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General Instructions. Each problem has a fairly short solution. Feel free to reference things we have proved in class, to keep
your own solutions short. Each problem is worth 7 points.

Honor Prinicple. You are allowed to discuss the problems and exchange solution ideas with your classmates. But when you
write up any solutions for submission, you must work alone. You may refer to any textbook you like, including online ones.
However, you may not refer to published or online solutions to the specific problems on the homework. If in doubt, ask the
professor for clarification!

On this homework, “circuits” are allowed to have unbounded fan-in. The complexity class AC0 consists of Boolean functions
that can be computed by constant depth polynomial size circuits with AND, OR and NOT gates. Here are two natural Boolean
function families, each of the form f = { fn}n∈N, where fn : {0, 1}n→ {0,1}.

PAR : PARn(x) = 1 ⇐⇒
n
∑

i=1

x i ≡ 1 (mod 2) , ∀ x ∈ {0, 1}n .

MAJ : MAJn(x) = 1 ⇐⇒
n
∑

i=1

x i ≥ n/2 , ∀ x ∈ {0, 1}n .

12. Complete the proof of Håstad’s Switching Lemma, by filling in the steps we skipped in class. As a reminder, here is an
outline of the proof, along with what we did not show in class.

Let f be a k-DNF on n variables. Let Rm denote the set of restrictions (i.e., partial assignments) of these variables that
have exactly m stars, i.e., Rm = {α ∈ {0, 1,?}n : |Ex(α)| = n − m}. Let p ∈ (0, 1

2 ) be a small fraction. The switching
lemma says that hitting f with a random restriction from Rpn will very likely result in a function of low deterministic
query complexity. To be precise:

Pr
ρ∈RRpn

�

D( f |ρ)≥ s
�

≤ (7pk)s . (1)

To prove this, we considered the set of “bad” restrictions B = {ρ ∈ Rpn : D( f |ρ) ≥ s}. We gave an injective map from
B to Rpn−s × Selk,s×{0,1}s, where

Selk,s := {(w1, . . . , w`) : `≥ 1, each wi ∈ {0,1}k \ {0}k, and |w1|+ · · ·+ |w`|= s}

and |w| denotes the number of 1s in the binary string w.

12.1. Prove that |Selk,s | ≤ (k/ ln2)s.

Hint: Use induction on s to prove that |Selk,s | ≤ αs, where (1+ 1/α)k = 2. Then show that this inequality implies
the above. For the base case, put the empty string in Selk,0 for convenience.

12.2. Use the above result to upper bound |B|, and complete the calculations required to derive Eq. (1).

13. Consider depth-2 circuits with access to each input bit x i and its negation ¬x i , where ~x ∈ {0, 1}n is the input vector. As
part of our proof that PAR /∈ AC0, we showed that if such a circuit computes PARn, it must have size at least 2n−1. But
what if we’re only interested in a circuit that computes PARn correctly on some subset of a little more than half of the 2n

different inputs?

13.1. Why is it not interesting to compute PARn correctly on just 2n−1 inputs?

13.2. Show that there is a depth-2 circuit of size 2O(
p

n) that computes PARn correctly on at least 2n−1 + 2
p

n inputs.

14. Prove that MAJ /∈ AC0.

Hint: This can be solved using either of the two techniques we used in class to show PAR /∈ AC0. However, you can give
a shorter proof by exhibiting an AC0 circuit that reduces PAR to MAJ. For this approach, it might help to use FALSE = +1,
TRUE = −1 and consider sums of the form x1 + · · ·+ xn/2 − xn/2+1 − · · · − xn. Be careful about separating the two cases:
(a) n is odd (b) n is even.
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