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1 Recap of Information Theory Basics

For the purposes of these notes, we shall only consider probability distributions on finite sets.
Thus, a distribution on a set of size n may be thought of as an n-dimensional vector with nonneg-
ative entries and `1-norm 1.

1.1 Setup and Basic Definitions

Let p and q be distributions on finite sets X and Y respectively. Let X ∼ p and Y ∼ q be random
variables such that XY ∼ r, where r is some joint distribution on X × Y . Note that we’re writing
XY instead of (X, Y)—this is a useful shorthand.

The distributions p and q are marginals of r and we have

px = ∑
y∈Y

rxy , qy = ∑
x∈X

rxy . (1)

Further, for the conditional distributions of X given a particular realization Y = y (or vice versa),
we have

Pr[X = x | Y = y] =
rxy

qy
, Pr[Y = y | X = x] =

rxy

px
. (2)

We define

Entropy: H(X) = H(p) = ∑
x∈X

px log
1
px

; (3)

Conditional entropy: H(X | Y) = Ey H(X | Y = y) = ∑
y∈Y

qy H(X | Y = y) ; (4)

Mutual information: I(X : Y) = H(X)−H(X | Y) . (5)

If Z is another random variable, with XYZ having some joint distribution, we define the condi-
tional mutual information, I(X : Y | Z) = Ez I(X : Y | Z = z) = H(X | Z)−H(X | YZ).

In the definitions above, we must interpret 0 log 0 = 0. Clearly, H(X) ≥ 0 with equality iff X
is a constant; likewise, H(X | Y) ≥ 0 with equality iff Y fully determines X.

1.2 Closeness of Distributions

For our work, we shall need several notions of closeness or “distance” between probability distri-
butions. There are several meaningful notions, some of which are not metrics.

Suppose that p and q are distributions on the same set X . We make the following definitions.

Total variation distance: DTV(p, q) =
1
2
‖p− q‖1 =

1
2 ∑

x∈X
|px − qx| (6)

Kullback-Leibler divergence: DKL(p ‖ q) = ∑
x∈X

px log
px

qx
(7)

Jensen-Shannon divergence: DJS(p, q) =
1
2

(
DKL

(
p
∥∥∥ p + q

2

)
+ DKL

(
q
∥∥∥ p + q

2

))
(8)

Squared Hellinger distance: h2(p, q) =
1
2

∥∥√p−√q
∥∥2

2 =
1
2 ∑

x∈X

(√
px −

√
qx
)2 (9)

= 1− ∑
x∈X

√
pxqx . (10)
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Total variation distance is also called statistical distance; KL divergence is also called informational
divergence or relative entropy. In eq. (7), we interpret 0 log 0

0 = 0. If there exists x ∈ X such
that px 6= 0 = qx, then DKL(p ‖ q) = ∞. With the exception of KL divergence, all of the above
“distances” are symmetric in p and q. Obviously, total variation distance and Hellinger distance
are both metrics (they arise from norms). It is a somewhat deep fact that the square root of JS
divergence is also a metric; we won’t need this.

Theorem 1.1. DKL(p ‖ q) ≥ 0, with equality iff p = q.

Proof. The function t 7→ − log t is strictly convex on (0, ∞). By Jensen’s inequality,

DKL(p ‖ q) = ∑
x∈X

px

(
− log

qx

px

)
≥ − log

(
∑

x∈X
px ·

qx

px

)
= − log 1 = 0 ,

with equality iff qx/px is the same for each x, which requires p = q, since ‖p‖1 = ‖q‖1 = 1.

1.3 Basic Properties of Entropy and Mutual Information

The nonnegativity of KL divergence has many important consequences.

Theorem 1.2. H(X) ≤ log |X |, with equality iff X ∼ u, the uniform distribution on X .

Proof. Use Theorem 1.1 and the calculation

DKL(p ‖ u) = ∑
x∈X

px log
px

1/|X | = log |X | −H(X) .

We now return to the setup of Section 1.1, i.e., X and Y may be distributed on distinct sets,
X ∼ p, Y ∼ q, XY ∼ r.

Theorem 1.3. I(X : Y) = DKL(r ‖ p⊗ q).

Proof. Combining eqs. (1) to (5),

I(X : Y) = H(X)−H(X | Y) = ∑
x∈X

(
∑

y∈Y
rxy

)
log

1
px
− ∑

y∈Y
qy ∑

x∈X

rxy

qy
log

qy

rxy

= ∑
x∈X

∑
y∈Y

rxy log
rxy

pxqy
= DKL(r ‖ p⊗ q) .

Corollary 1.4. I(X : Y) = EyDKL(p(y) ‖ p), where p(y) is the conditional distribution of X given Y = y.

Proof. By eqs. (1) and (2),

EyDKL(p(y) ‖ p) = ∑
y∈Y

qy ∑
x∈X

p(y)x log
p(y)x

px
= ∑

x∈X
∑

y∈Y
rxy log

rxy

qy px
= I(X : Y) .

Corollary 1.5. I(X : Y) = I(Y : X) ≥ 0, with equality iff X ⊥ Y.

Proof. Use Theorem 1.1 and the observation that r = p⊗ q iff X ⊥ Y.

Corollary 1.6. H(X | Y) ≤ H(X), with equality iff X ⊥ Y.
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The next theorem does not itself depend on nonnegativity of KL divergence but, together with
the above, leads to further important results.

Theorem 1.7 (Chain rule for entropy). H(XY) = H(X) + H(Y | X).

Proof. Direct calculation, similar to that in Theorem 1.3.

Corollary 1.8 (Subadditivity of entropy). H(XY) ≤ H(X) + H(Y).

Theorem 1.7 and its corollary clearly extend to a joint distribution of more than two random
variables: if X1, . . . , Xt are random variables, then

H(X1 . . . Xt) =
t

∑
j=1

H(Xj | X1 . . . Xj−1) ≤
t

∑
j=1

H(Xj) . (11)

Using eq. (5), we have some further corollaries.

Corollary 1.9 (Chain rule for mutual info). I(X1 . . . Xt : Y) =
t

∑
j=1

I(Xj : Y | X1 . . . Xj−1).

Corollary 1.10. If X1, . . . , Xt are mutually independent, then I(X1 . . . Xt : Y) ≥
t

∑
j=1

I(Xj : Y).

We record an important special case of mutual information, where one of the variables in-
volved is a uniformly random bit.

Lemma 1.11. Let A and X be random variables such that A ∈R {0, 1}. For each i ∈ {0, 1}, let pi be the
distribution of X conditioned on A = i. Then

I(A : X) = DJS(p0, p1) .

Proof. Direct consequence of Corollary 1.4 and the definition of JS divergence.

1.4 Relations Between Distance Measures

We return to the setting of distributions p and q on the same set X . Define the one-variable binary
entropy function H2 : [0, 1]→ [0, 1] by

H2(t) = t log
1
t
+ (1− t) log

1
1− t

,

where, as usual, we take 0 log 0 = 0. Thus, the function vanishes at 0 and 1 and is symmetric
around 1

2 : H2(t) = H2(1− t). Some straightforward calculus shows that

• H2 is concave on (0, 1);

• H2(t) is maximized at t = 1
2 , where H2(

1
2 ) = 1;

• H2(t) has infinite derivative at t = 0;

• H2(
1
2 − δ) = 1−Θ(δ2), for small positive δ.

The following is a less straightforward property of H2.
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Lemma 1.12 (Lin’s inequality [Lin91]). H2(t) ≤ 2
√

t(1− t).

Theorem 1.13 (Pinsker’s inequality). DKL(p ‖ q) ≥ 2
ln 2

DTV(p, q).

Proof. This is worked out as a homework problem.

Theorem 1.14 (Vajda’s inequality). DJS(p, q) ≥ 1−H2

(
1−DTV(p, q)

2

)
.

Proof. We start with two useful formulas.

DJS(p, q) =
1
2 ∑

x∈X

(
px log

2px

px + qx
+ qx log

2qx

px + qx

)
(12)

=
1
2 ∑

x∈X
(px + qx)

(
log 2 +

px

px + qx
log

px

px + qx
+

qx

px + qx
log

qx

px + qx

)
=

1
2 ∑

x∈X
(px + qx)

(
1−H2

(
px

px + qx

))
= 1− ∑

x∈X

px + qx

2
H2

(
px

px + qx

)
, (13)

where (12) follows directly from eqs. (7) and (8); and

DTV(p, q) = ∑
x∈X

|px − qx|
2

= ∑
x∈X

(
px + qx

2
−min{px, qx}

)
= 1− ∑

x∈X
min{px, qx} . (14)

Since H2 is symmetric around 1
2 and concave on (0, 1), Jensen’s inequality gives

∑
x∈X

px + qx

2
H2

(
px

px + qx

)
= ∑

x∈X

px + qx

2
H2

(
min{px, qx}

px + qx

)

≤ H2

(
∑

x∈X

px + qx

2
min{px, qx}

px + qx

)
= H2

(
1−DTV(p, q)

2

)
,

where the final step uses (14). Combining this with eq. (13) completes the proof.

Theorem 1.15. DJS(p, q) ≥ h2(p, q).

Proof. By eq. (13) and Lin’s inequality (Lemma 1.12),

DJS(p, q) ≥ 1− ∑
x∈X

px + qx

2
· 2
√

px

px + qx

qx

px + qx
= 1− ∑

x∈X

√
pxqx = h2(p, q) ,

where the final step uses eq. (10).
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2 A Unified Treatment of Communication Complexity Measures

Consider a general two-player communication protocol Π on input space X ×Y , where the play-
ers may use both public and private randomness. Given an input (x, y) ∈ X × Y , a coin string
rA ∈ {0, 1}`A private to Alice, a coin string rB ∈ {0, 1}`B private to Bob, and a public coin string
r ∈ {0, 1}`, the protocol Π will generate a certain transcript; let Π(x, y, rA, rB, r) denote this tran-
script. By definition, this transcript ends with the output of the protocol explicitly given; let out(τ)
denote the output corresponding to a transcript τ. Let (RA, RB, R) denote a random setting of the
coin strings; w.l.o.g., we may assume that (RA, RB, R) ∈R {0, 1}`A+`B+`. A public-coin protocol is
one with `A = `B = 0 and a private-coin protocol is one with ` = 0. A deterministic protocol is
one with `A = `B = ` = 0.

Consider a function f : X × Y → Z and a distribution µ on X × Y . Let (X, Y) ∼ µ. The
worst-case and µ-distributional errors of Π in computing f are defined as follows, respectively.

err(Π, f ) := max{Pr[out(Π(x, y, RA, RB, R)) 6= f (x, y)] : (x, y) ∈ X ×Y} , (15)
errµ(Π, f ) := Pr[out(Π(X, Y, RA, RB, R)) 6= f (X, Y)] . (16)

Observe that if Π is deterministic then err(Π, f ) ∈ {0, 1}, and moreover err(Π, f ) = 0 iff Π
computes f correctly on all inputs. When f is clear from context, we sometimes drop f from these
notations and simply write err(Π) and errµ(Π).

Let M = Π(X, Y, RA, RB, R); recall that (X, Y) ∼ µ. Let ‖τ‖ denote the length of the tran-
script τ. We define the cost, the µ-distributional cost, the µ-information cost, and the µ-external
information cost of Π as follows, respectively.

cost(Π) := max
{
‖Π(x, y, rA, rB, r)‖ : (x, y) ∈ X ×Y , (rA, rB, r) ∈ {0, 1}`A+`B+`

}
, (17)

costµ(Π) := E‖M‖ , (18)
icostµ(Π) := I(M : X | YR) + I(M : Y | XR) , (19)

eicostµ(Π) := I(M : XY | R) . (20)

The following lemma relates these cost measures.

Lemma 2.1. For all Π and µ as above: icostµ(Π) ≤ eicostµ(Π) ≤ costµ(Π) ≤ cost(Π).

Proof (Sketch). The final inequality is obvious.
We prove the first inequality. Let M1, M2, . . . denote the successive bits of M. Let TA = {t :

Alice sends the bit Mt} and TB = {t : Bob sends the bit Mt}. Notice that when t ∈ TB, we have
I(X : Mt | M1 . . . Mt−1YR) = 0. Therefore, using the chain rule for mutual information,

icostµ(Π) = ∑
t≥1

I(X : Mt | M1 . . . Mt−1YR) + ∑
t≥1

I(Y : Mt | M1 . . . Mt−1XR)

= ∑
t∈TA

I(X : Mt | M1 . . . Mt−1YR) + ∑
t∈TB

I(Y : Mt | M1 . . . Mt−1XR) . (21)

At this point, we could prove the weaker statement icostµ(Π) ≤ cost(Π) by noting that each term
in (21) is at most H(Mt), for some t, and since Mt is a single bit, H(Mt) ≤ 1. Instead, to prove the
first inequality of the lemma, we use the chain rule and split the resulting sum into two parts:

eicostµ(Π) = ∑
t∈TA

I(XY : Mt | M1 . . . Mt−1R) + ∑
t∈TB

I(XY : Mt | M1 . . . Mt−1R)

≥ ∑
t∈TA

I(X : Mt | M1 . . . Mt−1YR) + ∑
t∈TB

I(Y : Mt | M1 . . . Mt−1XR) ,
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where we have used I(AB : C) ≥ I(A : C | B). Comparing the above with (21) completes the
proof.

We prove the second inequality. Since, for each r ∈ {0, 1}`, the set of transcripts of Π condi-
tioned on R = r must be a prefix code,

eicostµ(Π) = I(M : XY | R) ≤ H(M | R) ≤ E‖M‖ ,

where the final inequality uses the (nontrivial) theorem that the expected length of a prefix code
is at least the entropy of the source.

Based on our various cost measures we define communication complexity measures for func-
tions that define two-party communication problems.

D( f ) := min{cost(Π) : Π is deterministic, err(Π, f ) = 0} (22)
Rε( f ) := min{cost(Π) : err(Π, f ) ≤ ε} , (23)

Dµ
ε ( f ) := min{cost(Π) : errµ(Π, f ) ≤ ε} , (24)

ICµ
ε ( f ) := inf{icostµ(Π) : err(Π, f ) ≤ ε} , (25)

EICµ
ε ( f ) := inf{eicostµ(Π) : err(Π, f ) ≤ ε} . (26)

The minimum in (23) is achieved by a public-coin protocol because privateness of randomness
plays no role in the definition. In contrast, eqs. (25) and (26) require fully general randomized
protocols because the information cost measures treat public and private randomness differently.
By an averaging argument, the minimum in (24) is achieved by a deterministic protocol, justifying
the “D” in the notation.

The following corollary of Lemma 2.1 is immediate.

Corollary 2.2. For all f and µ as above and all ε ≥ 0: ICµ
ε ( f ) ≤ EICµ

ε ( f ) ≤ Rε( f ) ≤ D( f ).

Yao’s minimax lemma, applied to these notions of cost and error, gives us another relation.

Lemma 2.3. For all f as above and all ε ≥ 0: Rε( f ) = max{Dµ
ε ( f ) : µ is a distribution on X ×Y}.
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3 Lower Bound for Disjointness via Information Complexity

We shall lower bound R(DISJn) by thinking of DISJn as a direct-summed version of AND1, where
AND1(x, y) := x ∧ y defines the communication problem of computing the logical AND of two
bits: x, held by Alice, and y, held by Bob. Note that, for x = x1 . . . xn and y = y1 . . . yn, we have

DISJn(x, y) = ¬
n∨

j=1

xj ∧ yj = ¬
n∨

j=1

AND1(xj, yj) .

Let Π be a protocol for DISJn with err(Π) ≤ ε. Let λ denote the following distribution on the
input space for AND1:

λ(0, 0) = λ(0, 1) = λ(1, 0) =
1
3

; λ(1, 1) = 0 . (27)

Let λn denote the distribution obtained by taking n i.i.d. copies of λ (i.e., λ ⊗ · · · ⊗ λ); it is a
distribution on the input space for DISJn. Our proof strategy will be to construct certain protocols
Π1, . . . , Πn for AND1, each with error at most ε, and establish that

icostλn
(Π)

1©
≥

n

∑
j=1

icostλ(Πj) ≥ n · ICλ
ε (AND1)

2©
≥ n · φ(ε) = Ω(n) , (28)

for an appropriate function φ. Taking the infimum over all ε-error DISJn protocols then establishes
that ICλn

ε (DISJn) = Ω(n) and, by Corollary 2.2, that Rε(DISJn) = Ω(n).
The middle inequality in (28) is trivial. The inequality marked 1©, establishing a direct sum

property, is proved using a simulation argument. The inequality marked 2© is proved using an
analytic argument involving distances between probability distributions.

3.1 Direct Sum via Simulation

This part has very little to do with the DISJn function, so we shall generalize the setup considerably.
Let f : X × Y → Z be a function and let µ be a probability distribution on X × Y . Let g : X n ×
Yn → Z ′ be another function. Our generalization will relate certain information complexities of
f and g under the following circumstance: suppose there exists a “recovery” function h : Z ′ → Z
such that

∀ j ∈ [n] : Pr[h(g(X1:j−1xXj+1:n, Y1:j−1yYj+1:n)) 6= f (x, y)] ≤ δ , (29)

where the pairs {(Xi, Yi)}i∈[n]\{j} are i.i.d. and each (Xi, Yi) ∼ µ. The notation Xa:b is shorthand for
the sequence XaXa+1 · · ·Xb, and the juxtaposition of the Xis denotes concatenation (rather than
multiplication). This models our particular situation with DISJn using the following instantiation:

X = Y = Z = Z ′ = {0, 1}, f = AND1, g = DISJn, h = NOT, µ = λ, δ = 0 .

Let Π̂ be an ε-error protocol for g. We shall construct protocols Π̂1, . . . , Π̂n for f , each with error at
most ε + δ, such that

icostµn
(Π̂) ≥

n

∑
j=1

icostµ(Π̂j) , (30)

implying
ICµn

ε (g) ≥ n · ICµ
ε+δ( f ) .

We now specify the protocols Π̂j.
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Protocol Π̂j(x, y)

• The players publicly sample bits X1:j−1 and Yj+1:n, all mutually indepen-
dent, so that each Xi and each Yi are distributed according to the first and
second marginals of µ, respectively.
• Alice privately samples Xj+1:n from an appropriately conditioned distri-

bution so that ((Xj+1, Yj+1), . . . , (Xn, Yn)) ∼ µn−j.
• Bob privately samples Y1:j−1 from an appropriately conditioned distri-

bution so that ((X1, Y1), . . . , (Xj−1, Yj−1)) ∼ µj−1.
• The players run Π̂(X1:j−1xXj+1:n, Y1:j−1yYj+1:n), modifying the output

from z (say) to h(z).

The construction of Π̂j, together with eq. (29), ensures that err(Π̂j) ≤ err(Π̂) + δ ≤ ε + δ.
We turn to proving eq. (30). Let R and R(j) denote the public random strings of Π̂ and Π̂j,

respectively. Let (X1:n, Y1:n) ∼ µn be a random input to Π̂, leading to a transcript M. Let M(j)

denote the transcript when (Xj, Yj) is fed to Π̂j. Then

I(M(j) : Xj | YjR(j)) = I(M : Xj | YjX1:j−1Yj+1:nR)

≤ I(MY1:j−1 : Xj | YjX1:j−1Yj+1:nR)

= I(Y1:j−1 : Xj | YjX1:j−1Yj+1:nR) + I(M : Xj | Y1:j−1YjX1:j−1Yj+1:nR)

= 0 + I(M : Xj | X1:j−1Y1:nR) ,

where the vanishing of the first term is because the (Xi, Yi) pairs are mutually independent. Using
the chain rule for mutual information,

n

∑
j=1

I(M(j) : Xj | YjR(j)) ≤
n

∑
j=1

I(M : Xj | X1:j−1Y1:nR) = I(M : X1:n | Y1:nR) . (31)

An analogous argument that flips the roles of Xs and Ys and uses the chain rule “from the other
end” gives us

n

∑
j=1

I(M(j) : Yj | XjR(j)) ≤
n

∑
j=1

I(M : Yj | X1:nYj+1:nR) = I(M : Y1:n | X1:nR) . (32)

Using eqs. (31) and (32), we get

icostµn
(Π̂) = I(M : X1:n | Y1:nR) + I(M : Y1:n | X1:nR)

≥
n

∑
j=1

(
I(M(j) : Xj | YjR(j)) + I(M(j) : Yj | XjR(j))

)
=

n

∑
j=1

icostµ(Π̂j) .

which proves the desired generalization of step 1© in eq. (28).

3.2 Relating Information Complexity to Distances Between Distributions

We now justify step 2© in eq. (28). We need to show that ICλ
ε (AND1) = Ω(1), for small enough

ε. To this end, let Ξ be an ε-error protocol for AND1 that uses only private coins. We shall prove
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that icostλ(Ξ) ≥ φ(ε) for some definite function φ. This inequality will then extend to general
protocols by averaging over all settings of its public random string.

Let (X, Y) ∼ λ be a random input to Ξ and let M be the resulting random transcript. For
i, j ∈ {0, 1}, let pij denote the distribution of M conditioned on (X, Y) = (i, j). Recalling the
definition of λ in eq. (27),

I(M : X | Y) = 2
3

I(M : X | Y = 0) +
1
3

I(M : X | Y = 1) =
2
3

I(M : X | Y = 0) .

Using this and an analogous calculation for I(M : Y | X),

icostλ(Ξ) = I(M : X | Y) + I(M : Y | X)

=
2
3
(I(M : X | Y = 0) + I(M : Y | X = 0))

=
2
3

(
DJS(p00, p10) + DJS(p00, p01)

)
≥ 2

3

(
h2(p00, p10) + h2(p00, p01)

)
≥ 1

3

(
h(p00, p10) + h(p00, p01)

)2

≥ 1
3

h2(p01, p10)

=
1
3

h2(p00, p11) ,

where the last step uses the Cut-and-Paste Lemma.
Since Ξ solves AND1 with error at most ε, it follows that DTV(p00, p11) ≥ 1− 2ε. By the result

of a homework exercise, we conclude that h2(p00, p11) ≥ 1− 2
√

ε. Thus, we have

icostλ(Ξ) ≥ 1− 2
√

ε .

3.3 Final Result and Discussion

Returning to the initial outline in eq. (28), we have shown the following

Theorem 3.1 (Disjointness lower bound). Rε(DISJn) ≥ 1
3 (1− 2

√
ε)n.

This is a rather elegant bound! However, there is no reason to believe that it is tight. In fact,
we know that is not tight at either of the two extremes: when ε ≈ 0 or when ε ≈ 1

2 .
In general, let CDISJ

ε denote the “correct” constant in the asymptotic bound on Rε(DISJn), i.e.,

CDISJ
ε = lim sup

n→∞

Rε(DISJn)

n
.

The above proof shows that CDISJ
ε ≥ 1

3 (1− 2
√

ε). As ε→ 0, this bound approaches 1
3 . Remarkably,

Braverman et al. [BGPW13] showed that

lim
ε→0

CDISJ
ε = max

{
x

ln 2
+

x2

1− 2x
log

x
1− x

+ (1− 2x) log
1− x
1− 2x

: x ∈ [0, 1]
}
≈ 0.482702 .

Let us denote the above constant by CDISJ. Dagan et al. [DFHL18] extended this result to all small
enough ε by showing that, as ε→ 0, one has CDISJ

ε = CDISJ −Θ(H2(ε)).
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At the other end, when ε ≥ 1
4 , Theorem 3.1 becomes trivial. To obtain a meaningful lower

bound on Rε(DISJn), with ε ≈ 1
2 , we can turn to the standard technique of error reduction by

repetition. Based on standard Chernoff bounds, this gives R 1
2−δ(DISJn) = Ω(δ2n). Remarkably,

this is not tight. Braverman and Moitra [BM13] used further information theoretic techniques to
show that the correct asymptotics are R 1

2−δ(DISJn) = Θ(δn).
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