CS 10: Problem solving via Object Oriented Programming

Runtime complexity

Main goals

- Characterize runtime complexity
 - Work for memory too
- Compare list implementations

Agenda

1. Run-time complexity

2. Asymptotic notation

3. List analysis

Find an element in the list (unsorted)

27 11 3 42 18 7	15
-----------------	----

Find an element in the list (unsorted)

27 11 3 4	2 18 7 15
-----------	-----------

Search algorithm (linear search):

```
for idx i = 0 ... n-1
    if list.get(i) equals target
       return l
return -1 (not found)
```

Best case?

Worst case?

Find an element in the list (sorted)

						•
	-	4.4	4.5	4.0	27	40
3	/	11	15	18	2/	42
	•					ı

Find an element in the list (sorted)

|--|

Search algorithm (binary search):

```
min = 0

max = n-1

while min <= max

idx = (min + max) / 2

if list.get(i) equals target

return idx

if list.get(i) > target

max = idx-1

else

min = idx +1
```

Find the max element in the list (unsorted)

27 11 3 42 18 7	15
-----------------	----

Max algorithm:

```
max_value = list.get(0)
for idx i = 1 ... n-1
    if list.get(i) > max_value
        max_value = list.get(i)
return max_value

Worst case?
```

Find the max element in the list (sorted)

3 7 1	1 15	18	27	42
-------	------	----	----	----

Max algorithm

return list.get(0)

Best case?

Worst case?

Comparing algorithms

```
Search algorithm (linear search):
                                               Search algorithm (binary search):
for idx i = 0 ... n-1
                                               min = 0
   if list.get(i) equals target
                                               max = n-1
                                               while min <= max
      return I
return -1 (not found)
                                                     idx = (min + max) / 2
                                                     if list.get(i) equals target
                                                          return idx
                                                     if list.get(i) > target
                                                          max = idx-1
                                                     else
                                                          min = idx + 1
```

Comparing algorithms

```
Search algorithm (linear search):
```

```
for idx i = 0 ... n-1
    if list.get(i) equals target
       return i
return -1 (not found)
```

Worst case: check every item in the list

```
Search algorithm (binary search):
```

```
min = 0
max = n-1
while min <= max
     idx = (min + max) / 2
     if list.get(i) equals target
          return idx
     if list.get(i) > target
          max = idx-1
     else
          min = idx + 1
     Worst case: check half of
    the items in the list (though
```

more operations)

Comparing algorithms

```
Search algorithm (linear search):
```

```
for idx i = 0 ... n-1
    if list.get(i) equals target
    return i
return -1 (not found)
```

Max algorithm:

```
max_value = list.get(0)
for idx i = 1 ... n-1
    if list.get(i) > max_value
        max_value = list.get(i)
return max value
```

Best case, immediately found

No best or worst case, need to check entire list

How to compare efficiency?

Ideas:

- Time tests? But depends on specific hardware...
- Count # of operations? But will vary depending on size of list, and depends on exact implementation details...
- Do we compare best case, worst case, or average case?

How to compare efficiency?

 Key idea: typically in computer science, we measure how the # of operations grows with respect to the size of the input in the worst case

 "Size" is not always the length of a list or array, could also be the # characters in a string (as in SA-3), the # nodes in a binary tree, etc.

How to count operations?

- Examples of a single "operation":
 - Assign value to variable, x = 1
 - Access element in array, x = array[i]
 - Perform arithmetic operation, x = y + z, x++, etc.
 - Compare two values, x == y, x < y, etc.
- In general, a single CPU computation or single read/write from memory

```
Algorithm 1:

1+2+3+...+n

int sum(int n) {
    int total = 0
    for (int i = 1; i <= sum; i++) {
        total += i;
    }
    return total;
}
```

Algorithm 1:

```
1+2+3+...+n
```

```
int sum(int n) {
    int total = 0
    for (int i = 1; i <= sum; i++) {
        total += i;
    }
    return total;
}</pre>
```

```
# operations
1
1; n+1; n
n
```

Total= 3n+4 operations

```
Algorithm 2:
1+(1+1)+(1+1+1)+...+(1+1+...+1)
   int sum(int n) {
        int total = 0
       for (int i = 1; i \le sum; i++) {
            for (int j = 1; j <= i; j++) {
                 total += 1;
        return total;
```

Algorithm 2: 1+(1+1)+(1+1+1)+...+(1+1+...+1)

```
int sum(int n) {
    int total = 0
    for (int i = 1; i <= sum; i++) {
        for (int j = 1; j <= i; j++) {
            total += 1;
        }
    }
    return total;
}</pre>
```

```
# operations

1

1; n+1; n

n; (n+1)*(n+1)/2; n*(n+1)/2

n*(n+1)/2

1

Total= 3/2n<sup>2</sup>+11/2n+4

operations
```

Algorithm 3: n*(n+1)/2

```
int sum(int n) {
     return n * (n+1) /2;
}
```

```
# operations
4
```

Total = 4 operations

Algorithm 1: Algorithm 2: 1+2+3+...+n 1+(1+1)+(1+1+1)+...+ (1+1+...+1)

Algorithm 3: n*(n+1)/2

3n+4 $3/2n^2+11/2n+4$

Algorithm 1: Algorithm 2: Algorithm 3:
$$1+2+3+...+n$$
 $1+(1+1)+(1+1+1)+...+$ $n*(n+1)/2$ $(1+1+...+1)$ 3n+4 $3/2n^2+11/2n+4$ 4

Big O notation

- Ignore lower-order terms the biggest term will dominate as the input size n grows asymptotically
- Ignore constant factors depends on implementation details, not the core algorithm

Often run-time will depend on the number of elements an algorithm must process

Constant time O(1) – does not depend on number of items e.g., return first element of a list

Linear time O(n) – directly depends on number of items e.g., find value in a list

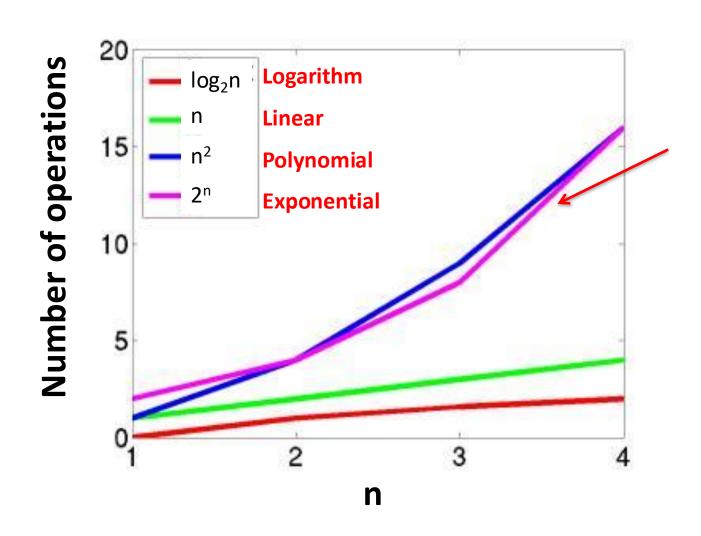
Polynomial time O(n^k) – depends on a polynomial function of number of items

e.g., nested loop in an image

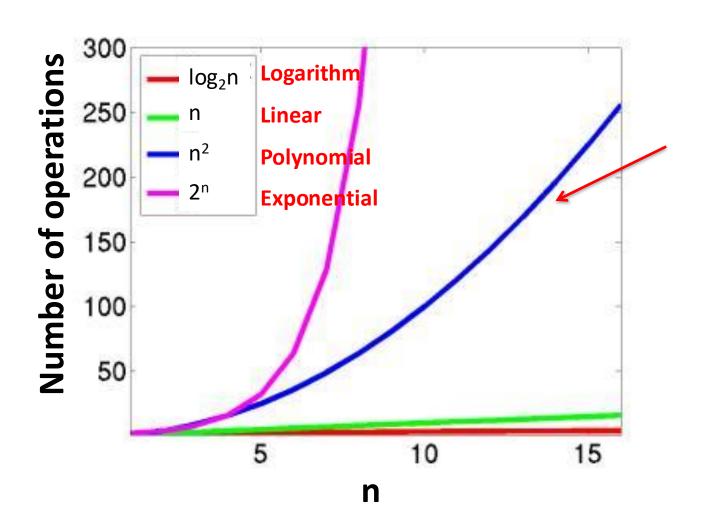
Logarithm time O(log n)— avoids operations on some items e.g., binary search

Exponential time O(2ⁿ) – base raised to power e.g., all possible bit combinations in n bits

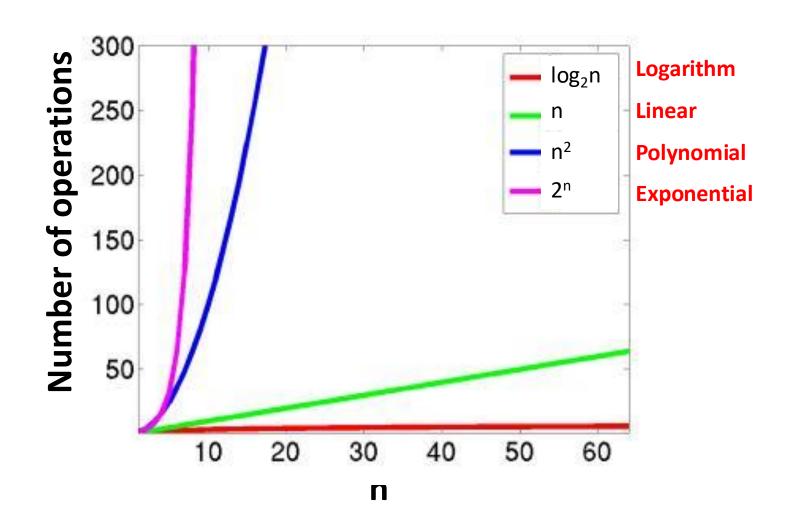
For small numbers of items, run time does not differ by much



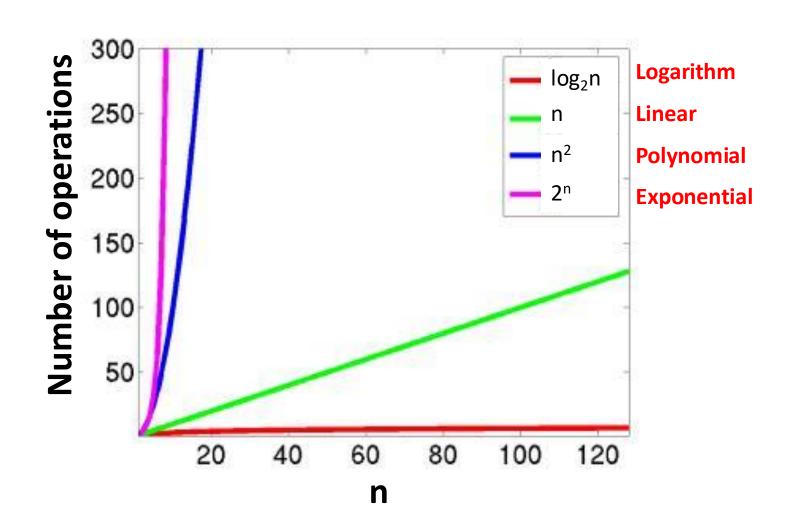
As *n* grows, number of operations between different algorithms begins to diverge



Even with only 60 items, there is a large difference in number of operations



Eventually, even with speedy computers, some algorithms become impractical



Sometimes complexity can hurt us, sometimes it can help us

Hurts usCan't brute force chess algorithm 2ⁿ

Helps usCan't crack password algorithm 2ⁿ

Agenda

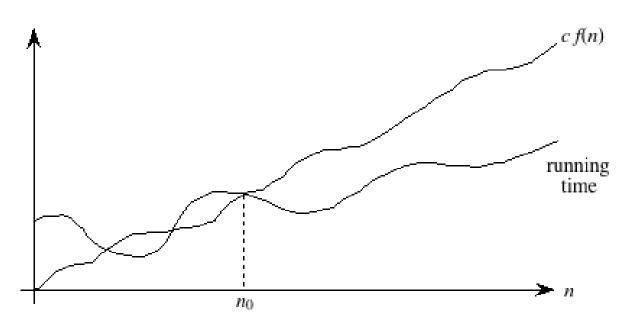
1. Run-time complexity

2. Asymptotic notation

3. List analysis

We can extend Big Oh to any, not necessarily linear, function

O gives an asymptotic <u>upper</u> bounds

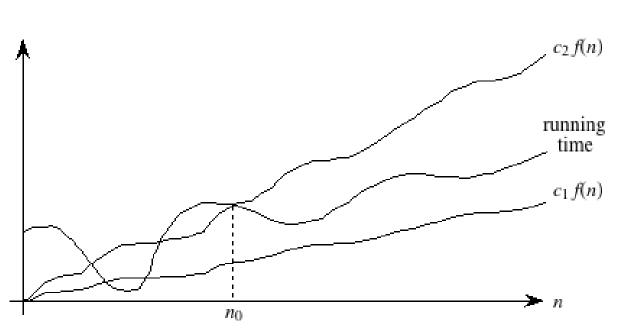


Run-time complexity is O(f(n)) if there exists constants n_0 and c such that:

- $\forall n \geq n_0$
- run time of size n is at most cf(n), upper bound
- O(f(n)) is the worst
 case performance for
 large n, but actual
 performance could be
 better

Run time can also be Ω (Big Omega), where run time grows at least as fast

 Ω gives an asymptotic <u>lower</u> bounds



Run-time complexity is $\Omega(f(n))$ if there exists constants n_0 and c_1 such that:

- ∀*n* ≥ *n*₀
- run time of size n is at $\underline{least} c_1 f(n)$, lower bound
- Ω(n) is the <u>best</u> case performance for large n, but actual performance can be worse

Comparison

Example: find <u>specific</u> item in a list Example: find <u>largest</u> item in a list

Comparison

Example: find *specific* item in a list

- Might find item on first try
- Might not find it at all (must check all n items in list)
- Worst case (upper bound) is O(n)

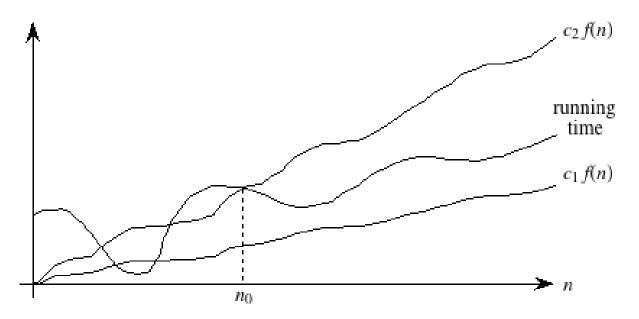
Example: find <u>largest</u> item in a list

- Must check each n items
- Largest item could be at end of list, can't stop early
- Can't do better than Ω (n)

We use Θ (Big Theta) for tight bounds when we can define O and Ω

Θ gives an asymptotic <u>tight</u> bounds

If an algorithm is O(f(n)) and $\Omega(f(n))$, then it is $\Theta(f(n))$



Run-time complexity is $\Theta(f(n))$ if there exists constants n_0 and c_1 and c_2 such that:

- $\forall n \geq n_0$
- run time of size n is at $least c_1 f(n)$ and at $most c_2 f(n)$
- Θ(n) gives a tight bound, which means run time will be within a constant factor
- Generally we will use either O or Θ

Comparison: which has a tight bound?

Example: find *specific* item in a list

- Might find item on first try
- Might not find it at all (must check all n items in list)
- Worst case (upper bound) is O(n)

Example: find <u>largest</u> item in a list

- Must check each n items
- Largest item could be at end of list, can't stop early
- Can't do better than Ω (n)

Comparison: which has a tight bound?

Example: find *specific* item in a list

- Might find item on first try
- Might not find it at all (must check all n items in list)
- Worst case (upper bound) is O(n)

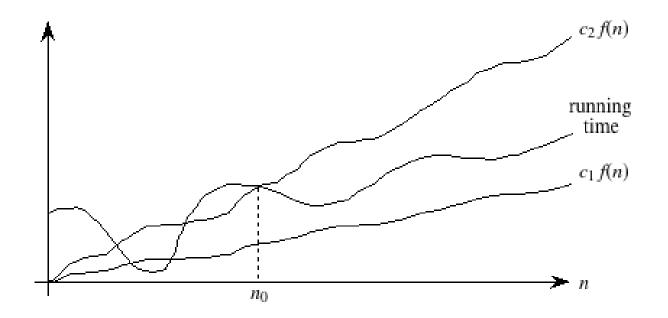
Example: find <u>largest</u> item in a list

- Must check each n items
- Largest item could be at end of list, can't stop early
- Can't do better than Ω (n)
- Worst case: must check each item, so O(n)
- Because Ω(n) <u>and</u> O(n) we say it is Θ(n)

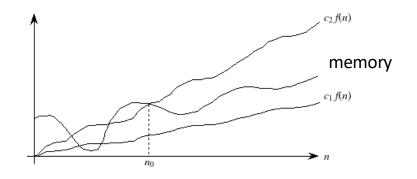
We ignore constants and low-order terms in asymptotic notation

Constants don't matter, just adjust c_1 and c_2

Low order terms don't matter either



These concepts are applicable for memory complexity as well



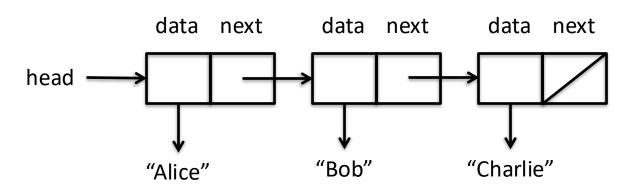
Agenda

- 1. Run-time complexity
- 2. Asymptotic notation

3. List analysis

Difference between singly linked list and array

Singly linked list

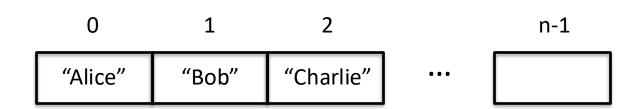


List ADT features

get()/set() element
anywhere in List
add()/remove() element
anywhere in List

No limit to number of elements in List

Array



Growing array is *generally* preferable to linked list, except maybe growth operation

Worst case run-time complexity

Linked list

Growing array

```
get(i)
set(i,e)
add(i,e)
remove(i)
```

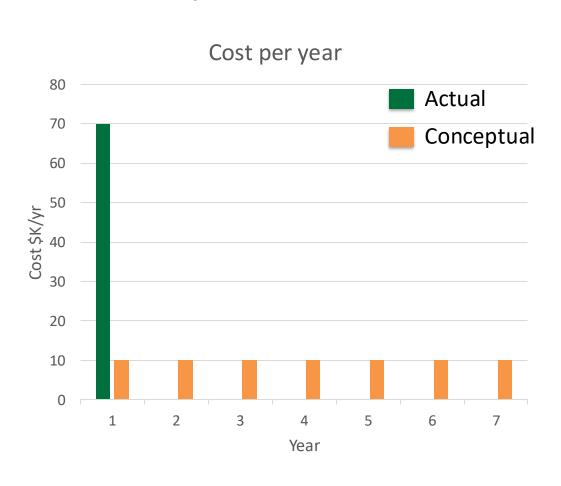

Growing array is *generally* preferable to linked list, except maybe growth operation

Worst case run-time complexity

	Linked list	Growing array
get(i)	O(n)	O(1)
set(i,e)	O(n)	O(1)
add(i,e)	O(n)	O(n) + growth
remove(i)	O(n)	O(n)

Amortization is a concept from accounting that allows us to spread costs over time

Amortized analysis



Accounting allows us to amortize costs over several years

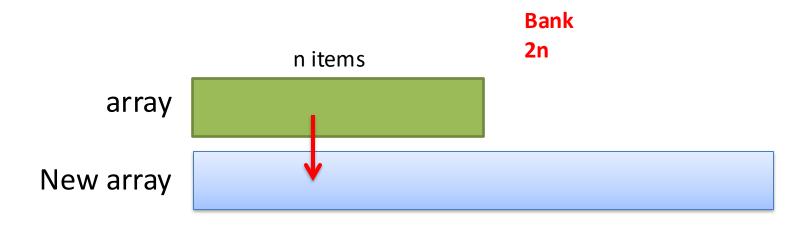
- Buy \$70K truck on year 1
- Truck is good for 7 years

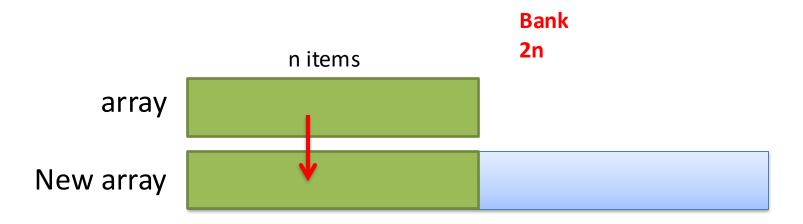
Amortized analysis

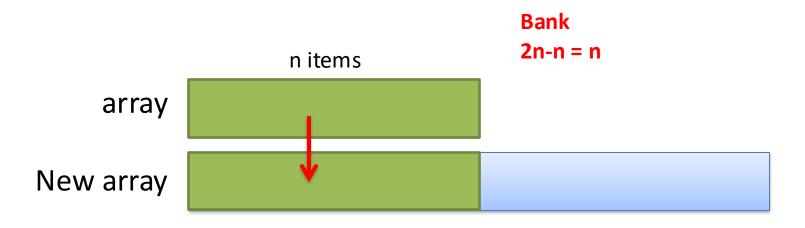
	n items	
array		

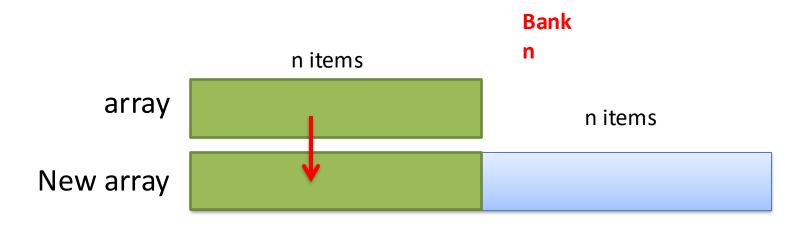
		Bank	
	n items	2n	
array			

	n items	Bank 2n
array		
New array		









Growing array is *generally* preferable to linked list

Worst case run-time complexity

		Wanter	
	Linked list	Growing array	
get(i)	O(n)	O(1)	
set(i,e)	O(n)	O(1)	
add(i,e)	O(n)	O(n) + O(1) = O(n)	
remove(i)	O(n)	O(n)	

Summary

- Runtime and memory complexity analysis
 - Asymptotic notation
 - O(1) constant, O(log(n)) logarithm, O(n) linear, O(n^2) polynomial,
 O(2^n) exponential
- Runtime complexity analysis
 - Get/set O(1)
 - Add/remove O(n)
 - Amortized analysis for growth operation
- List analysis: SinglyLinkedList vs ArrayList
 - Growing array overall more efficient, unless specific assumptions on operations

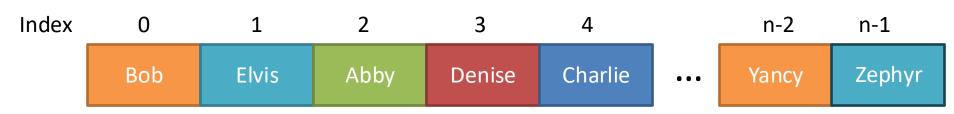
Next

Hierarchical relationships through trees

Additional Resources

RUN-TIME COMPLEXITY

How long does it take to find an item in a List?



Assume there are *n* items in the List (index 0 ... n-1)

Find index of "Paula" in List

What pseudo code would you use:

```
for i = 0 ... n-1
get item at index i
if item is equal to search value
return index i
```

return -1 (or otherwise indicate search term not in List)

How long to find the item? Should we time how long it takes?

Time would depend on

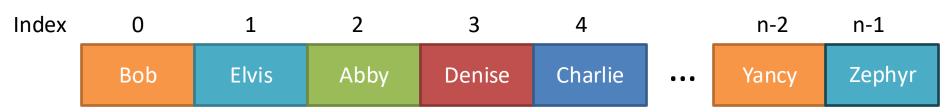
- Hardware
- Where Paula was located in the List

What is the best case?

What is the worst case?

What is the average case?

How long does it take to find an item in a List?



Instead of timing execution we will <u>count</u> how many operations are needed in the <u>worst case</u>

- Doesn't depend on hardware or software environment
- Could use average case, but average is hard to define sometimes because it would be based on the input's distribution
- Worst case tells us it won't take longer to execute
- Allows language-independent analysis based on number of elements

Operations to count

- Assign value to variable
- Following an object reference to heap memory
- Performing arithmetic operation (e.g., add two numbers)
- Compare two numbers (if statement)
- Access element in array
- Calling or returning from a method

Often run-time will depend on the number of elements an algorithm must process

Constant time – does not depend on number of items

- Returning the first element of a list takes a constant amount of time irrespective of the number of elements in the list
- Just return the first item
- No need to march down list to find the first element (head)
- Array get() implementation is also constant time (array get() is constant time everywhere, linked list only constant at head)

Linear time – directly depends on number of items

- Example: searching for a particular value stored in a list
- Start at first item, compare value with value trying to find
- Keep going until find item, or end up at end of list
- Could get lucky and find item right away, might not find it at all
- Worst case is we check all n items

Often run-time will depend on the number of elements an algorithm must process

Polynomial time – depends on a polynomial function of number of items

- Example: nested loop in image and graphic methods
- If changing all pixels in n by n image, must do a total of n^2 operations because inner and outer loops each run n times
- Normally runs slower than a constant or linear time algorithm

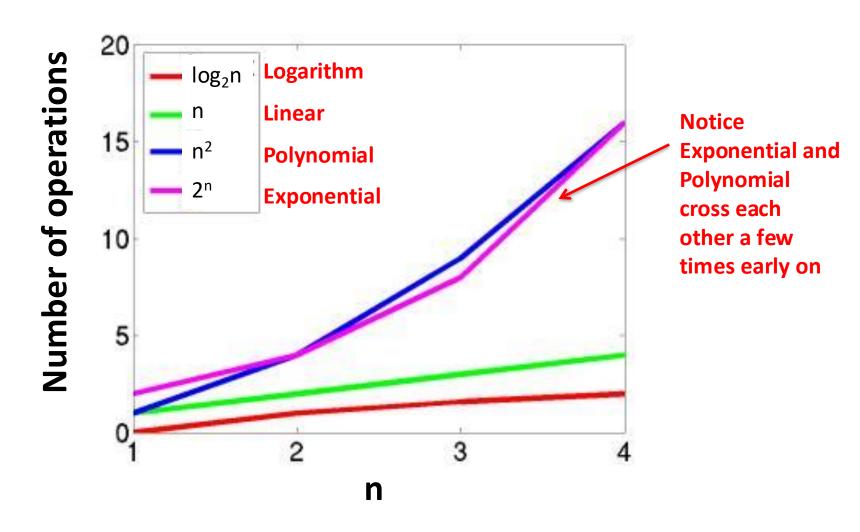
Logarithm time – avoids operations on some items

- Soon we will look at binary search
- Reduces the number of items algorithm must process (don't process all n items)
- Runs faster than linear or polynomial time (slower than constant)

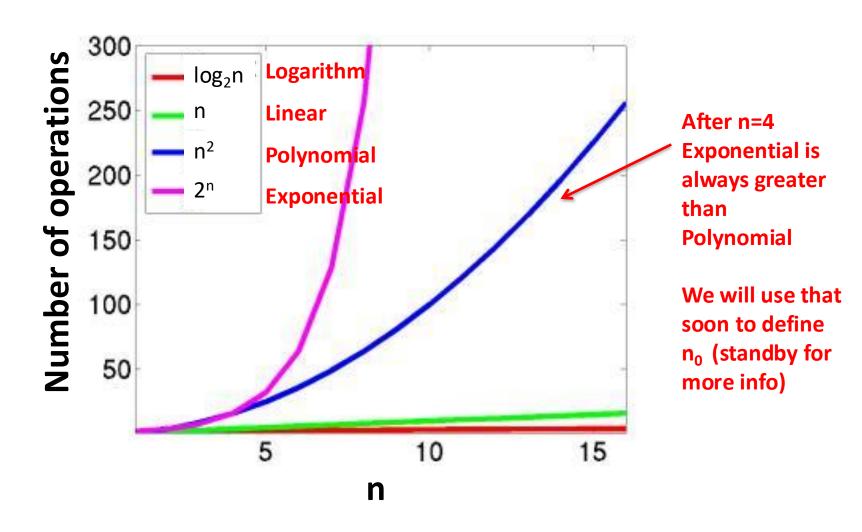
Exponential time – base raised to power

- Combination problems: all possible bit combinations in n bits = 2^n
- SLOW!

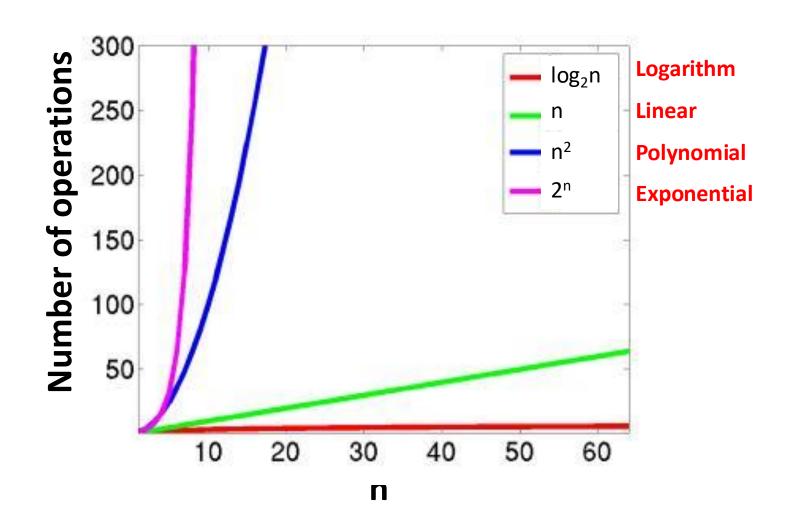
For small numbers of items, run time does not differ by much



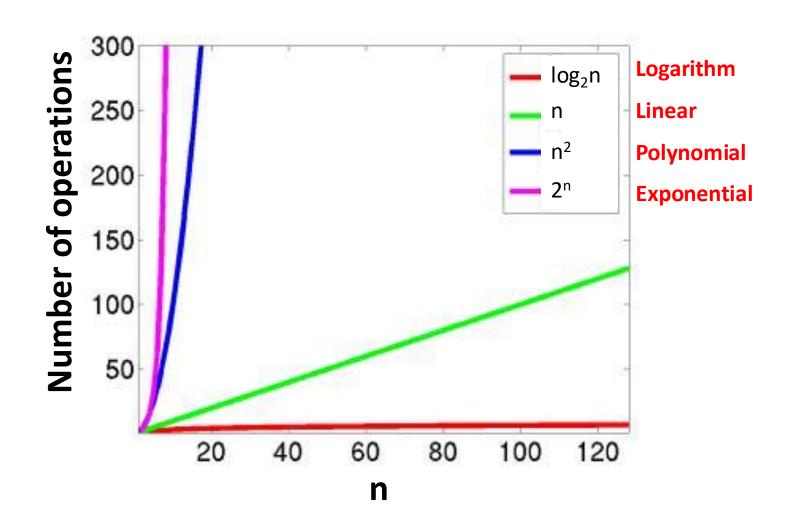
As *n* grows, number of operations between different algorithms begins to diverge



Even with only 60 items, there is a large difference in number of operations



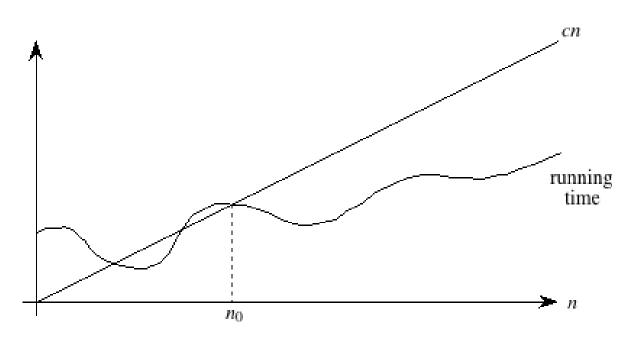
Eventually, even with speedy computers, some algorithms become impractical



ASYMPTOTIC NOTATION

Computer scientists describe upper bounds on orders of growth with "Big Oh" notation

O gives an asymptotic <u>upper</u> bounds



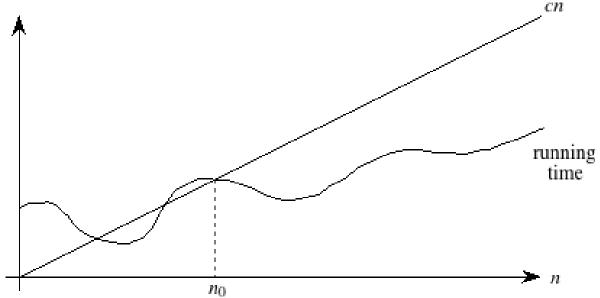
Run-time complexity is O(n) if there exists constants n_0 and c such that:

- $\forall n \geq n_0$
- run time of size n is at <u>most</u> cn, upper bound

Computer scientists describe upper bounds on orders of growth with "Big Oh" notation

O gives an asymptotic <u>upper</u> bounds

"Big Oh of n", and "Oh of n", and "order n" all mean the same thing!



Example: find specific item in a list

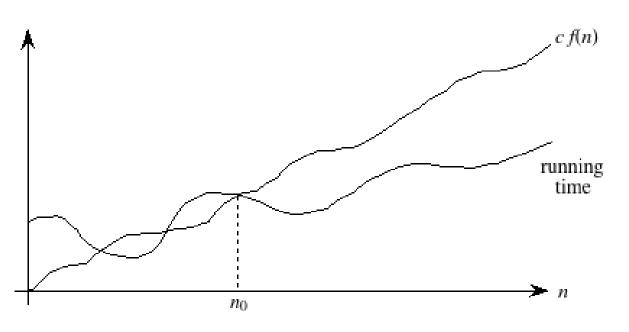
- Might find item on first try
- Might not find it at all (must check all n items in list)
- Worst case (upper bound) is O(n)

Run-time complexity is O(n) if there exists constants n_0 and c such that:

- $\forall n \geq n_0$
- run time of size n is at most cn, upper bound
- O(n) is the <u>worst</u> case performance for large n, but actual performance could be better
- O(n) is said to be "linear" time
- O(1) means constant time

We can extend Big Oh to any, not necessarily linear, function

O gives an asymptotic <u>upper</u> bounds

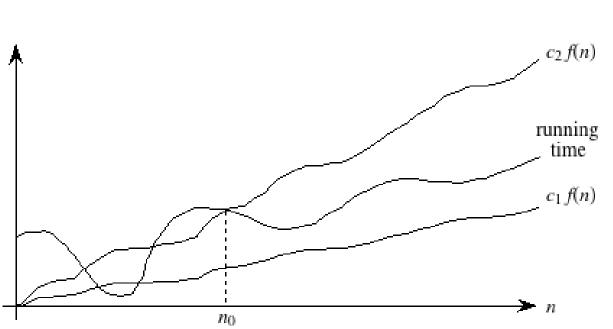


Run-time complexity is O(f(n)) if there exists constants n_0 and c such that:

- ∀n ≥ n₀
- run time of size n is at <u>most</u> cf(n), upper bound
- O(f(n)) is the worst
 case performance for
 large n, but actual
 performance could be
 better
- f(n) can be a nonlinear function such as n² or log(n)
- In that case $O(n^2)$ or $O(\log n)$

Run time can also be Ω (Big Omega), where run time grows at least as fast

 Ω gives an asymptotic <u>lower</u> bounds



Example: find *largest* item in a list

- Must check each n items
- Largest item could be at end of list, can't stop early
- Can't do better than Ω (n)

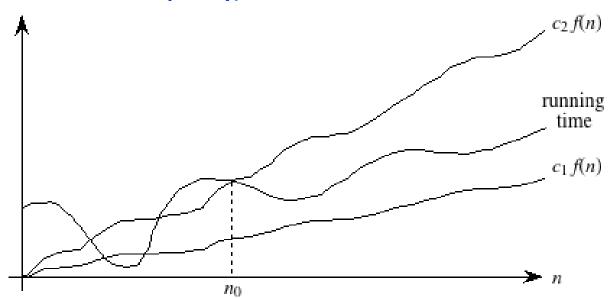
Run-time complexity is $\Omega(f(n))$ if there exists constants n_0 and c_1 such that:

- ∀*n* ≥ *n*₀
- run time of size n is at $least c_1 f(n)$, lower bound
- Ω(n) is the <u>best</u> case performance for large n, but actual performance can be worse

We use Θ (Big Theta) for tight bounds when we can define O and Ω

Θ gives an asymptotic tight bounds

We can also apply these concepts to how much memory an algorithm uses (not just run-time complexity)



Example: find <u>largest</u> item in a list

- Best case: already seen it is Ω(n)
- Worst case: must check each item, so O(n)
- Because $\Omega(n)$ and $\Omega(n)$ we say it is $\Omega(n)$

Run-time complexity is $\Theta(f(n))$ if there exists constants n_0 and c_1 and c_2 such that:

- ∀*n* ≥ *n*₀
- run time of size n is at $\frac{least}{c_1}c_1f(n)$ and at $\frac{most}{c_2}f(n)$
- Θ(n) gives a tight bound, which means run time will be within a constant factor
- Generally we will use either O or Θ
- O, Ω, Θ called asymptotic notation

We ignore constants and low-order terms in asymptotic notation

Constants don't matter, just adjust c_1 and c_2

- Constant multiplicative factors are absorbed into c_1 (and c_2)
- Example: $1000n^2$ is $O(n^2)$ because we can choose c_1 to be 1000 (remember bounded by c_1n)
- Do care in practice if an operation takes a constant time, O(1), but more than 24 hours to complete, can't run it everyday

Low order terms don't matter either

- If $n^2+1000n$, then choose $c_1 = 1$, so now $n^2 +1000n \ge c_1 n^2$
- Now must find c_2 such that $n^2 + 1000n \le c_2 n^2$
- Subtract n^2 from both sides and get $1000n \le c_2 n^2 n^2 = (c_2 1)n^2$
- Divide both sides by (c_2-1) n gives $1000/(c_2-1) \le n$
- Pick $c_2 = 2$ and $n_0 = 1000$, then $\forall n \ge n_0$, $1000 \le n$
- So, $n^2 + 1000n \le c_2 n^2$, try with n = 1000 get $n^2 + 1000^2 = 2 n^2$
- In practice, we simply ignore constants and low order terms

How to write them

Constant time O(1)

Linear time O(n) Polynomial time O(n²)

DESCRIPTION OF PROS AND CONS

At first arrays seem to be a poor choice to implement the List ADT

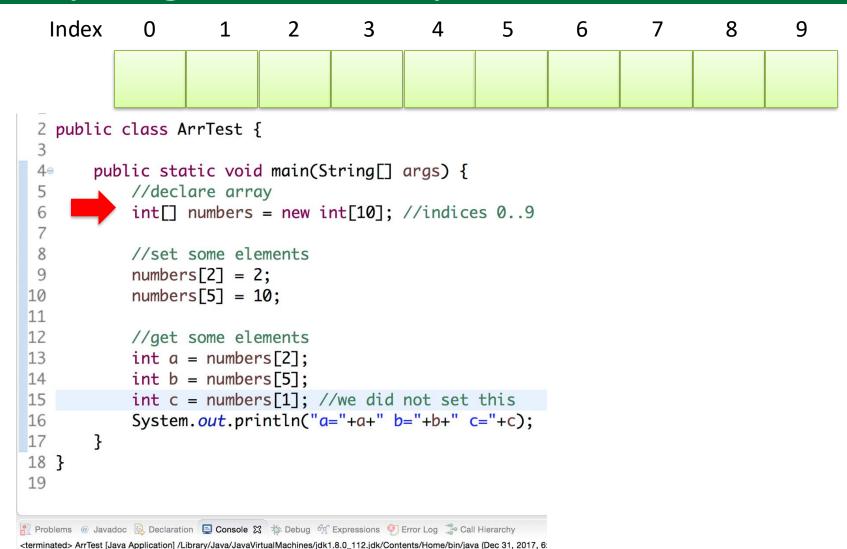
List ADT features	Linked List	Array
get()/set() element anywhere in List	 Start at head and march down to index in list Slow to find element, but fast once there 	 Contiguous block of memory Random access aspect of arrays makes get()/set() easy and fast
add()/remove() element anywhere in List	 Start at head and march down to index in list Slow to find element, but fast once there 	 Fast to find element, but slow once there Have to make (or fill) hole by copying over
No limit to number of elements in List	 Built in feature of how linked lists work Just create a new element and splice it in 	 Arrays declared of fixed size

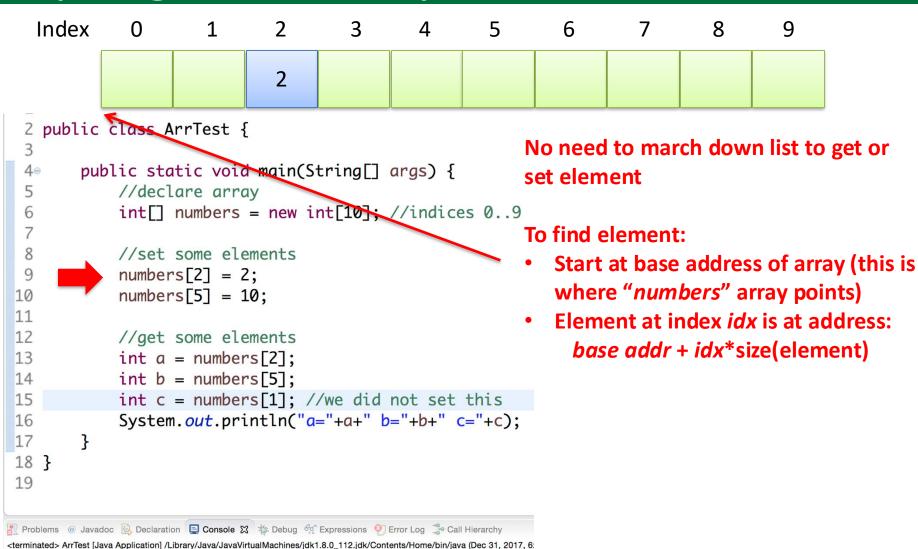
ArrTest.java

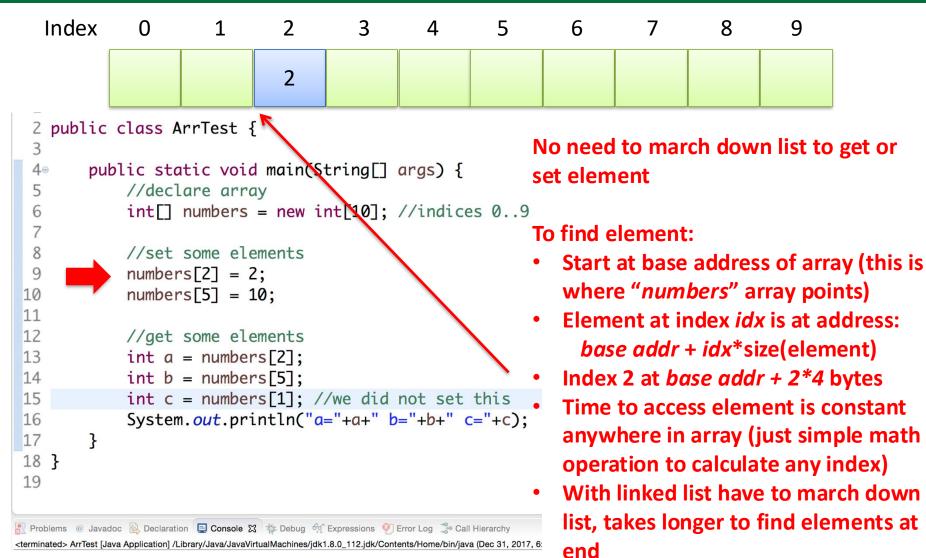
ANNOTATED SLIDES

```
2 public class ArrTest {
          public static void main(String()
  5
               //declare array
               int[] numbers = new int[10]; //indices 0..9
  6
  7
  8
               //set some elements
               numbers[2] = 2;
  9
               numbers[5] = 10;
 10
11
12
               //get some elements
13
               int a = numbers[2]:
14
               int b = numbers[5]:
15
               int c = numbers[1]; //we did not set this
               System.out.println("a="+a+" b="+b+" c="+c);
16
17
18 }
19
🥷 Problems @ Javadoc 🗟 Declaration 📮 Console 🛭 🟇 Debug 🏘 Expressions 🎱 Error Log 🍰 Call Hierarchy
<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6:
```

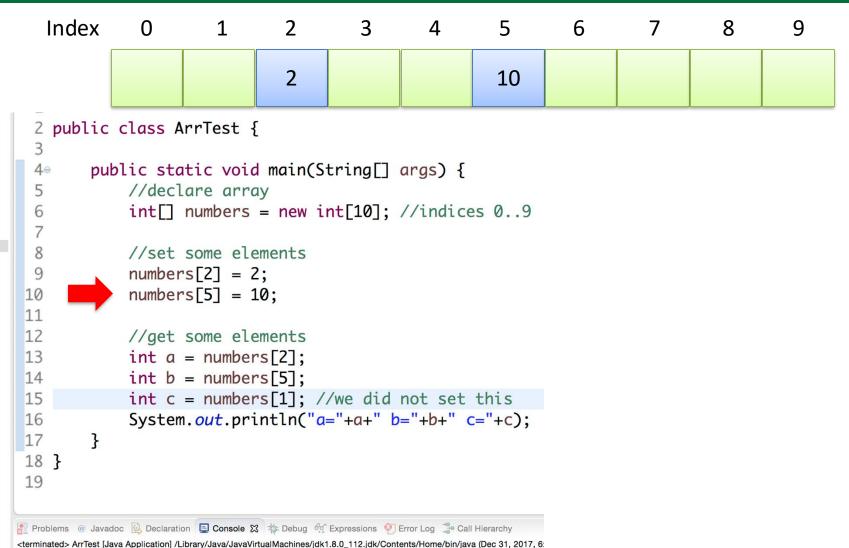
- Array reserves a contiguous block of memory
- Big enough to hold specified number of elements (10 here) times size of each element (4 bytes for integers) = 40 bytes
- Indices are 0...9

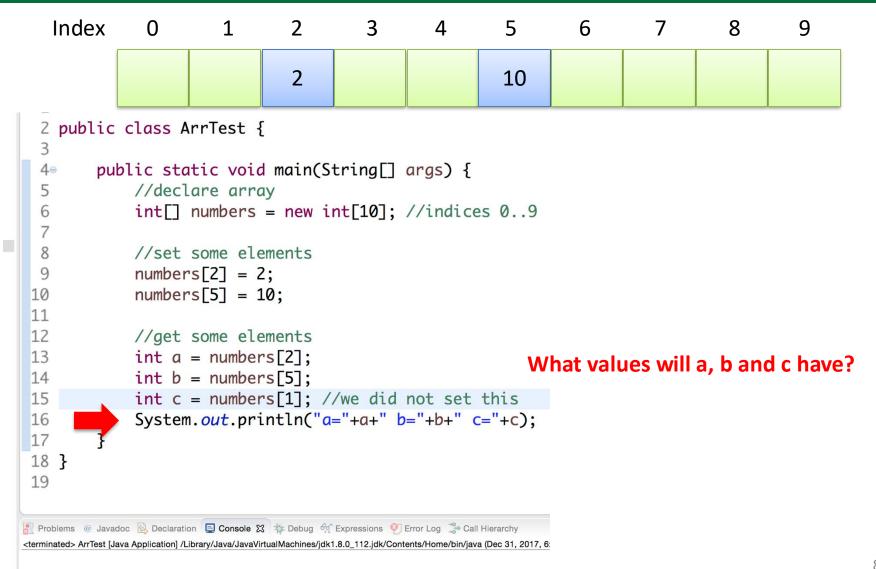


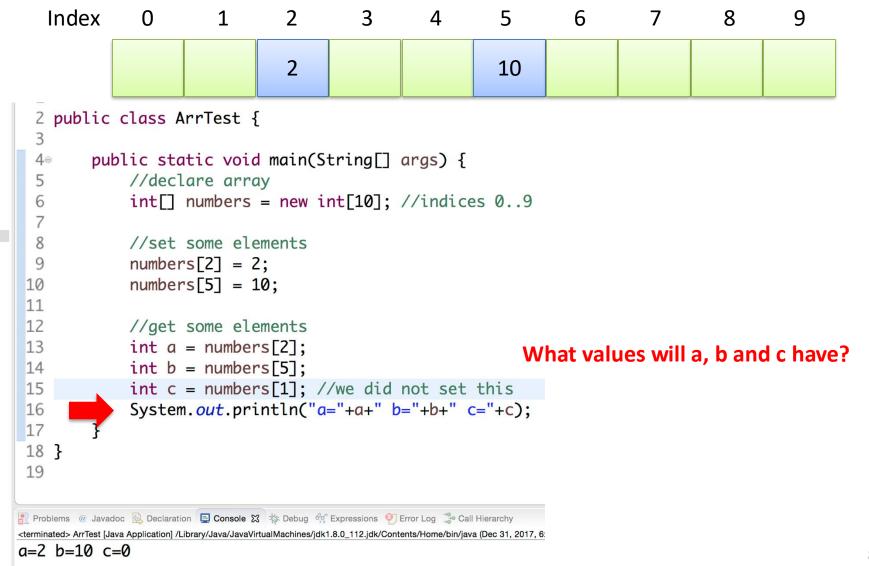




80

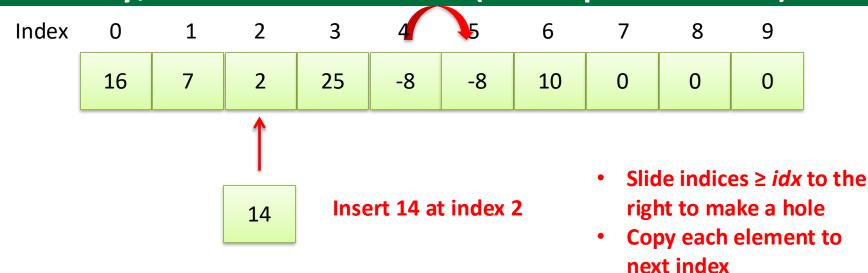


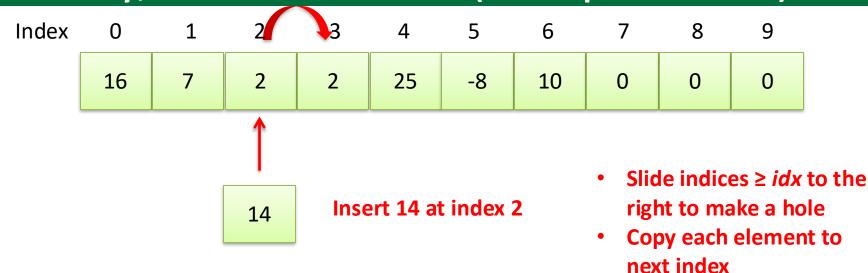




EXAMPLE OF INSERTION IN ARRAYLIST







- Works, but takes a lot of time (said to be "expensive")
- Especially expensive with respect to time if the array is large and we insert at the front
- Linked list is slow to find the right place (have to march down list starting from head), but fast to insert, just update two pointers and you're done
- Linked list is fast, however, if only dealing with head
- With arrays, easy to find right place, but slow afterward due to copying to make a hole

EXAMPLE OF GROWING ARRAYLIST

What do we do when the array is full, but we want to add more elements?

Answer: create another, larger array, and copy elements from old array into new array

Old array	
New array	

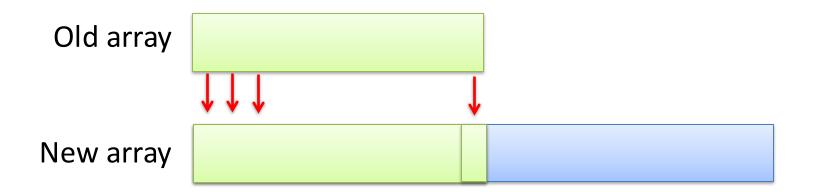
Grow array

1. Make new array, say 2 times larger than old array

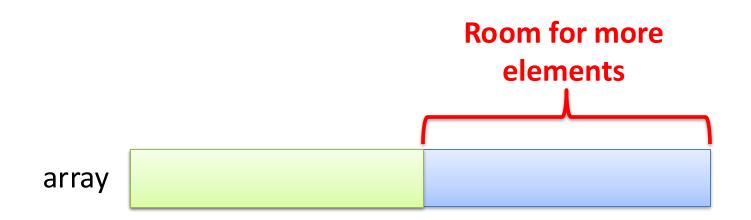
- 1. Make new array, say 2 times larger than old array
- 2. Copy elements one at a time from old array to new

- 1. Make new array, say 2 times larger than old array
- 2. Copy elements one at a time from old array to new

- 1. Make new array, say 2 times larger than old array
- 2. Copy elements one at a time from old array to new



- 1. Make new array, say 2 times larger than old array
- 2. Copy elements one at a time from old array to new



- 1. Make new array, say 2 times larger than old array
- 2. Copy elements one at a time from old array to new
- 3. Set instance variable to point at new array (old array will be garbage collected)

Growing is expensive operation,
but we don't have to do it
frequently if new array size is
multiple of old array size

array

Room for more
elements

array

- 1. Make new array, say 2 times larger than old array
- 2. Copy elements one at a time from old array to new
- 3. Set instance variable to point at new array (old array will be garbage collected)

GrowingArray.java

ANNOTATED SLIDES

GrowingArray.java: implements List ADT using an array instead of a linked list

```
public class GrowingArray<T> implements SimpleList<T>, Iterable<T> {
  private T[] array;
                                          Implements SimpleList and Iterable from last class
  private int size; // how much of the array is actually filled up so far
  private static final int initCap = 10; // how big the array should be initially
                                            Array is now the data structure used to
  public GrowingArray() {
                                            store elements in List
   array = (T[]) new Object[initCap]; // java generics oddness – cast array of objects
   size = 0;
                                    Array initially sized to 10 Objects (note the funky Java
                                    allocation syntax, must cast to array of generic type)
                                    Remember, arrays are of fixed size, but the List ADT
  /**
                                    does not specify a size
  * Return the number of elements in the List (they are indexed 0..size-1)
  * @return number of elements
  public int size() {
                             Track size
   return size; <
                             Will increment on each add and
                             decrement on each remove
                             Run-time complexity?
                             O(1)
                                                                                        103
```

GrowingArray.java: get()/set() are easy and fast with an array implementation

```
Get and set are easy, just make sure
* Return item at index idx
                                                     index is valid, then return or set item
* @param idx index of item to return
* @return item stored at index idx
* @throws Exception invalid index
                                                  Notice: no curly braces!
public T get(int idx) throws Exception {
                                                         Only next line in if statement
  if (idx >= 0 && idx < size) return array[idx];</pre>
  else throw new Exception("invalid index");
                                                         Run-time complexity?
                                                         O(1) for any index!
/**
                                                         Just two math operations to compute
* Overwrite item at index idx with item parameter
                                                         memory address
* @param idx index of item to get
* @param item overwrite existing item at index idx with this item
* @throws Exception invalid index
public void set(int idx, T item) throws Exception {
  if (idx >= 0 \&\& idx < size) array[idx] = item;
  else throw new Exception("invalid index");
```

```
public void add(int idx, T item) throws Exception {
  if (idx > size | | idx < 0) throw new Exception("invalid index");</pre>
                                                                   array.length is how many
  if (size == array.length)
                                                                   elements array can hold
   // Double the size of the array, to leave more space
    T[] copy = (T[]) new Object[size*2];
                                                                   size has how many elements
   // Copy it over
                                                                   array does hold
    for (int i=0; i<size; i++) copy[i] = array[i];</pre>
    array = copy;
                                                                   add() makes a new,
                                                                   larger array if needed
  // Shift right to make room
  for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
  array[idx] = item;
  size++;
```

```
public void add(int idx, T item) throws Exception {
  if (idx > size | | idx < 0) throw new Exception("invalid index");</pre>
                                                                  array.length is how many
  if (size == array.length)
                                                                  elements array can hold
   // Double the size of the array, to leave more space
    T[] copy = (T[]) new Object[size*2];
                                                                  size has how many elements
   // Copy it over
                                                                  array does hold
    for (int i=0; i<size; i++) copy[i] = array[i];</pre>
    array = copy;
                                                                  add() makes a new,
                                                                  larger array if needed
  // Shift right to make room
  for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
  array[idx] = item;
                                                             Copy elements one at a
  size++;
                                                             time into new array
```

```
public void add(int idx, T item) throws Exception {
  if (idx > size | | idx < 0) throw new Exception("invalid index");</pre>
                                                                 array.length is how many
  if (size == array.length)
                                                                 elements array can hold
   // Double the size of the array, to leave more space
   T[] copy = (T[]) new Object[size*2];
                                                                 size has how many elements
   // Copy it over
                                                                 array does hold
   for (int i=0; i<size; i++) copy[i] = array[i];
    array = copy; <
                          Update instance
                                                                 add() makes a new,
                          variable to new array
                                                                 larger array if needed
  // Shift right to make room
  for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
  array[idx] = item;
                                                            Copy elements one at a
  size++;
                                                            time into new array
```

```
public void add(int idx, T item) throws Exception {
  if (idx > size | | idx < 0) throw new Exception("invalid index");
  if (size == array.length) {
   // Double the size of the array, to leave more space
   T[] copy = (T[]) new Object[size*2];
   // Copy it over
   for (int i=0; i<size; i++) copy[i] = array[i];
   array = copy;
                                                             Here we know we have enough
                                                             room to add a new element
  // Shift right to make room
                                                             Now do insert
  for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
                                                             Start from last item and copy
  array[idx] = item;
                                                             to one index larger
  size++;
                                                             Stop at index idx
                                                             Set item at idx to item
```

GrowingArray.java: With growing trick, can implement the List interface with an array

```
public void add(int idx, T item) throws Exception {
  if (idx > size | | idx < 0) throw new Exception("invalid index");
  if (size == array.length) {
   // Double the size of the array, to leave more space
   T[] copy = (T[]) new Object[size*2];
   // Copy it over
   for (int i=0; i<size; i++) copy[i] = array[i];
   array = copy;
                                                         Add an item at the end is easy
  // Shift right to make room
                                                         Just call add with size as index
  for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
  array[idx] = item;
                                                         What did we call it when two
  size++;
                                                         methods have the same name but
                                                         different variables?
                                                         Overloading
public void add(T item) throws Exception {
  add(size,item);
                                                         Run-time complexity
                                                         O(1)
                                                                                         109
```

GrowingArray.java: With growing trick, can implement the List interface with an array

```
* Remove and return the item at index idx. Move items left to fill hole.
* @param idx index of item to remove
* @return the value previously at index idx
* @throws Exception invalid index
public T remove(int idx) throws Exception {
  if (idx > size-1 | | idx < 0) throw new Exception("invalid index");
  T data = array[idx];
                                                                     remove() slides
  // Shift left to cover it over
                                                                     elements left one slot
  for (int i=idx; i<size-1; i++) array[i] = array[i+1];</pre>
                                                                     for index > idx
  size--;
  return data;
                                                                     Run-time complexity?
                                                                     O(n)
```

LIST ANALYSIS

Growing array is *generally* preferable to linked list, except maybe growth operation

Worst case run-time complexity

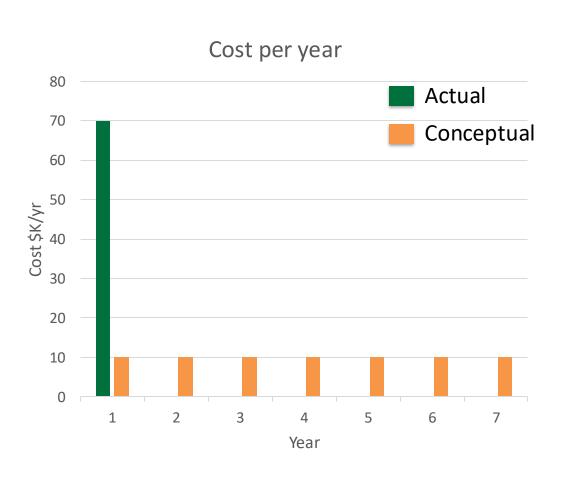
	Linked list	Growing array
get(i)	O(n)	O(1)
set(i,e)	O(n)	O(1)
add(i,e)	O(n)	O(n) + growth
remove(i)	O(n)	O(n)

- Start at head and march down to find index i
- Slow to get to index, O(n)
- Once there, operations are fast O(1)
- Best case: all operations on head

- Faster get()/set() than linked list
- Tie with linked list on remove()
- Best case: all operation at tail
- add() might cause expensive growth operation
- How should be think about that?

Amortization is a concept from accounting that allows us to spread costs over time

Amortized analysis



Accounting allows us to amortize costs over several years

- Buy \$70K truck on year 1
- Truck is good for 7 years
- Can think of the cost as \$10K/year instead of one payment of \$70K on year 1
- Actually pay \$70K on year 1, but this is equivalent to paying \$10K/year for 7 years
- Idea is to spread the cost ("amortize" the cost) over the lifetime of the truck
- We will use this concept to "prepay" for expensive growth operation

Amortized analysis

	n items	
array		

Each time add an item to array, *conceptually* charge 3 "tokens"

- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

Each time add an item to array, *conceptually* charge 3 "tokens"

- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

Each time add an item to array, *conceptually* charge 3 "tokens"

- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

Each time add an item to array, *conceptually* charge 3 "tokens"

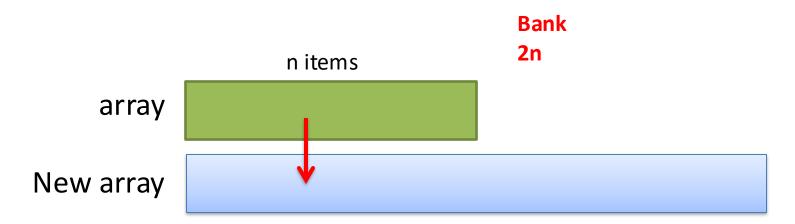
- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

After *n* add() operations, array is full, but have 2*n* tokens in bank

Each time add an item to array, *conceptually* charge 3 "tokens"

- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

After *n* add() operations, array is full, but have 2*n* tokens in bank Allocate new 2X larger array

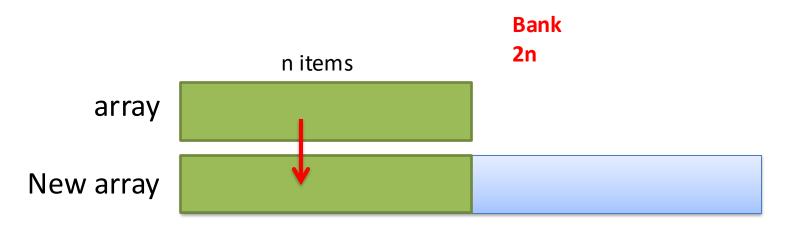


Each time add an item to array, *conceptually* charge 3 "tokens"

- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

After *n* add() operations, array is full, but have 2*n* tokens in bank Allocate new 2X larger array

Copy elements from old array to new array

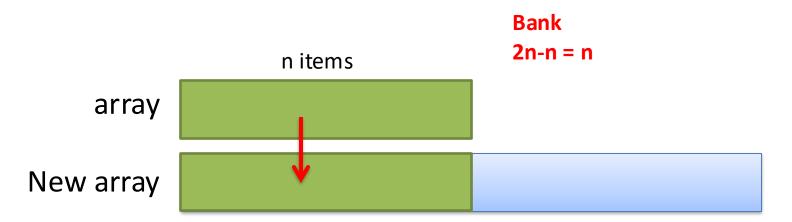


Each time add an item to array, *conceptually* charge 3 "tokens"

- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

After *n* add() operations, array is full, but have 2*n* tokens in bank Allocate new 2X larger array

Copy elements from old array to new array



Each time add an item to array, *conceptually* charge 3 "tokens"

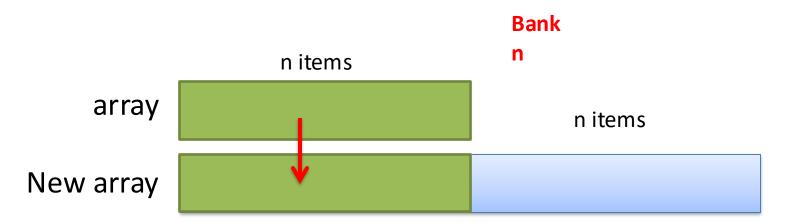
- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

After *n* add() operations, array is full, but have 2*n* tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy *n* items, so charge *n* pre-paid tokens from bank



Each time add an item to array, *conceptually* charge 3 "tokens"

- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

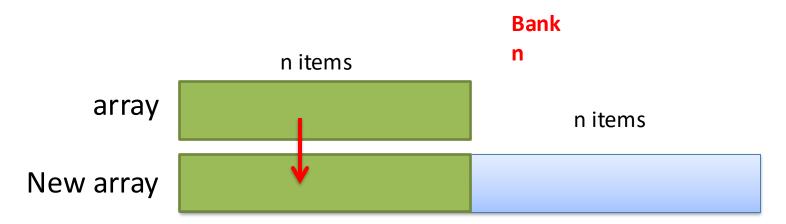
After *n add()* operations, array is full, but have *2n* tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy *n* items, so charge *n* pre-paid tokens from bank

Remaining *n* items in bank "pay for" empty *n* spaces



Each time add an item to array, *conceptually* charge 3 "tokens"

- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

After *n* add() operations, array is full, but have 2*n* tokens in bank

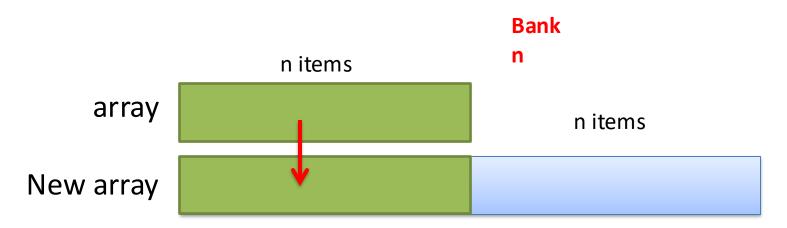
Allocate new 2X larger array

Copy elements from old array to new array

Have to copy *n* items, so charge *n* pre-paid tokens from bank

Remaining *n* items in bank "pay for" empty *n* spaces

Charging a little extra for each add spreads out cost for infrequent growth operation



Each time add an item to array, *conceptually* charge 3 "tokens"

- One token pays for current add()
- Two tokens go into "Bank"
- We are spread out (amortizing) the cost of the expensive, but infrequent growth operation

After *n* add() operations, array is full, but have 2*n* tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy *n* items, so charge *n* pre-paid tokens from bank

Remaining *n* items in bank "pay for" empty *n* spaces

Charging a little extra for each *add* spreads out cost for infrequent growth operation

The charge, however, is a constant, so O(3) = O(1)

Growing array is *generally* preferable to linked list

Worst case run-time complexity

	Linked list	Growing array	
get(i)	O(n)	O(1) Amortized analysis shows infrequent growth operation	
set(i,e)	O(n)	O(1) is constant time	
add(i,e)	O(n)	O(n) + O(1) = O(n)	
remove(i)	O(n)	O(n) Pay a constant amount more on each add() to pay for the occasional expensive growth	
 Start at head and march down to find 		 Factor get()/set() than linked list 	

- Start at *head* and march down to find index i
- Slow to get to index, O(n)
- Once there, operations are fast O(1)
- Best case: all operations on head

- Faster *get()/set()* than linked list
- Tie with linked list on remove()
- Best case: all operations on tail
- add() might cause expensive growth operation