
Theoretical Computer Science 12 (1980) 3 15-323
@ NorthI-Holland Publishing Company

SELECTION AND SORTING WITH LPMITED STORAGE ,

J.I. MWNRO”
Department of Computer Science, University of Waterloo, Ontario, Canada

M.S. PATERSON
Department of Computer Science, University of Warwick, Coventry, United Kingdom

Communicated by A. Schiinhage
Received June 1979
Revised March 1980

Abstract. When selecting from, or sorting, a file stored on a read-only tape and the internal storage
is rather limited, several passes of the input tape may be required. We study the relation between
the amount of internal storage available and the number of passe:s required to select the Kth highest
of N inputs. We show, for example, that to find the median in two passes requires at least n(N1’2)
and at most O(N”* log IV) internal storage. For probabilistic methods, 8(N1”) internal storage is
necessary and sufficient for a single pass method which finds the median with arbitrarily high
probability.

1. Introduction

As a paradigmatic study of effects of internal storage limitations on large-scale
data-processing tasks, we consider problems of searching and sorting in data stored
on a one-way read-only tape when the amount of random.-access working space is
severely constrained. We shall quantify rather closely the relation between the
number of passes over the input file which are required for these tasks and the
amount of storage available for a given size of the file. In several cases the upper
bounds are demonstrated by new sampling algorithms of some practical interest.

In our computational model the data is a sequence of 1rl distinct eltiments stored on
a one-way read-only tape. An element from the tape can be read into one of S
locations of random-access storage. The elements are from some totally ordered set
(for example the real numbers) and a binary comparison can be made at any time
between any two elements within the random-access storage. Initially the storage is
empty and the tape is placed with the reading head at the beginning. After each pass
the tape is rewound to this position with no reading permitted.

* This author was partially supported by a Senior Visiting Fellowship from the Science Resezch Council
while visiting the !_rniversity of Warwick.

315

316 J.I. Munro, MS. Paterson

1.1. Notational note

For functions of several arguments we shall write f(X) = O(g(X)) when 3c PO
such that If(X)1 < cg(X) for all X except those naturally or explicitly excluded. We
also use f = R(g) for g = O(f); and we use f = 8(g) for f = O(g) and g = O(f).

In Section 2 we present results concerning the problem of sorting the data, where,
in view of the limitations imposed by our model, this must be considered as the
determination of the sorted order rather than any actual rearrangement. For P-pass
algorithms we show that @(N/P) storage locations are necessary and sufficient.

The greater part of this paper is occupied with the selection problem of retrievimg
for some given K, the Kth highest among N input elements. For clarity and
convenience we adopt a terminology of altitude in respect of the ordering, e.g. we use
terms such as ‘highestl, ‘below’, ‘lower than’. The most interesting special case of this
is finding the median (i.e. when K = [$I). By symmetry we may always assume that
KG [iNI.

It is easy to show that K + 1 locations are necessary and sufficient to retrieve the
Kth highest element (1 s K G [$V]) in a single pass. Algorithms using this minimal
storage are studied in [l], where it is shown that for the median only 8(N)
comparisons are needed, whereas for K - arN, ar fixed, 0 < a! < 4, the retrieval of the
Kth highest requires 5 (N log N) comparisons.

In contrast, a two-pass probabilistic method using only 0(N2’3) storage and
$N + o(N) comparisons is presented in [2]. Making use of an internal randomizer, it
finds the Kth highest element with an arbitrarily great probability, which is indepen-
dent of the order of the inputs.

The principal results obtained in this paper are upper and lower bounds which
show the amount of storage required by a P-pass deterministic selection algorithm to
be roughly N’rp. Other results are that under the rather strong assumption that all
input orderings are equally likely, for a single-pass algorithm with a high expectation
of selecting the median, 6(,?@‘*) locations are necessary and sufficient.

2. Elementary results

Mere, as throughout the paper, S denotes the number of storage locations
available. Since comparisons can only be made within these locations, we will assume
always that S 3 2. A naive sorting algorithm determines in its first pass the highest
S - 1 elements of the input, and their relative order, and then in successive passes it
ignores any elements ranked in previous passes in order to determine the ranks of the
next S - 1 highest elements. This algorithm requires only [(N - l)/(S - l)l passes.
We note that to ‘ignore’ previously ranked elements requires the retention of a large
amount of information by the program. A large ‘program memory’ is inconsistent
with our storage limitation for any practical application. If we suppose that the
ranking may be output as it is being determined &hen an algorithm with very small

Selection and sorting with limited storage 317

program memory may be obtained at the cost of just one extra storage location. This
location is to hold the lowest element ranked so far and each new data element is
compared with this to determine whether or not it should be ignored. Nearly all thz
algorithms to be described will use this techhlL1 -iflue in order to remain within the
domain of practicality.

We give a simple lower bound argument to establish the following result.

Theorem 1. l%e least storage required by any P-pass sorting algorithm for N Gments is
mvph

Proof. In view of the algorithm given above we require only a lower bound. ‘Suppose
that the ordering of the data is such that lst, 3rd, Sth, . . . highest elements are in the
first half of the tape, whereas the 2nd, 4th, 6th, . . . are in the second half. Since a valid
algorithm must at some time make a direct comparison between the (2r - 1)st and
(2r)th elements for r = 1, ., . . , [$NJ , either the odd-ranked element must be carried
in storage at some forward transition across the midpoint of the tape or the
even-ranked element must be retained during some intermediate rewind. If P passes
are used by an algorithm for this case, we can argue that

(2P - 1)s 3 [;N].

Hence S > N/4P.

3. Multi-pass algdthms for selection

When S is more than about (log N)2 an efficient algorithm may be designed as
follows. At the beginning of each pass a pair of elements, filters, between which the
required element is guaranteed to lie, is retained in the storage, though their precise
ranks may so far be undetermined. At the start of the zlgorithm we may pretend that
‘ideal’ elements representing *OO fulfil this role. During the pass any elements not
between the filters are used merely to establish the exact ranks of the filters. From the
remainder a suitably constructed sample is retained from which a new pair of filters is
selected.

For the initial pass the number of elements between the filters is N, and for the final

pass this is to be reduced to at most - 2 so that all such elements can be retained for
a final selection. With the deta.ils of the algorithm we shall establish the following

relation.

emma 1. If at most n elements lie between the filters at the beginning of a pass, then for
the following pass this number is O(n(log nJ2 JS).

A simple estimation from this lemma yields the next upper bound.

318 J.I. Munro, MS. Paterson

Thearem 2. A P-pass algorithm which selects the Kth highest of N elements requires
storage at most O(N’lP(log N)2-2’P).

32 ButYine of the algorithm

For i,onie fixed even s, a sample at level i will be a sorted sljbset of s elements
chosen from a specified set of 2’s elements, its population according to the following
scheme.

A sample at level 0 consists of the whole set of 2’s elements in sorted order. A
sample at level i + 1 is formed by splitting the population of 2% elements into equal
halves, taking a sample at level i from each half, ‘thinning’ each by retaining only the
second, fourth, sixth, D . . elements from the top in each, and then merging the two
subsamples to form one sorted sample.

In one pass with n elements, n s 2’s, between the filters initially, the algorithm
builds a sample at level r from these elements (with imaginary elements added to
make up the number to 2’s). A recursive procedure is used, forming two samples at
level r- 1 from the first and second halves of the set of elements as they are
encountered. A stack for implementing this recursion has depth at most r.

TEre maximum storage required is for a sub-sample (consisting of even-positioned
elements of a sample) for each level below the fib, for one ‘working sample’ and for
the pair of filters. This is at most $rs + s +- 2. We choose s = 2 [&S/log nl and
r _- yog(n/s)1 s o that n s 2’s and the storage required is at most S, when S is
sufficiently large. (We can assume S 3 O((log n:b2).) The storage requirement of the
alg,rithlla can be reduced by a constant factor if samples are combined five at a time
instead of two at a time.

We shall show that a sample deserves its name in that it contains a reasonably well
spaced selection from the total order of its population. To this end consider the jth
element from the top in a sample at level i. We denote by Lij, Mii respectively the
least, and most numbers of elements from its corresponding population which can
appear strictly above it in the total order.

Lemma 2. Lij = j2’ - 1, A& = (i + j - 1)2’.

Proof. Clearly, for 1 Gj s s, L()j = Moi = j - 1. We use the convention that Lie = - 1
for all i 2 0. From i > 1, j > 1, we may then verify that

Lij = min{Li-l,2p + Li-l,& + l}, p+q=j, p>o, qao

and

Mk = max{Mi-l,2p + Mi-l,2q+z}, p+q=j, p>O, 420.

From. these equations the result may be proved inductively.

For a population ol size at most 2’s from which we wish to select the itth highest we
shall choose as new filters, the uth and vth elements of the final sample at level r,

Selection and sorting with limited storage 319

where u, o are the greatest and least integers respectively such that

k-UM,,=(r+u-1)2*, i.e.u= [k/27-r

and

k-lsL,=v2’-1, i.e.v= [k/2’].

Th? .kth element must then be one of these elements or lie between them in the order.

Proof of Lemma 1. The number of elements between the uth and vth elements of the
final sample, as defined above, is at most

M-o - L, -l=(r-1)2’+(v-u)2’=(2r-1)2’

s 4mls = O(n (log n)‘/S)
by the choice of s, r.

3.2. Very small storage

It is clear that the above algorithm requires S 2 R((log N)2). For smaller valumc of
S, one might employ the more practical of the ‘sorting’ algorithms and terminate it
after [(K - l)/(S - 2)1 passes. This is the only algorithm we know for very small
storage which does not require extensive program memory. If we disregard practical
limitations and allow an algorithm to remember an arbitrary amount of information
about previous comparisons, we can prove the following upper bound.

Theorem 3. For 2 s S s O((log N)2), there is a class of selection algorithms which use
at most O((log N)3/S) passes.

Proof. The algorithms simulate each pass of the algorithm of Theorem 2 by several
passes with smaller storage. The comparisons performed in one pass of the original
algorithm can be understood in correspondence with a binary tree of height r. At the
leaves are 2’ level 0 samples of size s = [log nl . At successive levels of the tree pairs
of adjacent samples are thinned and merged until the final sample at level r is
reached.

With storage S equal to s, all the operations at one level of the tree can be carried
out in one pass, whereas with S > s, it is possible to execute @(S/s) levels at once.
When S < s, a single level can be completed in 8(s/S) passes. The sorting and
merging operations are done by the naive I r;;~;-pass sorting algorithm described in

Section 2, applied simultaneously to each sample. ‘rhe memory required by the
program to record the partial progress during such an operation would be intolerable
in practice. However in all cases where 2 G S c Oi(log N)*) the total number of
passes to simulate one pass before is @((log N)2/S)C> The total of passes for the
selection problem is there

320 J.I. Munro, M.S. Paterson

4. Lower bounds for mu&i-pass selection

To show that the upper bounds derived in the previous section are close to optimal
we here present corresponding lowe: bounds. Our main proof uses the idea of the
‘Adversary’ who, knowing the innermost workings of our algorithm, devises an
ordering of the input to confound it. He may also supply us with any extra
information whatsoever, which cannot of course adversely affect the performance of
the algorithm but is designed to facilitate the proof.

Theorem 4. Any P-pass algorithm to determine the median (or Kth highest for
$N 2 K = O(N)) of N elements req:sires at least n(N”‘) storage locations.

Corollary 1. The minimum storage Sfor a two-pass algorithm satisfies

R(N’/*)G~O(N”*loghl).

Proof. Immediate from Lemma 1 and Theorem 4.

Corollary 2. Provided log S 2 n((log N log log N)‘/*), the maximum number of
passes required is log N/log S + O(l). while for log log N = o(log S) we have P -
log N/log S.

Proof. Immediate from Theorems 2 and 4.

The proof of Theorem 4 follows at once from the following Lemma which
establishes that after one pass of any (median-finding) algorithm using S locations
there remains to be done a computation at least as hard as finding the median for an
input of size approximately N/2S.

Lemma 3. For any S-location algori::hm on N input elements there is an ordering of the
input tape so that after the first pass there is a set X of inputs with the following
properties:

(i) no element of X remains in 3 torage,
(ii) no orderings between elements of X are known,

(iii) the median of the original set is ;he median of X,
(iv) X contains at least [N/(2& l)] elements.

Proof. Without loss of generality the algorithm reads the first S inputs into storage
and decides which one to discard as the {S + 1)st input is read. The Adversary ensures
that this (S + 1)st element stands in the same relative ordering with respect to the
remaining S - 1 elements in storage c’ls the one it replaces. This strategy for the
Adversary is followed repeatedly, replacing each discarded element by a new
element which is effectively indistirrgui:;hable. For x - [N,/(2S - l)j , as the (Sx + l)st

Selection and sorting with limited storage 321

element is about to be read, at least one of the storage locations has had discarded
from it a set X of at least x elements between which no comparisons have been made
and no orderings can yet be deduced. It may bc verified that the relative ordering of
the remaining N - Sx elements may be designed so that the median element is the
median of X.

Whilst the asymptotic constant af # in this lemma can be raised in In 2, and even
higher, by a more refined argument, an upper limit of this approach is marked by the
trivial algorithm, which inputs and discards S at a time and leaves ‘incomparable’ sets
of size at most [N/S].

5. Sellection algorithms that ‘nearly always’ succeed

If we make the assumption (not required in [2]) that all input orderings are equally
likely and we are willing to tolerate some small probability, say 10V6 of failure, then
the amount of storage required can be much reduced. For example a single-pass
median algorithm finds B(Nl’*) storage necessary and sufficient.

5.1 Probabilistic algorithms for selecting the median

For a suitable choice of storage size S, the algorithm maintains in storage for as
long as it can S - 1 elements whose ranks among those read thus far are consecutive
and as close to the current median as possible. To this end it keeps two counts H and
L, both initially zero, of the numbers of elements which have so far been discarded
above and below, respectively, the consecutive segrGcnt retained. Under our
assumption of equal likelihood, the probability that 3 new element read lies above all
those retained is precisely (H + l)/(H + S + L). In this case the element must be
discarded and H incremented by one. The case where it lies below the retained
segment is similar. With probability (S - 2)/(H + S + L), the new element can be
inserted strictly within the segment and either the highest or lowest of those retained
is chosen for discarding according as H <L or H 2 L respectively.

At the end of the tape the median has been retained and determined provided
H + 1 G [iN] G N -L. We have only to estimate the size of S required to guarantee
this result with high probability. The progress of the algorithm can be viewed as a
random walk o the integer variable D = H - L starting from the origin and a
sufficient condition for the median to be found is that IDI C. S - 1 throughout. For any
E > 0, there is a constant C such t t during the first C’S* steps of a random walk
about the origin with equal prob ies of a step to the right or left, the probability
of the random variable ever attaining magnitude S -- 1 is at most 8 (see [3

on [-(S - 1), S - l] for our a
n probabilities vary with

e origin the probability of ‘escape’, i.e.

322 J.1. kiunro, MS. Paterson

leaching A (S - l), before some fixed time is an increasing function of 101. Let Pd,l be
the probability that at time t with IDl= d the value of IDI is increased by 1, and so
1 - O& is probability of It is to show the probability escape
at T‘ is increasing function each P Since for walk it be verified
that

P forO<d<S-1andalltaO d,t - 2

the result quoted above for the equal probabilities walk still holds.
‘rhe algorithm described can be used as the basis of a multi-pass algorithm in the

following way. For suitably chosen constants Cl, C’2 depending on g, the probability
that the median of the whole input set lies between the extreme elements of the
segment retained after C1S2 steps is very high. From this point on, for the remainder
of the pass, the same S - 1 elements are retained in storage and their ranks are found
by comparisons with the rest of the input. If one of the retained elements is the
median, the algorithm terminates; if not, the number of elements sharing the same
‘gap’ as the median with respect to the stored elements can be shown to be at most
C2N/S2 with high probability. This set of elements satisfy the same assumption as to
randomness as the initial set and so the same procedure may be used for further
passes. Hence

Theorem 5. For any E > 0, P 2 1 there is a P-pass median-finding algorithm with
probability of failure at most E which uses only 0(N1’2P) storage.

5.2. Lower bound for probabilistic algorithms

Theorem 6. There is an E > 0, such that any one-pass algorithm which finds the
median with probability of failure less than E requires at least a(N”2) storage.

Proof. Consider the situation after [$Nl elements have been read. The probability is
at least half that the median is one of these, but only S of them can have been
retained. The most likely candidates are towards the middle but the straightforward
estim ation of a hypergeometric distribution [3] shows that for a subset of size S of
these elements to contain the median which probability above one quarter requires
S 2 f2(N"2).

Corollary 3. For a single-pass algorithm which nearly always finds the median,
8(N1’2) locations are necessary and suficient.

. Conclusions

Our aim has been to determine the precise computational requirements for
specific tasks of selecting from, or sorting, data presented on a read only input tape

Selection and sorting with limited storage 323

under a regime of limited interna; *storage. -We present new algorithms of some
practical interest as well as lower bound proofs which exploit the joint constraints on
internal storage and access to input data.

Our main algorithm for selection uses a novel sampling technique and can be
implemented easily to require’ only about N($ + log S) comparisons in all. The
upper and lower bounds on storage differ only y a factor of order (log N)* and give a
clear idea of the trade-off relation between the number of passes and the amLunt of
storage required.

The picture we have in the probabilistic case is much less complete. Theorem 6 is
readily extensible to give a lower bound of log log N - log Eog S - 0(1) passes if we
require that the only information retained from one pass to the next is a pair of filters
and their ranks. It seems likely that the upper bound may lbe reduced to about this
value but analysis of the algorithms we considered has so far proved intractable.

Acknowledgment

The authors wish to thank A. Schiinhage and a referee for suggesting improve-
ments to this paper.

References

[l] D.P. Dobkin, and J.I. Mum-o, Time and space bounds for selection problems, Proc. 5th International
Colloquium on Automata, Languages and Progranitming, July 1978, Udine, Italy.

[a] SC. Eisenstat, R.J. Lipton and J.I. Munro, Proba!$listic algorithms, to appear.
133 W. Feiler, An Introductkn to Probability Theory a,rd Its Applications: Vol. I (Wiley, New York, 3rd

ed., 1968).

