
CS 10:
Problem solving via Object Oriented 

Programming

Runtime complexity

Part of the slides based on Dr. Kate Salesin slides
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Main goals

• Characterize runtime complexity
• Work for memory too

• Compare list implementations
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Agenda

1. Run-time complexity

2. Asymptotic notation

3. List analysis
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Find an element in the list (unsorted)
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Find an element in the list (unsorted)

Search algorithm (linear search):

for idx i = 0 ... n–1 
      if list.get(i) equals target 
           return I
return -1 (not found)

Best case?

Worst case?



3 7 11 15 18 27 42

6

Find an element in the list (sorted)
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Find an element in the list (sorted)

min = 0
max = n–1 
while min <= max
 idx = (min + max) / 2 
 if list.get(i) equals target 
  return idx 
 if list.get(i) > target 
  max = idx–1 
 else 
  min = idx +1

Best case?

Worst case?

Search algorithm (binary search):
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Find the max element in the list (unsorted)

max_value = list.get(0) 
for idx i = 1 ... n–1 
 if list.get(i) > max_value 
  max_value = list.get(i) 
return max_value

Best case?

Worst case?

Max algorithm:

27 11 3 42 18 7 15
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Find the max element in the list (sorted)

return list.get(0)

Best case?

Worst case?

Max algorithm
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Comparing algorithms

Search algorithm (linear search):

for idx i = 0 ... n–1 
      if list.get(i) equals target 
           return I
return -1 (not found)

min = 0
max = n–1 
while min <= max
 idx = (min + max) / 2 
 if list.get(i) equals target 
  return idx 
 if list.get(i) > target 
  max = idx–1 
 else 
  min = idx +1

Search algorithm (binary search):
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Comparing algorithms

Search algorithm (linear search):

for idx i = 0 ... n–1 
      if list.get(i) equals target 
           return i
return -1 (not found)

min = 0
max = n–1 
while min <= max
 idx = (min + max) / 2 
 if list.get(i) equals target 
  return idx 
 if list.get(i) > target 
  max = idx–1 
 else 
  min = idx +1

Search algorithm (binary search):

Worst case: check 
every item in the list Worst case: check half of 

the items in the list (though 
more operations)
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Comparing algorithms

Search algorithm (linear search):

for idx i = 0 ... n–1 
      if list.get(i) equals target 
           return i
return -1 (not found)

Best case, immediately 
found No best or worst case, need 

to check entire list

max_value = list.get(0) 
for idx i = 1 ... n–1 
 if list.get(i) > max_value 
  max_value = list.get(i) 
return max_value

Max algorithm:



Ideas: 

– Time tests? But depends on specific 
hardware... 

– Count # of operations? But will vary depending 
on size of list, and depends on exact 
implementation details... 

– Do we compare best case, worst case, or 
average case?
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How to compare efficiency?



• Key idea: typically in computer science, we 
measure how the # of operations grows with 
respect to the size of the input in the worst 
case 

• “Size” is not always the length of a list or array, 
could also be the # characters in a string (as in 
SA-3), the # nodes in a binary tree, etc.
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How to compare efficiency?



• Examples of a single “operation”: 

– Assign value to variable, x = 1 

– Access element in array, x = array[i]

– Perform arithmetic operation, x = y + z, x++, etc.

– Compare two values, x == y, x < y, etc.

• In general, a single CPU computation or single 
read/write from memory
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How to count operations?
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Example: Calculate sum of numbers from 1 
to n

int sum(int n) { 
 int total = 0 
 for (int i = 1; i <= sum; i++) { 
  total += i; 
 } 
 return total; 
}

Algorithm 1: 

1+2+3+…+n
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Example: Calculate sum of numbers from 1 
to n

# operations
1
1; n+1; n
n

1

Total= 3n+4 operations

int sum(int n) { 
 int total = 0 
 for (int i = 1; i <= sum; i++) { 
  total += i; 
 } 
 return total; 
}

Algorithm 1: 

1+2+3+…+n



Algorithm 2: 

1+(1+1)+(1+1+1)+…+(1+1+…+1)
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Example: Calculate sum of numbers from 1 
to n

int sum(int n) { 
 int total = 0 
 for (int i = 1; i <= sum; i++) { 
  for (int j = 1; j <= i; j++) { 
   total += 1; 
  } 
 } 
 return total; 
}



Algorithm 2: 

1+(1+1)+(1+1+1)+…+(1+1+…+1)
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Example: Calculate sum of numbers from 1 
to n

# operations
1
1; n+1; n
n; (n+1)*(n+1)/2; n*(n+1)/2
n*(n+1)/2

1
Total= 3/2n2+11/2n+4 
operations

int sum(int n) { 
 int total = 0 
 for (int i = 1; i <= sum; i++) { 
  for (int j = 1; j <= i; j++) { 
   total += 1; 
  } 
 } 
 return total; 
}



Algorithm 3: n*(n+1)/2
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Example: Calculate sum of numbers from 1 
to n

# operations
4

Total= 4 operations

int sum(int n) { 
 return n * (n+1) /2; 
}
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Example: Calculate sum of numbers from 1 
to n

Algorithm 1: 

1+2+3+…+n

Algorithm 2: 

1+(1+1)+(1+1+1)+…+
(1+1+…+1)

Algorithm 3: 
n*(n+1)/2

3/2n2+11/2n+4 43n+4
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Example: Calculate sum of numbers from 1 
to n

Algorithm 1: 

1+2+3+…+n

Algorithm 2: 

1+(1+1)+(1+1+1)+…+
(1+1+…+1)

Algorithm 3: 
n*(n+1)/2

3/2n2+11/2n+4 43n+4

O(n) O(n2) O(1)

Big O notation
• Ignore lower-order terms – the biggest term will dominate as the input 
size n grows asymptotically 
• Ignore constant factors – depends on implementation details, not the 
core algorithm
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Often run-time will depend on the number 
of elements an algorithm must process

Constant time O(1) – does not depend on number of items
 e.g., return first element of a list

Linear time O(n) – directly depends on number of items
 e.g., find value in a list

Polynomial time O(nk) – depends on a polynomial function of 
number of items
 e.g., nested loop in an image

Logarithm time O(log n)– avoids operations on some items
 e.g., binary search

Exponential time O(2n)– base raised to power
 e.g., all possible bit combinations in n bits
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For small numbers of items, run time does 
not differ by much 
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As n grows, number of operations between 
different algorithms begins to diverge
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Even with only 60 items, there is a large 
difference in number of operations

n

N
u

m
b

e
r 

o
f 

o
p

e
ra

ti
o

n
s Logarithm

Linear

Polynomial

Exponential

log2n

n

n2

2n



27

Eventually, even with speedy computers, 
some algorithms become impractical
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Sometimes complexity can hurt us, 
sometimes it can help us

Hurts us
Can’t brute force chess 
algorithm 2n

Helps us
Can’t crack password 
algorithm 2n

Images: thechessstore.com; studyoffice.org
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Agenda

1. Run-time complexity

2. Asymptotic notation

3. List analysis
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We can extend Big Oh to any, not 
necessarily linear, function
O gives an asymptotic upper bounds Run-time complexity is 

O(f(n)) if there exists 
constants n0 and c such 
that:
• ∀n ≥ n0

• run time of size n is at 
most cf(n), upper 
bound

• O(f(n)) is the worst 
case performance for 
large n, but actual 
performance could be 
better
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Run time can also be Ω (Big Omega), where 
run time grows at least as fast
Ω gives an asymptotic lower bounds

Run-time complexity is 
Ω(f(n)) if there exists 
constants n0 and c1 such 
that:
• ∀n ≥ n0

• run time of size n is at 
least c1f(n), lower 
bound

• Ω(n) is the best case 
performance for large 
n, but actual 
performance can be 
worse
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Comparison

Example: find specific item in a list Example: find largest item in a list
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Comparison

Example: find specific item in a list
• Might find item on first try
• Might not find it at all (must check 

all n items in list)
• Worst case (upper bound) is O(n)

Example: find largest item in a list
• Must check each n items
• Largest item could be at end of 

list, can’t stop early
• Can’t do better than Ω (n)
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We use Θ (Big Theta) for tight bounds 
when we can define O and Ω
Θ gives an asymptotic tight bounds

If an algorithm is O(f(n)) and Ω(f(n)), then it is Θ(f(n))
Run-time complexity is 
Θ(f(n)) if there exists 
constants n0 and c1 and 
c2 such that:
• ∀n ≥ n0

• run time of size n is at 
least c1f(n) and at 
most c2f(n)

• Θ(n) gives a tight 
bound, which means 
run time will be within 
a constant factor

• Generally we will use 
either O or Θ 
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Comparison: which has a tight bound?

Example: find specific item in a list
• Might find item on first try
• Might not find it at all (must check 

all n items in list)
• Worst case (upper bound) is O(n)

Example: find largest item in a list
• Must check each n items
• Largest item could be at end of 

list, can’t stop early
• Can’t do better than Ω (n)
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Comparison: which has a tight bound?

Example: find specific item in a list
• Might find item on first try
• Might not find it at all (must check 

all n items in list)
• Worst case (upper bound) is O(n)

Example: find largest item in a list
• Must check each n items
• Largest item could be at end of 

list, can’t stop early
• Can’t do better than Ω (n)

• Worst case: must check each 
item, so O(n)

• Because Ω(n) and O(n) we say it 
is Θ(n)
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We ignore constants and low-order terms 
in asymptotic notation

Constants don’t matter, just adjust c1 and c2

Low order terms don’t matter either
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These concepts are applicable for memory 
complexity as well

memory
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Agenda

1. Run-time complexity

2. Asymptotic notation

3. List analysis
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Difference between singly linked list and 
array

data next

head

“Alice”

data next

“Bob”

data next

“Charlie”

Singly linked list

Array

0 1

“Alice” “Bob” “Charlie”

2 n-1

…

List ADT features

get()/set() element 
anywhere in List

add()/remove() element 
anywhere in List

No limit to number of 
elements in List
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Growing array is generally preferable to 
linked list, except maybe growth operation

Linked list Growing array

get(i)

set(i,e)

add(i,e)

remove(i)

Worst case run-time complexity

Discussion
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Growing array is generally preferable to 
linked list, except maybe growth operation

Linked list Growing array

get(i) O(n) O(1)

set(i,e) O(n) O(1)

add(i,e) O(n) O(n) + growth

remove(i) O(n) O(n)

Worst case run-time complexity
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Amortization is a concept from accounting 
that allows us to spread costs over time

Accounting allows us to amortize 
costs over several years
• Buy $70K truck on year 1
• Truck is good for 7 years

Amortized analysis
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Amortized analysis shows growing array is 
actually only O(1)!

array

Amortized analysis

n items
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2n items
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
4n items
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2nn items
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2nn items

New array
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2nn items

New array
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2nn items

New array
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2n-n = nn items

New array



52

Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
nn items

New array

n items
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Growing array is generally preferable to 
linked list

Linked list Growing array

get(i) O(n) O(1)

set(i,e) O(n) O(1)

add(i,e) O(n) O(n) + O(1) = O(n)

remove(i) O(n) O(n)

Worst case run-time complexity
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Summary

• Runtime and memory complexity analysis

– Asymptotic notation
• O(1) constant, O(log(n)) logarithm, O(n) linear, O(n^2) polynomial, 

O(2^n) exponential

• Runtime complexity analysis

– Get/set O(1)

– Add/remove O(n)
• Amortized analysis for growth operation

• List analysis: SinglyLinkedList vs ArrayList

– Growing array overall more efficient, unless specific 
assumptions on operations



• Hierarchical relationships through trees
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Next



Additional Resources
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RUN-TIME COMPLEXITY

57
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How long does it take to find an item in a 
List?

Bob Elvis Abby Denise Charlie

0     1       2   3    4                   n-2  n-1Index

Yancy Zephyr…

Assume there are n items in the List (index 0 … n-1)
Find index of “Paula” in List
What pseudo code would you use:

for i = 0 … n-1
 get item at index i

if item is equal to search value
 return index i

return -1 (or otherwise indicate search term not in List)
How long to find the item?  Should we time how long it takes?
Time would depend on

• Hardware
• Where Paula was located in the List

What is the best case?
What is the worst case?
What is the average case?
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How long does it take to find an item in a 
List?

Bob Elvis Abby Denise Charlie

0     1       2   3    4                   n-2  n-1Index

Yancy Zephyr…

Instead of timing execution we will count how many operations are needed in the 
worst case
• Doesn’t depend on hardware or software environment
• Could use average case, but average is hard to define sometimes because it 

would be based on the input’s distribution
• Worst case tells us it won’t take longer to execute
• Allows language-independent analysis based on number of elements

Operations to count
• Assign value to variable
• Following an object reference to heap memory
• Performing arithmetic operation (e.g., add two numbers)
• Compare two numbers (if statement)
• Access element in array
• Calling or returning from a method
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Often run-time will depend on the number 
of elements an algorithm must process

Constant time – does not depend on number of items
• Returning the first element of a list takes a constant amount of 

time irrespective of the number of elements in the list
• Just return the first item
• No need to march down list to find the first element (head)
• Array get() implementation is also constant time (array get() is 

constant time everywhere, linked list only constant at head)

Linear time – directly depends on number of items
• Example: searching for a particular value stored in a list
• Start at first item, compare value with value trying to find
• Keep going until find item, or end up at end of list
• Could get lucky and find item right away, might not find it at all
• Worst case is we check all n items
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Often run-time will depend on the number 
of elements an algorithm must process

Polynomial time – depends on a polynomial function of 
number of items
• Example: nested loop in image and graphic methods
• If changing all pixels in n by n image, must do a total of n2 

operations because inner and outer loops each run n times
• Normally runs slower than a constant or linear time algorithm

Logarithm time – avoids operations on some items
• Soon we will look at binary search
• Reduces the number of items algorithm must process (don’t 

process all n items)
• Runs faster than linear or polynomial time (slower than constant)

Exponential time – base raised to power
• Combination problems: all possible bit combinations in n bits = 2n

• SLOW!
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For small numbers of items, run time does 
not differ by much 
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As n grows, number of operations between 
different algorithms begins to diverge
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Even with only 60 items, there is a large 
difference in number of operations
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Eventually, even with speedy computers, 
some algorithms become impractical
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ASYMPTOTIC NOTATION
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Computer scientists describe upper bounds 
on orders of growth with “Big Oh” notation
O gives an asymptotic upper bounds

Run-time complexity is 
O(n) if there exists 
constants n0 and c such 
that:
• ∀n ≥ n0

• run time of size n is at 
most cn, upper bound
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Computer scientists describe upper bounds 
on orders of growth with “Big Oh” notation
O gives an asymptotic upper bounds

Run-time complexity is 
O(n) if there exists 
constants n0 and c such 
that:
• ∀n ≥ n0

• run time of size n is at 
most cn, upper bound

• O(n) is the worst case 
performance for large 
n, but actual 
performance could be 
better

• O(n) is said to be 
“linear” time

• O(1) means constant 
time

Example: find specific item in a list
• Might find item on first try
• Might not find it at all (must check 

all n items in list)
• Worst case (upper bound) is O(n)

“Big Oh of n”, and “Oh of n”, and “order n” 
all mean the same thing!
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We can extend Big Oh to any, not 
necessarily linear, function
O gives an asymptotic upper bounds Run-time complexity is 

O(f(n)) if there exists 
constants n0 and c such 
that:
• ∀n ≥ n0

• run time of size n is at 
most cf(n), upper 
bound

• O(f(n)) is the worst 
case performance for 
large n, but actual 
performance could be 
better

• f(n) can be a non-
linear function such as 
n2 or log(n)

• In that case O(n2) or 
O(log n)



70

Run time can also be Ω (Big Omega), where 
run time grows at least as fast
Ω gives an asymptotic lower bounds

Run-time complexity is 
Ω(f(n)) if there exists 
constants n0 and c1 such 
that:
• ∀n ≥ n0

• run time of size n is at 
least c1f(n), lower 
bound

• Ω(n) is the best case 
performance for large 
n, but actual 
performance can be 
worse

Example: find largest item in a list
• Must check each n items
• Largest item could be at end of 

list, can’t stop early
• Can’t do better than Ω (n)
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We use Θ (Big Theta) for tight bounds 
when we can define O and Ω
Θ gives an asymptotic tight bounds

Run-time complexity is 
Θ(f(n)) if there exists 
constants n0 and c1 and 
c2 such that:
• ∀n ≥ n0

• run time of size n is at 
least c1f(n) and at 
most c2f(n)

• Θ(n) gives a tight 
bound, which means 
run time will be within 
a constant factor

• Generally we will use 
either O or Θ 

• O, Ω, Θ called 
asymptotic notation

Example: find largest item in a list
• Best case: already seen it is Ω(n)
• Worst case: must check each item, so O(n)
• Because Ω(n) and O(n) we say it is Θ(n)

We can also apply these concepts to how 
much memory an algorithm uses (not just 
run-time complexity)
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We ignore constants and low-order terms 
in asymptotic notation

Constants don’t matter, just adjust c1 and c2

• Constant multiplicative factors are absorbed into c1 (and c2)
• Example: 1000n2 is O(n2) because we can choose c1 to be 1000 

(remember bounded by c1n)
• Do care in practice – if an operation takes a constant time, O(1), 

but more than 24 hours to complete, can’t run it everyday

Low order terms don’t matter either
• If n2+1000n, then choose c1 = 1, so now n2 +1000n ≥ c1n2

• Now must find c2 such that n2 +1000n ≤ c2n2

• Subtract n2 from both sides and get 1000n ≤ c2n2 - n2 = (c2-1)n2

• Divide both sides by (c2-1)n gives 1000/(c2-1) ≤ n 
• Pick c2 = 2 and n0 = 1000, then ∀n ≥ n0, 1000 ≤ n
• So, n2 +1000n ≤ c2n2, try with n=1000 get n2 + 10002 = 2*n2

• In practice, we simply ignore constants and low order terms
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How to write them

Constant time 
O(1)

Linear time
O(n)

Polynomial time 
O(n2)



DESCRIPTION OF PROS AND CONS
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At first arrays seem to be a poor choice to 
implement the List ADT

List ADT features Linked List Array

get()/set() element 
anywhere in List

• Start at head and march 
down to index in list

• Slow to find element, 
but fast once there

• Contiguous block of 
memory

• Random access aspect 
of arrays makes 
get()/set() easy and fast

add()/remove() element 
anywhere in List

• Start at head and march 
down to index in list

• Slow to find element, 
but fast once there

• Fast to find element, but 
slow once there

• Have to make (or fill) 
hole by copying over

No limit to number of 
elements in List

• Built in feature of how 
linked lists work

• Just create a new 
element and splice it in

• Arrays declared of fixed 
size



ANNOTATED SLIDES

ArrTest.java

76
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Random access aspect of arrays makes it 
easy to get or set any element

• Array reserves a contiguous 
block of memory 

• Big enough to hold specified 
number of elements (10 here) 
times size of each element (4 
bytes for integers) = 40 bytes

• Indices are 0…9
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Random access aspect of arrays makes it 
easy to get or set any element

0      1  2      3  4     5  6      7   8      9Index
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Random access aspect of arrays makes it 
easy to get or set any element

2

0      1  2      3  4     5  6      7   8      9Index

No need to march down list to get or 
set element

To find element:
• Start at base address of array (this is 

where “numbers” array points)
• Element at index idx is at address: 

base addr + idx*size(element)
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Random access aspect of arrays makes it 
easy to get or set any element

2

0      1  2      3  4     5  6      7   8      9Index

No need to march down list to get or 
set element

To find element:
• Start at base address of array (this is 

where “numbers” array points)
• Element at index idx is at address: 

base addr + idx*size(element)
• Index 2 at base addr + 2*4 bytes
• Time to access element is constant 

anywhere in array (just simple math 
operation to calculate any index)

• With linked list have to march down 
list, takes longer to find elements at 
end
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Random access aspect of arrays makes it 
easy to get or set any element

2 10

0      1  2      3  4     5  6      7   8      9Index
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Random access aspect of arrays makes it 
easy to get or set any element

2 10

0      1  2      3  4     5  6      7   8      9Index

What values will a, b and c have?
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Random access aspect of arrays makes it 
easy to get or set any element

2 10

0      1  2      3  4     5  6      7   8      9Index

What values will a, b and c have?



EXAMPLE OF INSERTION IN 
ARRAYLIST

84
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Because arrays are a contiguous block of 
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2

0 0 0 0

0      1  2      3  4     5  6      7   8      9
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Because arrays are a contiguous block of 
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2
• Slide indices ≥ idx to the 

right to make a hole
• Copy each element to 

next index

0 0 0 0

0      1  2      3  4     5  6      7   8      9
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Because arrays are a contiguous block of 
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the 
right to make a hole

• Copy each element to 
next index

0 0 0

0      1  2      3  4     5  6      7   8      9
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Because arrays are a contiguous block of 
memory, hard to insert (except at end)

16 7 2 25 -8 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the 
right to make a hole

• Copy each element to 
next index

0 0 0

0      1  2      3  4     5  6      7   8      9
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Because arrays are a contiguous block of 
memory, hard to insert (except at end)

16 7 2 25 25 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the 
right to make a hole

• Copy each element to 
next index

0 0 0

0      1  2      3  4     5  6      7   8      9
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Because arrays are a contiguous block of 
memory, hard to insert (except at end)

16 7 2 2 25 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the 
right to make a hole

• Copy each element to 
next index

0 0 0

0      1  2      3  4     5  6      7   8      9
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Because arrays are a contiguous block of 
memory, hard to insert (except at end)

16 7 2 2 25 -8

Index

14 Insert 14 at index 2

10

Copy new element 
into index

• Slide indices ≥ idx to the 
right to make a hole

• Copy each element to 
next index

0 0 0

0      1  2      3  4     5  6      7   8      9
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Because arrays are a contiguous block of 
memory, hard to insert (except at end)

16 7 14 2 25 -8

Index

10

• Works, but takes a lot of time (said to be “expensive”)
• Especially expensive with respect to time if the array is 

large and we insert at the front
• Linked list is slow to find the right place (have to march 

down list starting from head), but fast to insert, just 
update two pointers and you’re done

• Linked list is fast, however, if only dealing with head
• With arrays, easy to find right place, but slow afterward 

due to copying to make a hole

0 0 0

0      1  2      3  4     5  6      7   8      9



EXAMPLE OF GROWING ARRAYLIST
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Arrays are of fixed size, but List ADT allows 
for growth

16 7 14 2 25 -8

Index

10 52 -19 6

0      1  2      3  4     5  6      7   8      9

What do we do when the array is full, but 
we want to add more elements?

Answer: create another, larger array, and 
copy elements from old array into new array
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Arrays are of fixed size, but List ADT allows 
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
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Arrays are of fixed size, but List ADT allows 
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new 
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Arrays are of fixed size, but List ADT allows 
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new 
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Arrays are of fixed size, but List ADT allows 
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new 
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Arrays are of fixed size, but List ADT allows 
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new 
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Arrays are of fixed size, but List ADT allows 
for growth

array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
3. Set instance variable to point at new array (old 

array will be garbage collected) 

Room for more 
elements



101

Arrays are of fixed size, but List ADT allows 
for growth

array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
3. Set instance variable to point at new array (old 

array will be garbage collected) 

Room for more 
elements

Growing is expensive operation, 
but we don’t have to do it 
frequently if new array size is 
multiple of old array size



ANNOTATED SLIDES

GrowingArray.java

102



public class GrowingArray<T> implements SimpleList<T>, Iterable<T> {
    private T[] array;
    private int size;     // how much of the array is actually filled up so far
    private static final int initCap = 10; // how big the array should be initially

    public GrowingArray() {
       array = (T[]) new Object[initCap];  // java generics oddness – cast array of objects
       size = 0;
    }

    /**
     * Return the number of elements in the List (they are indexed 0..size-1)
     * @return number of elements
     */
    public int size() {
       return size;
    }

103

GrowingArray.java: implements List ADT 
using an array instead of a linked list

Implements SimpleList and Iterable from last class

Array is now the data structure used to 
store elements in List

• Array initially sized to 10 Objects (note the funky Java 
allocation syntax, must cast to array of generic type)

• Remember, arrays are of fixed size, but the List ADT 
does not specify a size

Track size
Will increment on each add and 
decrement on each remove
Run-time complexity?
O(1)



/**
 * Return item at index idx
 * @param idx index of item to return
 * @return item stored at index idx
 * @throws Exception invalid index
 */
public T get(int idx) throws Exception {
    if (idx >= 0 && idx < size) return array[idx];
    else throw new Exception("invalid index");
}

/**
 * Overwrite item at index idx with item parameter
 * @param idx index of item to get 
 * @param item overwrite existing item at index idx with this item
 * @throws Exception invalid index
 */
public void set(int idx, T item) throws Exception {
    if (idx >= 0 && idx < size) array[idx] = item;
    else throw new Exception("invalid index");
}
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GrowingArray.java: get()/set() are easy and 
fast with an array implementation

Get and set are easy, just make sure 
index is valid, then return or set item

Notice: no curly braces!

Only next line in if statement

Run-time complexity?
O(1) for any index!
Just two math operations to compute 
memory address



array.length is how many 
elements array can hold

size has how many elements 
array does hold

public void add(int idx, T item) throws Exception {        
    if (idx > size || idx < 0) throw new Exception("invalid index");
    if (size == array.length) {
       // Double the size of the array, to leave more space
       T[] copy = (T[]) new Object[size*2];
       // Copy it over
       for (int i=0; i<size; i++) copy[i] = array[i];
       array = copy;
    }
    // Shift right to make room
    for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
    array[idx] = item;
    size++;
}
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GrowingArray.java: With growing trick, can 
implement the List interface with an array

add() makes a new, 
larger array if needed



public void add(int idx, T item) throws Exception {        
    if (idx > size || idx < 0) throw new Exception("invalid index");
    if (size == array.length) {
       // Double the size of the array, to leave more space
       T[] copy = (T[]) new Object[size*2];
       // Copy it over
       for (int i=0; i<size; i++) copy[i] = array[i];
       array = copy;
    }
    // Shift right to make room
    for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
    array[idx] = item;
    size++;
}
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GrowingArray.java: With growing trick, can 
implement the List interface with an array

Copy elements one at a 
time into new array

array.length is how many 
elements array can hold

size has how many elements 
array does hold

add() makes a new, 
larger array if needed



public void add(int idx, T item) throws Exception {        
    if (idx > size || idx < 0) throw new Exception("invalid index");
    if (size == array.length) {
       // Double the size of the array, to leave more space
       T[] copy = (T[]) new Object[size*2];
       // Copy it over
       for (int i=0; i<size; i++) copy[i] = array[i];
       array = copy;
    }
    // Shift right to make room
    for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
    array[idx] = item;
    size++;
}
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GrowingArray.java: With growing trick, can 
implement the List interface with an array

Copy elements one at a 
time into new array

array.length is how many 
elements array can hold

size has how many elements 
array does hold

add() makes a new, 
larger array if needed

Update instance 
variable to new array



public void add(int idx, T item) throws Exception {        
    if (idx > size || idx < 0) throw new Exception("invalid index");
    if (size == array.length) {
       // Double the size of the array, to leave more space
       T[] copy = (T[]) new Object[size*2];
       // Copy it over
       for (int i=0; i<size; i++) copy[i] = array[i];
       array = copy;
    }
    // Shift right to make room
    for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
    array[idx] = item;
    size++;
}

108

GrowingArray.java: With growing trick, can 
implement the List interface with an array

• Here we know we have enough 
room to add a new element 

• Now do insert 
• Start from last item and copy 

to one index larger
• Stop at index idx
• Set item at idx to item



public void add(int idx, T item) throws Exception {        
    if (idx > size || idx < 0) throw new Exception("invalid index");
    if (size == array.length) {
       // Double the size of the array, to leave more space
       T[] copy = (T[]) new Object[size*2];
       // Copy it over
       for (int i=0; i<size; i++) copy[i] = array[i];
       array = copy;
    }
    // Shift right to make room
    for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
    array[idx] = item;
    size++;
}

public void add(T item) throws Exception {
    add(size,item);
}
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GrowingArray.java: With growing trick, can 
implement the List interface with an array

Add an item at the end is easy
Just call add with size as index

What did we call it when two 
methods have the same name but 
different variables?
Overloading

Run-time complexity
O(1)



/**
 * Remove and return the item at index idx.  Move items left to fill hole.
 * @param idx index of item to remove
 * @return the value previously at index idx
 * @throws Exception invalid index
 */
public T remove(int idx) throws Exception {
    if (idx > size-1 || idx < 0) throw new Exception("invalid index");
    T data = array[idx];
    // Shift left to cover it over
    for (int i=idx; i<size-1; i++) array[i] = array[i+1];
    size--;
    return data;
}
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GrowingArray.java: With growing trick, can 
implement the List interface with an array

remove() slides 
elements left one slot 
for index > idx

Run-time complexity?
O(n)



LIST ANALYSIS
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Growing array is generally preferable to 
linked list, except maybe growth operation

Linked list Growing array

get(i) O(n) O(1)

set(i,e) O(n) O(1)

add(i,e) O(n) O(n) + growth

remove(i) O(n) O(n)

• Start at head and march down to find 
index i

• Slow to get to index, O(n)
• Once there, operations are fast O(1)
• Best case: all operations on head

• Faster get()/set() than linked list
• Tie with linked list on remove()
• Best case: all operation at tail
• add() might cause expensive 

growth operation
• How should be think about that?

Worst case run-time complexity
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Amortization is a concept from accounting 
that allows us to spread costs over time

Accounting allows us to amortize 
costs over several years
• Buy $70K truck on year 1
• Truck is good for 7 years
• Can think of the cost as 

$10K/year instead of one 
payment of $70K on year 1

• Actually pay $70K on year 1, but 
this is equivalent to paying 
$10K/year for 7 years

• Idea is to spread the cost 
(“amortize” the cost) over the 
lifetime of the truck

• We will use this concept to “pre-
pay” for expensive growth 
operation

Amortized analysis

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Co
st

 $
K

/y
r

Year

Cost per year

Actual

Conceptual



114

Amortized analysis shows growing array is 
actually only O(1)!

array

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent 

growth operation

Amortized analysis

n items
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2n items

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent 

growth operation
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
4n items

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent 

growth operation
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent 

growth operation
After n add() operations, array is full, but have 2n tokens in bank

n items
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent 

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array

n items

New array
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent 

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array

n items

New array
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent 

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array

n items

New array
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
2n-n = n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent 

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank

n items

New array
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent 

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces

n items

New array

n items
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth 

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces
Charging a little extra for each add spreads out cost for infrequent growth operation

n items

New array

n items
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Amortized analysis shows growing array is 
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth 

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces
Charging a little extra for each add spreads out cost for infrequent growth operation
The charge, however, is a constant, so O(3) = O(1)

n items

New array

n items
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Growing array is generally preferable to 
linked list

Linked list Growing array

get(i) O(n) O(1)

set(i,e) O(n) O(1)

add(i,e) O(n) O(n) + O(1) = O(n)

remove(i) O(n) O(n)

• Faster get()/set() than linked list
• Tie with linked list on remove()
• Best case: all operations on tail
• add() might cause expensive 

growth operation

Amortized analysis shows 
infrequent growth operation 
is constant time

Pay a constant amount more 
on each add() to pay for the 
occasional expensive growth

Worst case run-time complexity

• Start at head and march down to find 
index i

• Slow to get to index, O(n)
• Once there, operations are fast O(1)
• Best case: all operations on head
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