CS 10:

Problem solving via Object Oriented
Programming

Runtime complexity

Part of the slides based on Dr. Kate Salesin slides



 Characterize runtime complexity
 Work for memory too
 Compare list implementations



» 1. Run-time complexity
2. Asymptotic notation

3. List analysis



Find an element in the list (unsorted)

27 11 3 42 18 7 15




Find an element in the list (unsorted)

27 11 3 42 18 7 15

Search algorithm (linear search):

foridxi=0...n-1
if list.get(i) equals target
return |
return -1 (not found)

Best case?

Worst case?



Find an element in the list (sorted)




Find an element in the list (sorted)

Search algorithm (binary search):

min=0
max = n—1
while min <= max Best case?
idx = (min + max) / 2
if list.get(i) equals target Worst case?
return idx
if list.get(i) > target
max = idx—1
else
min = idx +1



Find the max element in the list (unsorted)

27 11 3 42 18 7 15

Max algorithm:

max_value = list.get(0)
foridxi=1...n-1
if list.get(i) > max_value
max_value = list.get(i)
return max_value

Best case?

Worst case?



Find the max element in the list (sorted)

Max algorithm
return list.get(0)

Best case?

Worst case?



Comparing algorithms

Search algorithm (linear search): Search algorithm (binary search):
foridxi=0...n-1 min=0
if list.get(i) equals target max = n—1
return | while min <= max
return -1 (not found) idx = (min + max) / 2
if list.get(i) equals target
return idx
if list.get(i) > target
max = idx—1
else

min = idx +1
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Comparing algorithms

Search algorithm (linear search): Search algorithm (binary search):
foridxi=0...n-1 min=0
if list.get(i) equals target max = n—1
return i while min <= max
return -1 (not found) idx = (min + max) / 2
if list.get(i) equals target
return idx
if list.get(i) > target
max = idx—1
else

min = idx +1
Worst case: check

every item in the list Worst case: check half of
the items in the list (though
more operations) "



Comparing algorithms

Search algorithm (linear search): Max algorithm:
foridxi=0...n-1 max_value = list.get(0)
if list.get(i) equals target foridxi=1...n-1
returni if list.get(i) > max_value
return -1 (not found) max_value = list.get(i)

return max_value

Best case, immediately
found No best or worst case, need
to check entire list
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How to compare efficiency?

|deas:

— Time tests? But depends on specific
hardware...

— Count # of operations? But will vary depending
on size of list, and depends on exact
implementation details...

— Do we compare best case, worst case, or
average case?

13



How to compare efficiency?

e Key idea: typically in computer science, we
measure how the # of operations grows with
respect to the size of the input in the worst

Ccdse

e “Size” is not always the length of a list or array,
could also be the # characters in a string (as in
SA-3), the # nodes in a binary tree, etc.

14



How to count operations?

 Examples of a single “operation”:
— Assign value to variable, x =1
— Access element in array, x = array]i]
— Perform arithmetic operation, x =y + z, x++, etc.
— Compare two values, x ==y, x <y, etc.

* |n general, a single CPU computation or single
read/write from memory
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Example: Calculate sum of numbers from 1

ton

Algorithm 1:
1+2+43+...+n

int sum(int n) {
inttotal =0
for (inti=1;i<=sum; i++) {
total +=i;

}

return total;

}
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Example: Calculate sum of numbers from 1

ton

Algorithm 1:

1+2+3+...+n

int sum(int n) { # operations
inttotal=0 1
for (inti=1;i<=sum; i++) { 1; n+1; n

total +=i; n

}
return total; 1

}

Total= 3n+4 operations

17



Example: Calculate sum of numbers from 1

ton

Algorithm 2:
1+(1+1)+(1+1+1)+...+(1+1+...+1)

int sum(int n) {
inttotal =0
for (inti=1;i<=sum; i++) {
for (intj=1;j<=1i; j++) {
total +=1;
}
}

return total;
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Example: Calculate sum of numbers from 1

ton

Algorithm 2:
1+(1+1)+(1+1+1)+...+(1+1+...+1)

int sum(int n) { # operations
inttotal=0 1
for (inti=1;i<=sum; i++) { 1;: n+1; n
for (intj=1;j<=1i; j++) { n; (n+1)*(n+1)/2; n*(n+1)/2
total +=1; n*(n+1)/2
}
}
return total; 1
} Total=3/2n2+11/2n+4

operations
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Example: Calculate sum of numbers from 1

ton
Algorithm 3: n*(n+1)/2

int sum(int n) { # operations
return n * (n+1) /2; 4

}

Total= 4 operations
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Example: Calculate sum of numbers from 1

ton

Algorithm 1: Algorithm 2: Algorithm 3:
1+2+3+...+n 1+(1+1)+(1+1+1)+...+ n*(n+1)/2
(1+1+...+1)

3n+4 3/2n2+11/2n+4 4

21



Example: Calculate sum of numbers from 1

ton

Algorithm 1: Algorithm 2: Algorithm 3:
1+2+3+...+n 1+(1+1)+(1+1+1)+...+ n*(n+1)/2
(1+1+...+1)
3n+4 3/2n%+11/2n+4 4
O(n) O(n?) O(1)

Big O notation
e I[gnore lower-order terms — the biggest term will dominate as the input

size n grows asymptotically
e |[gnore constant factors — depends on implementation details, not the

core algorithm 22



Often run-time will depend on the number

of elements an algorithm must process

Constant time O(1) — does not depend on number of items
e.g., return first element of a list

Linear time O(n) — directly depends on number of items
e.g., find value in a list

Polynomial time O(n*) — depends on a polynomial function of
number of items
e.g., nested loop in an image

Logarithm time O(log n)— avoids operations on some items
e.g., binary search

Exponential time O(2")- base raised to power
e.g., all possible bit combinations in n bits 2



For small numbers of items, run time does

not differ by much

20,

— I;)gzn | Logarithm

R Linear

15} 2 Polynomial /
" Exponential

10

Number of operations
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As n grows, number of operations between

different algorithms begins to diverge

300

— ibgzn | Logarith

290w N Linear

w— N2 Polynomjal

Exponeptial

—_—
o
Q

Number of operations
o o
o o
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Even with only 60 items, there is a large

difference in number of operations

' | Logarithm
'+ Linear
Polynomial

| Exponential

—_—
o
Q

Number of operations
o o
o o
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Eventually, even with speedy computers,

some algorithms become impractical
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Sometimes complexity can hurt us,
sometimes it can help us

Hurts us
Can’t brute force chess
algorithm 2"

Images: thechessstore.com; studyoffice.org
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Helps us
Can’t crack password
algorithm 2"
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1. Run-time complexity
» 2. Asymptotic notation

3. List analysis

29



We can extend Big Oh to any, not

necessarily linear, function

O gives an asymptotic upper bounds

o fim)

running
time

Ry

Run-time complexity is
O(f(n)) if there exists
constants n, and ¢ such
that:

* Vnz2n,

* runtimeofsizenis at
most cf(n), upper
bound

* O(f(n)) is the worst
case performance for
large n, but actual
performance could be
better

30



Run time can also be Q (Big Omega), where

run time grows at least as fast

Q gives an asymptotic lower bounds

Run-time complexity is

Q(f(n)) if there exists

constants n, and c¢; such

that:

* Vn2n,

mtl:;:]iélg * runtime of size nis at

least c.f(n), lower

c1fin) bound

* Q(n)is the best case
performance for large
n, but actual
performance can be
worse

ﬁ.' 2 fin)

Ry
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Comparison

Example: find specific item in a list Example: find largest item in a list

32



Comparison

Example: find specific item in a list Example: find largest item in a list

* Might find item on first try * Must check each n items

* Might not find it at all (must check e Largestitem could be at end of
all n items in list) list, can’t stop early

* Worst case (upper bound) is O(n) e Can’tdo better than Q (n)

33



We use O (Big Theta) for tight bounds

when we can define O and Q

O gives an asymptotic tight bounds

If an algorithm is O(f(n)) and Q(f(n)), then it is O(f(n)) _ o
Run-time complexity is

O(f(n)) if there exists
constants n, and c; and
C, such that:
nmning * Vnz2n,
fime o ryn time of size n is at
¢ fin) least c¢,f(n) and at
most cf(n)
* 0O(n) gives a tight
. bound, which means
ny run time will be within
a constant factor
* Generally we will use
eitherOor ©

,‘-. 2 fin)
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Comparison: which has a tight bound?

Example: find specific item in a list Example: find largest item in a list

* Might find item on first try * Must check each n items

* Might not find it at all (must check e Largestitem could be at end of
all n items in list) list, can’t stop early

* Worst case (upper bound) is O(n) e Can’tdo better than Q (n)
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Comparison: which has a tight bound?

Example: find specific item in a list Example: find largest item in a list

* Might find item on first try * Must check each n items

* Might not find it at all (must check e Largestitem could be at end of
all n items in list) list, can’t stop early

* Worst case (upper bound) is O(n) Can’t do better than Q (n)

*  Worst case: must check each
item, so O(n)

* Because Q(n) and O(n) we say it
is O(n)

36



We ighore constants and low-order terms

In asymptotic notation
Constants don’t matter, just adjust ¢; and c,

Low order terms don’t matter either

A c2 fin)

running
time

c1 fin)

iy
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These concepts are applicable for memory

complexity as well

¥

ca fin)

memory

c| fin)
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1. Run-time complexity

2. Asymptotic notation

» 3. List analysis
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Difference between singly linked list and

array

List ADT features

get()/set() element
Singly linked list anywhere in List

add()/remove() element

data next data next data next ot
anywhere in List
head —> 1> B — M No limit to number of
l l l elements in List
“Alice” “Bob” “Charlie”
Array
0 1 2 n-1

“Alice” “Bob” “Charlie”

40



Growing array is generally preferable to

linked list, except maybe growth operation

Worst case run-time complexity

get(i)
set(i,e)
add(i,e)

remove(i)

— )

Discussion

—
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Growing array is generally preferable to

linked list, except maybe growth operation

Worst case run-time complexity

Linked list Growing array

get(i) O(n) O(1)
set(i,e) O(n) O(1)
add(i,e)  O(n) O(n) + growth

remove(i) O(n) O(n)
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Amortization is a concept from accounting

that allows us to spread costs over time

Amortized analysis

Accounting allows us to amortize
Cost per year

costs over several years

e Buy $70K truck on year 1
e Truck is good for 7 years
Conceptual 5 Y

B Actual
70

Cost SK/yr
5
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Amortized analysis shows growing array is

actually only O(1)!

Amortized analysis

nitems

array
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array

46



Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

array

New array
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

array

New array v
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

array

New array
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n-n=n

array

New array
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array nitems

New array
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Growing array is generally preferable to

linked list

Worst case run-time complexity /s\’:‘:‘f"é‘%’-fai

Growing array

Linked list

get(i) O(n) O(1)
set(i,e) O(n) O(1)
add(i,e)  O(n) O(n) + O(1) = O(n)

remove(i) O(n) O(n)
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Summary

 Runtime and memory complexity analysis

— Asymptotic notation

* O(1) constant, O(log(n)) logarithm, O(n) linear, O(n"2) polynomial,
O(2”n) exponential

* Runtime complexity analysis
— Get/set O(1)
— Add/remove O(n)

* Amortized analysis for growth operation

e List analysis: SinglyLinkedList vs ArrayList

— Growing array overall more efficient, unless specific
assumptions on operations

54



* Hierarchical relationships through trees
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Additional Resources




RUN-TIME COMPLEXITY



How long does it take to find an item in a

List?

Index 0 1 2 3 4 n-2

Denise Charlie

Assume there are n items in the List (index 0 ... n-1)
Find index of “Paula” in List
What pseudo code would you use:
fori=0..n-1
get item at index j
if item is equal to search value
return index i
return -1 (or otherwise indicate search term not in List)
How long to find the item? Should we time how long it takes?
Time would depend on
 Hardware
 Where Paula was located in the List
What is the best case?
What is the worst case?
What is the average case?
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How long does it take to find an item in a

List?

Index 0 1 2 3 4 n-2 n-1

Denise Charlie Zephyr

Instead of timing execution we will count how many operations are needed in the

worst case

 Doesn’t depend on hardware or software environment

* Could use average case, but average is hard to define sometimes because it
would be based on the input’s distribution

* Worst case tells us it won’t take longer to execute

e Allows language-independent analysis based on number of elements

Operations to count

* Assign value to variable

* Following an object reference to heap memory

e Performing arithmetic operation (e.g., add two numbers)
 Compare two numbers (if statement)

* Access element in array

* (Calling or returning from a method

59



Often run-time will depend on the number

of elements an algorithm must process

Constant time — does not depend on number of items

* Returning the first element of a list takes a constant amount of
time irrespective of the number of elements in the list

e Just return the first item

 No need to march down list to find the first element (head)

* Array get() implementation is also constant time (array get() is
constant time everywhere, linked list only constant at head)

Linear time — directly depends on number of items
 Example: searching for a particular value stored in a list

e Start at first item, compare value with value trying to find

* Keep going until find item, or end up at end of list

* Could get lucky and find item right away, might not find it at all
* Worst case is we check all n items
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Often run-time will depend on the number

of elements an algorithm must process

Polynomial time — depends on a polynomial function of

number of items

 Example: nested loop in image and graphic methods

 If changing all pixels in n by n image, must do a total of n?
operations because inner and outer loops each run n times

 Normally runs slower than a constant or linear time algorithm

Logarithm time — avoids operations on some items

* Soon we will look at binary search

* Reduces the number of items algorithm must process (don’t
process all n items)

* Runs faster than linear or polynomial time (slower than constant)

Exponential time — base raised to power

e Combination problems: all possible bit combinations in n bits = 2"
¢ SLOW! "



For small numbers of items, run time does

not differ by much

20,

— I;)gzn | Logarithm

R Linear

Notice

n . Polynomial
Exponential

cross each
other a few
times early on

Number of operations
S
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As n grows, number of operations between

different algorithms begins to diverge

300

— ibgzn | Logarith

290w N Linear

After n=4
Exponential is
| always greater
than
Polynomial

w— N2 Polynomjal

Exponeptial

We will use that
soon to define
n, (standby for
more info)

Number of operations
o
o
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Even with only 60 items, there is a large

difference in number of operations

' | Logarithm
'+ Linear
Polynomial

| Exponential

—_—
o
Q

Number of operations
o o
o o
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Eventually, even with speedy computers,

some algorithms become impractical
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ASYMPTOTIC NOTATION



Computer scientists describe upper bounds

on orders of growth with “Big Oh” notation

O gives an asymptotic upper bounds

Run-time complexity is
O(n) if there exists
constants n, and c such
on that:
* Vn2n,
* runtimeofsizenis at
most cn, upper bound

running
time

Ry
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Computer scientists describe upper bounds

on orders of growth with “Big Oh” notation

O gives an asymptotic upper bounds

Run-time complexity is
O(n) if there exists
constants n, and c such
on that:
* Vn2n,
* runtimeofsizenis at
most cn, upper bound
. * O(n) is the worst case
runnng
time performance for large
n, but actual
performance could be

“Big Oh of n”, and “Oh of n”, and “order n”
all mean the same thing!

- - better
My . . .
Example: find specific item in a list S)(n) 'Sfa!d to be
* Might find item on first try linear” time
* Might not find it at all (must check * 0O(1) means constant
all n items in list) time

*  Worst case (upper bound) is O(n) 68



We can extend Big Oh to any, not

necessarily linear, function

O gives an asymptotic upper bounds

o fim)

running
time

Ry

Run-time complexity is
O(f(n)) if there exists
constants n, and ¢ such
that:

* Vnz2n,

* runtime of size nis at
most cf(n), upper
bound

* O(f(n)) is the worst
case performance for
large n, but actual
performance could be
better

* f(n) can be a non-
linear function such as
n?or log(n)

* Inthat case O(n?) or
O(log n) 69



Run time can also be Q (Big Omega), where

run time grows at least as fast

Q gives an asymptotic lower bounds

Run-time complexity is

Q(f(n)) if there exists

constants n, and c¢; such

that:

* Vn2n,

WTJ:S:QE * run time of size nis at

least c.f(n), lower

c1 fin) bound

* Q(n)is the best case
performance for large
n, but actual
performance can be
worse

A c2fin)

My
Example: find largest item in a list
* Must check each n items
e Largestitem could be at end of
list, can’t stop early
e Can’tdo better than Q (n) 70



We use O (Big Theta) for tight bounds

when we can define O and Q

O gives an asymptotic tight bounds

We can also apply these concepts to how Run-time complexity is

much memory an algorithm uses (not just O(f(n)) if there exists
run-time complexity) constants n, and c; and

A c2 finy C2such that:
* Vn2n,
~* runtime of size nis at
hme.  leastcf(n) and at
most ¢,f(n)
cfin) e @(n) gives a tight
bound, which means
run time will be within

= 1 a constant factor
Hy _
Example: find largest item in a list G.enerally we will use
either O or ©

* Best case: already seen it is Q(n)
*  Worst case: must check each item, so O(n) * 0,Q,0called

* Because Q(n) and O(n) we say it is O(n) asymptotic notation
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We ighore constants and low-order terms

In asymptotic notation

Constants don’t matter, just adjust ¢; and c,
* Constant multiplicative factors are absorbed into ¢, (and c,)
* Example: 1000n?is O(n?) because we can choose c, to be 1000
(remember bounded by c;n)
* Do care in practice — if an operation takes a constant time, O(1),
but more than 24 hours to complete, can’t run it everyday

Low order terms don’t matter either
* If n?+1000n, then choose ¢, = 1, so now n? +1000n 2 c,n?
* Now must find ¢, such that n? +1000n < c,n?
e Subtract n? from both sides and get 1000n < c,n?- n? = (c,-1)n?
* Divide both sides by (c,-1)n gives 1000/(c,-1) <n
* Pickc,=2andn,=1000, then Vn2n, 1000 < n
* So, n? +1000n < c,n?, try with n=1000 get n? + 1000° = 2*n?
* In practice, we simply ignore constants and low order terms
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How to write them

Constant time Linear time Polynomial time
O(1) O(n) O(n?)
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DESCRIPTION OF PROS AND CONS



At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

add()/remove() element
anywhere in List

No limit to number of
elements in List

Start at head and march
down to index in list
Slow to find element,
but fast once there

Start at head and march
down to index in list
Slow to find element,
but fast once there

Built in feature of how
linked lists work

Just create a new
element and splice it in

Contiguous block of
memory

Random access aspect
of arrays makes
get()/set() easy and fast

Fast to find element, but
slow once there

Have to make (or fill)
hole by copying over

Arrays declared of fixed
size
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ArrTest.java

ANNOTATED SLIDES



Random access aspect of arrays makes it

easy to get or set any element

coNOUT DS WN |

O

10
11
12
13
14
15
16
17
18
19

public class ArrTest {
public static void main(Strin args) {
//declare array
- int[] numbers = new int[10]; //indices 0..9
//set some elements

numbers[2] = 2;
numbers[5] 10;

//get some elements

int a = numbers[2];

int b = numbers[5];

int ¢ = numbers[1]; //we did not set this
System.out.println("a="+a+" b="+b+" c="+cC);

* | Problems @ Javadoc Declaration [E) Console £3 ‘:’“ Debug &9 Expressions Error Log _z° Call Hierarchy

<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.

Array reserves a contiguous
block of memory

Big enough to hold specified
number of elements (10 here)
times size of each element (4
bytes for integers) = 40 bytes
Indices are 0...9
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Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9
5 public class ArrTest {
3
4e public static void main(String[] args) {
5 //declare array
6 » int[] numbers = new int[10]; //indices 0..9
7
8 //set some elements

9 numbers[2] = 2;

10 numbers[5] = 10;

11

12 //get some elements

13 int a = numbers[2];

14 int b = numbers[5];

15 int ¢ = numbers[1]; //we did not set this
16 System.out.println("a="+a+" b="+b+" c="+cC);
177 }

18 }

19

Problems @ Javadoc Declaration [E] Console $8 %5 Debug 69" Expressions Error Log _z° Call Hierarchy

<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.
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Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9

Wl | L]

2 public ¢

3 No need to march down list to get or

4- public static vo1i in(String[] args) { set element

5 //declare array

6 int[] numbers = new int[ /indices 0..9

7 To find element:

; //set sone elements « Start at base address of array (this is
» numbers[2] = 2; .

10 numbers[5] = 10; where “numbers” array points)

E P — * Element at index idx is at address:

13 inﬂea j°’:ﬁm§eﬁ’;‘§§]f base addr + idx*size(element)

14 int b = numbers[5];

15 int ¢ = numbers[1]; //we did not set this

16 System.out.println("a="+a+" b="+b+" c="+cC);

17 }

18 }

19

Problems @ Javadoc Declaration [E) Console £3 :’“ Debug 6" Expressions Error Log _z° Call Hierarchy
<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.
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Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9

Wl | L]

2 public class ArrTest { ]
3 No need to march down list to get or
4= public static void main(§tring[] args) { set element
5 //declare array
6 int[] numbers = new int[M@]; //indices 0..9
7 To find element:
: //set sone elements « Start at base address of array (this is
9 numbers[2] = 2; N ) .
10 numbers[5] = 10; where “numbers” array points)
E P — * Element at index idx is at address:
get some elements . ks
13 b6k 6 = GUTBEFSIE]E base addr + idx*size(element)
14 int b = numbers[5]; * Index 2 at base addr + 2*4 bytes
15 int ¢ = numbers[1]; //we did not set this Time to access element is constant
16 System.out.println("a="+a+" b="+b+" c="+c); . . ]
17 } anywhere in array (just simple math
18 } operation to calculate any index)
19 . . .
* With linked list have to march down
Problems @ Javadoc Declaration [E] Console £2 %5 Debug 69" Expressions Error Log _z° Call Hierarchy IiSt’ ta kes Ionger to find elements at
<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6. e n d
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Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9
2 public class ArrTest {
3
4= public static void main(String[] args) {
> //declare array
6 int[] numbers = new int[10]; //indices 0..9
7
8 //set some elements

O

numbers[2] = 2;

10 » numbers[5] = 10;

11

12 //get some elements

13 int a = numbers[2];

14 int b = numbers[5];

15 int ¢ = numbers[1l]; //we did not set this
16 System.out.println("a="+a+" b="+b+" c="+c);
17 3

18 }

19

¢! Problems @ Javadoc Declaration [ Console §8 %3 Debug &< Expressions Error Log _z° Call Hierarchy

<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.
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Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9
2 public class ArrTest {
3
4= public static void main(String[] args) {
> //declare array
6 int[] numbers = new int[10]; //indices 0..9
7
8 //set some elements

9 numbers[2] = 2;

10 numbers[5] = 10;

11

12 //get some elements

13 int a = numbers[2]; What values will a, b and c have?
14 int b = numbers[5];

15 int ¢ = numbers[1l]; //we did not set this
16 Q System.out.println("a="+a+" b="+b+" c="+c);
17

18 }

19

7. Problems @ Javadoc Declaration E Console g2 3‘::? Debug 69" Expressions Error Log ° Call Hierarchy
<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.
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Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9
2 public class ArrTest {
3
4= public static void main(String[] args) {
> //declare array
6 int[] numbers = new int[10]; //indices 0..9
7
8 //set some elements

9 numbers[2] = 2;

10 numbers[5] = 10;

11

12 //get some elements

13 int a = numbers[2]; What values will a, b and c have?
14 int b = numbers[5];

15 int ¢ = numbers[1l]; //we did not set this
16 Q System.out.println("a="+a+" b="+b+" c="+c);
17

18 }

19

7. Problems @ Javadoc Declaration E Console g2 3‘::? Debug 69" Expressions Error Log ° Call Hierarchy
<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.
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EXAMPLE OF INSERTION IN
ARRAYLIST



Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 4 5 6 7 8 9

14 Insert 14 at index 2
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Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 4 5 6 7 8 9

* Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index

86



Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 4 s 7 8 9

ol 72|z o]0l o]0

T * Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index
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Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 / 5 6 7 8 9

* Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index
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Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 5 6 7 8 9

* Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index
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Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 4 5 6 7 8 9

* Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index
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Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 4 5 6 7 8 9

e Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index
Copy new element
into index
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Because arrays are a contiguous block of

memory, hard to insert (except at end)

0 1 2 3 4 5 6 7 8 9

Index

16 7 14 2 25 -8 10 0 0 0

Works, but takes a lot of time (said to be “expensive”)
Especially expensive with respect to time if the array is
large and we insert at the front

Linked list is slow to find the right place (have to march
down list starting from head), but fast to insert, just
update two pointers and you’re done

Linked list is fast, however, if only dealing with head
With arrays, easy to find right place, but slow afterward
due to copying to make a hole
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EXAMPLE OF GROWING ARRAYLIST



Arrays are of fixed size, but List ADT allows

for growth

Index 0 1 2 3 4 5 6 7 8 9

What do we do when the array is full, but
we want to add more elements?

Answer: create another, larger array, and
copy elements from old array into new array
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Arrays are of fixed size, but List ADT allows

for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
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Arrays are of fixed size, but List ADT allows

for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

96



Arrays are of fixed size, but List ADT allows

for growth

Old array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
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Arrays are of fixed size, but List ADT allows

for growth

Old array

bl

New array | |

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
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Arrays are of fixed size, but List ADT allows

for growth

Old array

bl 1

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
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Arrays are of fixed size, but List ADT allows

for growth

Room for more
elements

)

array

Grow array

1. Make new array, say 2 times larger than old array

2. Copy elements one at a time from old array to new

3. Set instance variable to point at new array (old
array will be garbage collected)
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Arrays are of fixed size, but List ADT allows

for growth

Growing is expensive operation,
but we don’t have to do it
frequently if new array size is

. : elements
multiple of old array size |

| |
array
Grow array

Room for more

1. Make new array, say 2 times larger than old array

2. Copy elements one at a time from old array to new

3. Set instance variable to point at new array (old
array will be garbage collected)
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GrowingArray.java

ANNOTATED SLIDES



GrowingArray.java: implements List ADT

using an array instead of a linked list

public class GrowingArray<T> implements SimpleList<T>, Iterable<T> {

private T[] array; Implements SimpleList and Iterable from last class
private int size; //ho of the array is actually filled up so far
private static final int initCap = 10; big the array should be initially

Array is now the data structure used to

public GrowingArray() { store elements in List

array = (T[]) new Object[initCap]; // java generics oddness — cast array of objects

size = 0; * Array initially sized to 10 Objects (note the funky Java
} allocation syntax, must cast to array of generic type)
Jun « Remember, arrays are of fixed size, but the List ADT

does not specify a size
* Return the number of elements in the List (they are indexed O..size-1)

* @return number okelements

*/

public int size() { Track size
return size;

) Will increment on each add and
decrement on each remove
Run-time complexity?
0(1) 103



GrowingArray.java: get()/set() are easy and

fast with an array implementation
o

* Return item at index idx

* @param idx index of item to return
* @return item stored at index idx

* @throws Exception invalid index

*/ Notice: no curly braces!
public T get(int idx) throwsW Only next line in if statement
if (idx >=0 && idx < size) return array[idx];

else throw new Exception("invalid index");

Get and set are easy, just make sure
index is valid, then return or set item

} Run-time complexity?
O(1) for any index!

/** :
* Overwrite item at index idx with item parameter Just two math operations to compute
* @param idx index of item to get memory address

* @param item overwrite existing item at index idx with this item
* @throws Exception invalid index
¥/
public void set(int idx, T item) throws Exception {
if (idx >= 0 && idx < size) array[idx] = item;
else throw new Exception("invalid index");

}
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GrowingArray.java: With growing trick, can

implement the List interface with an array

public void add(int idx, T item) throws Exception {
if (idx >size || idx < 0) throw new Exception("invalid index"); .
e array.length is how many
if (size == array.length)§™
_ elements array can hold
// Double the size of the array, to leave more space
T[] copy = (T[]) new Object[size*2];
// Copy it over
for (int i=0; i<size; i++) copyli] = array]i];
array = copy;
} add() makes a new,
// Shift right to make room larger array if needed
for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
array[idx] = item;
Size++;

size has how many elements
array does hold
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GrowingArray.java: With growing trick, can

implement the List interface with an array

public void add(int idx, T item) throws Exception {
if (idx >size || idx < 0) throw new Exception("invalid index"); .
e array.length is how many
if (size == array.length)§™
_ elements array can hold
// Double the size of the array, to leave more space
T[] copy = (T[]) new Object[size*2];
// Copy it over
for (int i=0; i<size; i++) copyli] = array]i];
array = copy;
} add() makes a new,
// Shift right to make room larger array if needed
for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
array[idx] = item;
Size++;

size has how many elements
array does hold

Copy elements one at a
time into new array
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GrowingArray.java: With growing trick, can

implement the List interface with an array

public void add(int idx, T item) throws Exception {
if (idx >size || idx < 0) throw new Exception("invalid index"); .
e array.length is how many
if (size == array.length)§™
_ elements array can hold

// Double the size of the array, to leave more space

T[] copy = (T[]) new Object[size*2];

// Copy it over

for (int i=0; i<size; i++) copyli] = array]i];

drray = copy; Update instance
} ™S P add() makes a new,
variable to new array

// Shift right to make room larger array if needed
for (int i=size-1; i>=idx; i--) array[i+1] = array][i];
array[idx] = item;

Size++;

size has how many elements
array does hold

Copy elements one at a
time into new array
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GrowingArray.java: With growing trick, can

implement the List interface with an array

public void add(int idx, T item) throws Exception {

if (idx >size || idx < 0) throw new Exception("invalid index");

if (size == array.length) {
// Double the size of the array, to leave more space
T[] copy = (T[]) new Object[size*2];
// Copy it over
for (int i=0; i<size; i++) copyli] = array]i];
array = copy;

} /
// Shift right to make room .

for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
array[idx] = item;
Size++;

Here we know we have enough
room to add a new element
Now do insert

Start from last item and copy
to one index larger

Stop at index idx

Set item at idx to item
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GrowingArray.java: With growing trick, can

implement the List interface with an array

public void add(int idx, T item) throws Exception {

if (idx >size || idx < 0) throw new Exception("invalid index");
if (size == array.length) {

// Double the size of the array, to leave more space

T[] copy = (T[]) new Object[size*2];

// Copy it over

for (int i=0; i<size; i++) copyli] = array]i];

array = copy;
} Add an item at the end is easy
// Shift right to make room Just call add with size as index
for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
array[idx] = item;
Size++;

What did we call it when two
methods have the same name but
different variables?
Overloading
public void add(T item) throws Exception {

add(size,item); Run-time complexity
} o(1)
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GrowingArray.java: With growing trick, can

implement the List interface with an array

/**
* Remove and return the item at index idx. Move items left to fill hole.
* @param idx index of item to remove
* @return the value previously at index idx
* @throws Exception invalid index
*/
public T remove(int idx) throws Exception {
if (idx >size-1 || idx < 0) throw new Exception("invalid index");

T data = array[idx]; remove() slides

// Shift left to cover it over «—  elements left one slot

for (int i=idx; i<size-1; i++) array[i] = array[i+1]; for index > idx
size--;

return data; Run-time complexity?

} o(n)
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LIST ANALYSIS



Growing array is generally preferable to

linked list, except maybe growth operation

Worst case run-time complexity

Linked list Growing array

get(i) O(n) O(1)
set(i,e) O(n) O(1)
add(i,e)  O(n) O(n) + growth
remove(i) O(n) O(n)
e Start at head and march down to find * Faster get()/set() than linked list
index i * Tie with linked list on remove()
* Slow to get to index, O(n) * Best case: all operation at tail
* Once there, operations are fast O(1) * add() might cause expensive
* Best case: all operations on head growth operation

* How should be think about that?



Amortization is a concept from accounting

that allows us to spread costs over time

Amortized analysis

Accounting allows us to amortize
costs over several years
B Actual e Buy $70K truck on year 1
e Truck is good for 7 years
Can think of the cost as
S10K/year instead of one
payment of $70K on year 1
* Actually pay S70K on year 1, but
this is equivalent to paying
S10K/year for 7 years
Idea is to spread the cost
(“amortize” the cost) over the
lifetime of the truck
* We will use this concept to “pre-
Year pay” for expensive growth
operation

Cost per year

[o]
o

~N
o

Conceptual

Cost SK/yr
= N w B wn D
o o o o o o
[ ]

o
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Amortized analysis shows growing array is

actually only O(1)!

Amortized analysis

nitems

array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

array

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

!
v

array

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

array

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n-n=n

array

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy n items, so charge n pre-paid tokens from bank
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Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array nitems

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy n items, so charge n pre-paid tokens from bank

Remaining n items in bank “pay for” empty n spaces

122



Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array nitems

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent growth
operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy n items, so charge n pre-paid tokens from bank

Remaining n items in bank “pay for” empty n spaces

Charging a little extra for each add spreads out cost for infrequent growth ope%tion




Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array nitems

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent growth
operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy n items, so charge n pre-paid tokens from bank

Remaining n items in bank “pay for” empty n spaces

Charging a little extra for each add spreads out cost for infrequent growth ope@}ion

The charge, however, is a constant, so O(3) = 0(1)




Growing array is generally preferable to

linked list

Worst case run-time complexity /;i\\‘:‘:‘f;ﬁ‘*z,,s

Linked list

; Amortized analysis shows
gE‘t(I) O ( n) 0(1) infrequent grovzth operation
set(i,e) O(n) O(]_) is constant time
add(i,e)  O(n) O(n) + O(1) = O(n)

. Pay a constant amount more
remove(/) O ( n) O(n) onyeach a;d()tto pay f(t)r the

occasional expensive growth
e Start at head and march down to find * Faster get()/set() than linked list

index i * Tie with linked list on remove()
* Slow to get to index, O(n) e Best case: all operations on tail
* Once there, operations are fast O(1) e add() might cause expensive

* Best case: all operations on head growth operation
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