2.252℄ 6.47e-05�4.19e-05 [0.003-0.675℄ 2.90e-05�1.83e-05 [0.116-7.167℄ 2.83e-04�1.93e-0410 [0.011-1.840℄ 6.11e-05�4.28e-05 [0.006-0.649℄ 2.64e-05�1.67e-05 [0.050-7.225℄ 3.09e-04�1.83e-0411 [0.010-1.640℄ 6.67e-05�4.41e-05 [0.005-0.727℄ 2.99e-05�1.78e-05 [0.231-6.606℄ 2.60e-04�1.66e-0412 [0.013-1.847℄ 6.09e-05�4.69e-05 [0.013-0.686℄ 2.68e-05�1.71e-05 [0.018-6.639℄ 2.95e-04�1.51e-0413 [0.005-1.747℄ 5.80e-05�3.87e-05 [0.015-0.680℄ 2.82e-05�1.93e-05 [0.014-6.518℄ 3.06e-04�1.90e-0414 [0.026-1.853℄ 7.12e-05�5.07e-05 [0.000-0.671℄ 3.43e-05�1.84e-05 [0.051-7.385℄ 2.69e-04�1.99e-0415 [0.022-1.510℄ 5.57e-05�3.56e-05 [0.019-0.775℄ 2.91e-05�1.83e-05 [0.029-6.415℄ 2.74e-04�1.80e-04Table 5: N = 10; 000; 000; Samples = 50; random order.

