CS 10:

Problem solving via Object Oriented
Programming

Runtime complexity

Part of the slides based on Dr. Kate Salesin slides

 Characterize runtime complexity
 Work for memory too
 Compare list implementations

» 1. Run-time complexity
2. Asymptotic notation

3. List analysis

Find an element in the list (unsorted)

27 11 3 42 18 7 15

Find an element in the list (unsorted)

27 11 3 42 18 7 15

Search algorithm (linear search):

foridxi=0...n-1
if list.get(i) equals target
return |
return -1 (not found)

Best case?

Worst case?

Find an element in the list (sorted)

Find an element in the list (sorted)

Search algorithm (binary search):

min=0
max = n—1
while min <= max Best case?
idx = (min + max) / 2
if list.get(i) equals target Worst case?
return idx
if list.get(i) > target
max = idx—1
else
min = idx +1

Find the max element in the list (unsorted)

27 11 3 42 18 7 15

Max algorithm:

max_value = list.get(0)
foridxi=1...n-1
if list.get(i) > max_value
max_value = list.get(i)
return max_value

Best case?

Worst case?

Find the max element in the list (sorted)

Max algorithm
return list.get(0)

Best case?

Worst case?

Comparing algorithms

Search algorithm (linear search): Search algorithm (binary search):
foridxi=0...n-1 min=0
if list.get(i) equals target max = n—1
return | while min <= max
return -1 (not found) idx = (min + max) / 2
if list.get(i) equals target
return idx
if list.get(i) > target
max = idx—1
else

min = idx +1

10

Comparing algorithms

Search algorithm (linear search): Search algorithm (binary search):
foridxi=0...n-1 min=0
if list.get(i) equals target max = n—1
return i while min <= max
return -1 (not found) idx = (min + max) / 2
if list.get(i) equals target
return idx
if list.get(i) > target
max = idx—1
else

min = idx +1
Worst case: check

every item in the list Worst case: check half of
the items in the list (though
more operations) "

Comparing algorithms

Search algorithm (linear search): Max algorithm:
foridxi=0...n-1 max_value = list.get(0)
if list.get(i) equals target foridxi=1...n-1
returni if list.get(i) > max_value
return -1 (not found) max_value = list.get(i)

return max_value

Best case, immediately
found No best or worst case, need
to check entire list

12

How to compare efficiency?

|deas:

— Time tests? But depends on specific
hardware...

— Count # of operations? But will vary depending
on size of list, and depends on exact
implementation details...

— Do we compare best case, worst case, or
average case?

13

How to compare efficiency?

e Key idea: typically in computer science, we
measure how the # of operations grows with
respect to the size of the input in the worst

Ccdse

e “Size” is not always the length of a list or array,
could also be the # characters in a string (as in
SA-3), the # nodes in a binary tree, etc.

14

How to count operations?

 Examples of a single “operation”:
— Assign value to variable, x =1
— Access element in array, x = array]i]
— Perform arithmetic operation, x =y + z, x++, etc.
— Compare two values, x ==y, x <y, etc.

* |n general, a single CPU computation or single
read/write from memory

15

Example: Calculate sum of numbers from 1

ton

Algorithm 1:
1+2+43+...+n

int sum(int n) {
inttotal =0
for (inti=1;i<=sum; i++) {
total +=i;

}

return total;

}

16

Example: Calculate sum of numbers from 1

ton

Algorithm 1:

1+2+3+...+n

int sum(int n) { # operations
inttotal=0 1
for (inti=1;i<=sum; i++) { 1; n+1; n

total +=i; n

}
return total; 1

}

Total= 3n+4 operations

17

Example: Calculate sum of numbers from 1

ton

Algorithm 2:
1+(1+1)+(1+1+1)+...+(1+1+...+1)

int sum(int n) {
inttotal =0
for (inti=1;i<=sum; i++) {
for (intj=1;j<=1i; j++) {
total +=1;
}
}

return total;

18

Example: Calculate sum of numbers from 1

ton

Algorithm 2:
1+(1+1)+(1+1+1)+...+(1+1+...+1)

int sum(int n) { # operations
inttotal=0 1
for (inti=1;i<=sum; i++) { 1;: n+1; n
for (intj=1;j<=1i; j++) { n; (n+1)*(n+1)/2; n*(n+1)/2
total +=1; n*(n+1)/2
}
}
return total; 1
} Total=3/2n2+11/2n+4

operations

19

Example: Calculate sum of numbers from 1

ton
Algorithm 3: n*(n+1)/2

int sum(int n) { # operations
return n * (n+1) /2; 4

}

Total= 4 operations

20

Example: Calculate sum of numbers from 1

ton

Algorithm 1: Algorithm 2: Algorithm 3:
1+2+3+...+n 1+(1+1)+(1+1+1)+...+ n*(n+1)/2
(1+1+...+1)

3n+4 3/2n2+11/2n+4 4

21

Example: Calculate sum of numbers from 1

ton

Algorithm 1: Algorithm 2: Algorithm 3:
1+2+3+...+n 1+(1+1)+(1+1+1)+...+ n*(n+1)/2
(1+1+...+1)
3n+4 3/2n%+11/2n+4 4
O(n) O(n?) O(1)

Big O notation
e I[gnore lower-order terms — the biggest term will dominate as the input

size n grows asymptotically
e |[gnore constant factors — depends on implementation details, not the

core algorithm 22

Often run-time will depend on the number

of elements an algorithm must process

Constant time O(1) — does not depend on number of items
e.g., return first element of a list

Linear time O(n) — directly depends on number of items
e.g., find value in a list

Polynomial time O(n*) — depends on a polynomial function of
number of items
e.g., nested loop in an image

Logarithm time O(log n)— avoids operations on some items
e.g., binary search

Exponential time O(2")- base raised to power
e.g., all possible bit combinations in n bits 2

For small numbers of items, run time does

not differ by much

20,

— I;)gzn | Logarithm

R Linear

15} 2 Polynomial /
" Exponential

10

Number of operations

24

As n grows, number of operations between

different algorithms begins to diverge

300

— ibgzn | Logarith

290w N Linear

w— N2 Polynomjal

Exponeptial

—_—
o
Q

Number of operations
o o
o o

25

Even with only 60 items, there is a large

difference in number of operations

' | Logarithm
'+ Linear
Polynomial

| Exponential

—_—
o
Q

Number of operations
o o
o o

26

Eventually, even with speedy computers,

some algorithms become impractical

v
c
0
ad
©
L .
)
Q.
o)
B 150
L &
o
0
=
-
2

' | Logarithm
'+ Linear
Polynomial

| Exponential

—_—
o
o

o
o

20 40 60 80 100 120
n

27

Sometimes complexity can hurt us,
sometimes it can help us

Hurts us
Can’t brute force chess
algorithm 2"

Images: thechessstore.com; studyoffice.org

§1010010 AL (L
Bo1o). 101110000, i
B1101 .01101010101101 el
811 41012201000111010% i

"')

10000000110 sitis)
'#101010101010101"
1101011010101°
; ‘A111111v

Helps us
Can’t crack password
algorithm 2"

28

1. Run-time complexity
» 2. Asymptotic notation

3. List analysis

29

We can extend Big Oh to any, not

necessarily linear, function

O gives an asymptotic upper bounds

o fim)

running
time

Ry

Run-time complexity is
O(f(n)) if there exists
constants n, and ¢ such
that:

* Vnz2n,

* runtimeofsizenis at
most cf(n), upper
bound

* O(f(n)) is the worst
case performance for
large n, but actual
performance could be
better

30

Run time can also be Q (Big Omega), where

run time grows at least as fast

Q gives an asymptotic lower bounds

Run-time complexity is

Q(f(n)) if there exists

constants n, and c¢; such

that:

* Vn2n,

mtl:;:]iélg * runtime of size nis at

least c.f(n), lower

c1fin) bound

* Q(n)is the best case
performance for large
n, but actual
performance can be
worse

ﬁ.' 2 fin)

Ry

31

Comparison

Example: find specific item in a list Example: find largest item in a list

32

Comparison

Example: find specific item in a list Example: find largest item in a list

* Might find item on first try * Must check each n items

* Might not find it at all (must check e Largestitem could be at end of
all n items in list) list, can’t stop early

* Worst case (upper bound) is O(n) e Can’tdo better than Q (n)

33

We use O (Big Theta) for tight bounds

when we can define O and Q

O gives an asymptotic tight bounds

If an algorithm is O(f(n)) and Q(f(n)), then it is O(f(n)) _ o
Run-time complexity is

O(f(n)) if there exists
constants n, and c; and
C, such that:
nmning * Vnz2n,
fime o ryn time of size n is at
¢ fin) least c¢,f(n) and at
most cf(n)
* 0O(n) gives a tight
. bound, which means
ny run time will be within
a constant factor
* Generally we will use
eitherOor ©

,‘-. 2 fin)

34

Comparison: which has a tight bound?

Example: find specific item in a list Example: find largest item in a list

* Might find item on first try * Must check each n items

* Might not find it at all (must check e Largestitem could be at end of
all n items in list) list, can’t stop early

* Worst case (upper bound) is O(n) e Can’tdo better than Q (n)

35

Comparison: which has a tight bound?

Example: find specific item in a list Example: find largest item in a list

* Might find item on first try * Must check each n items

* Might not find it at all (must check e Largestitem could be at end of
all n items in list) list, can’t stop early

* Worst case (upper bound) is O(n) Can’t do better than Q (n)

* Worst case: must check each
item, so O(n)

* Because Q(n) and O(n) we say it
is O(n)

36

We ighore constants and low-order terms

In asymptotic notation
Constants don’t matter, just adjust ¢; and c,

Low order terms don’t matter either

A c2 fin)

running
time

c1 fin)

iy

37

These concepts are applicable for memory

complexity as well

¥

ca fin)

memory

c| fin)

38

1. Run-time complexity

2. Asymptotic notation

» 3. List analysis

39

Difference between singly linked list and

array

List ADT features

get()/set() element
Singly linked list anywhere in List

add()/remove() element

data next data next data next ot
anywhere in List
head —> 1> B — M No limit to number of
l l l elements in List
“Alice” “Bob” “Charlie”
Array
0 1 2 n-1

“Alice” “Bob” “Charlie”

40

Growing array is generally preferable to

linked list, except maybe growth operation

Worst case run-time complexity

get(i)
set(i,e)
add(i,e)

remove(i)

—)

Discussion

—

41

Growing array is generally preferable to

linked list, except maybe growth operation

Worst case run-time complexity

Linked list Growing array

get(i) O(n) O(1)
set(i,e) O(n) O(1)
add(i,e) O(n) O(n) + growth

remove(i) O(n) O(n)

42

Amortization is a concept from accounting

that allows us to spread costs over time

Amortized analysis

Accounting allows us to amortize
Cost per year

costs over several years

e Buy $70K truck on year 1
e Truck is good for 7 years
Conceptual 5 Y

B Actual
70

Cost SK/yr
5

43

Amortized analysis shows growing array is

actually only O(1)!

Amortized analysis

nitems

array

44

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array

45

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array

46

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

47

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

array

New array

48

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

array

New array v

49

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

array

New array

50

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n-n=n

array

New array

51

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array nitems

New array

52

Growing array is generally preferable to

linked list

Worst case run-time complexity /s\’:‘:‘f"é‘%’-fai

Growing array

Linked list

get(i) O(n) O(1)
set(i,e) O(n) O(1)
add(i,e) O(n) O(n) + O(1) = O(n)

remove(i) O(n) O(n)

53

Summary

 Runtime and memory complexity analysis

— Asymptotic notation

* O(1) constant, O(log(n)) logarithm, O(n) linear, O(n"2) polynomial,
O(2”n) exponential

* Runtime complexity analysis
— Get/set O(1)
— Add/remove O(n)

* Amortized analysis for growth operation

e List analysis: SinglyLinkedList vs ArrayList

— Growing array overall more efficient, unless specific
assumptions on operations

54

* Hierarchical relationships through trees

55

Additional Resources

RUN-TIME COMPLEXITY

How long does it take to find an item in a

List?

Index 0 1 2 3 4 n-2

Denise Charlie

Assume there are n items in the List (index 0 ... n-1)
Find index of “Paula” in List
What pseudo code would you use:
fori=0..n-1
get item at index j
if item is equal to search value
return index i
return -1 (or otherwise indicate search term not in List)
How long to find the item? Should we time how long it takes?
Time would depend on
 Hardware
 Where Paula was located in the List
What is the best case?
What is the worst case?
What is the average case?

58

How long does it take to find an item in a

List?

Index 0 1 2 3 4 n-2 n-1

Denise Charlie Zephyr

Instead of timing execution we will count how many operations are needed in the

worst case

 Doesn’t depend on hardware or software environment

* Could use average case, but average is hard to define sometimes because it
would be based on the input’s distribution

* Worst case tells us it won’t take longer to execute

e Allows language-independent analysis based on number of elements

Operations to count

* Assign value to variable

* Following an object reference to heap memory

e Performing arithmetic operation (e.g., add two numbers)
 Compare two numbers (if statement)

* Access element in array

* (Calling or returning from a method

59

Often run-time will depend on the number

of elements an algorithm must process

Constant time — does not depend on number of items

* Returning the first element of a list takes a constant amount of
time irrespective of the number of elements in the list

e Just return the first item

 No need to march down list to find the first element (head)

* Array get() implementation is also constant time (array get() is
constant time everywhere, linked list only constant at head)

Linear time — directly depends on number of items
 Example: searching for a particular value stored in a list

e Start at first item, compare value with value trying to find

* Keep going until find item, or end up at end of list

* Could get lucky and find item right away, might not find it at all
* Worst case is we check all n items

60

Often run-time will depend on the number

of elements an algorithm must process

Polynomial time — depends on a polynomial function of

number of items

 Example: nested loop in image and graphic methods

 If changing all pixels in n by n image, must do a total of n?
operations because inner and outer loops each run n times

 Normally runs slower than a constant or linear time algorithm

Logarithm time — avoids operations on some items

* Soon we will look at binary search

* Reduces the number of items algorithm must process (don’t
process all n items)

* Runs faster than linear or polynomial time (slower than constant)

Exponential time — base raised to power

e Combination problems: all possible bit combinations in n bits = 2"
¢ SLOW! "

For small numbers of items, run time does

not differ by much

20,

— I;)gzn | Logarithm

R Linear

Notice

n . Polynomial
Exponential

cross each
other a few
times early on

Number of operations
S

62

As n grows, number of operations between

different algorithms begins to diverge

300

— ibgzn | Logarith

290w N Linear

After n=4
Exponential is
| always greater
than
Polynomial

w— N2 Polynomjal

Exponeptial

We will use that
soon to define
n, (standby for
more info)

Number of operations
o
o

63

Even with only 60 items, there is a large

difference in number of operations

' | Logarithm
'+ Linear
Polynomial

| Exponential

—_—
o
Q

Number of operations
o o
o o

64

Eventually, even with speedy computers,

some algorithms become impractical

v
c
0
ad
©
L .
)
Q.
o)
B 150
L &
o
0
=
-
2

' | Logarithm
'+ Linear
Polynomial

| Exponential

—_—
o
o

o
o

20 40 60 80 100 120
n

65

ASYMPTOTIC NOTATION

Computer scientists describe upper bounds

on orders of growth with “Big Oh” notation

O gives an asymptotic upper bounds

Run-time complexity is
O(n) if there exists
constants n, and c such
on that:
* Vn2n,
* runtimeofsizenis at
most cn, upper bound

running
time

Ry

67

Computer scientists describe upper bounds

on orders of growth with “Big Oh” notation

O gives an asymptotic upper bounds

Run-time complexity is
O(n) if there exists
constants n, and c such
on that:
* Vn2n,
* runtimeofsizenis at
most cn, upper bound
. * O(n) is the worst case
runnng
time performance for large
n, but actual
performance could be

“Big Oh of n”, and “Oh of n”, and “order n”
all mean the same thing!

- - better
My . . .
Example: find specific item in a list S)(n) 'Sfa!d to be
* Might find item on first try linear” time
* Might not find it at all (must check * 0O(1) means constant
all n items in list) time

* Worst case (upper bound) is O(n) 68

We can extend Big Oh to any, not

necessarily linear, function

O gives an asymptotic upper bounds

o fim)

running
time

Ry

Run-time complexity is
O(f(n)) if there exists
constants n, and ¢ such
that:

* Vnz2n,

* runtime of size nis at
most cf(n), upper
bound

* O(f(n)) is the worst
case performance for
large n, but actual
performance could be
better

* f(n) can be a non-
linear function such as
n?or log(n)

* Inthat case O(n?) or
O(log n) 69

Run time can also be Q (Big Omega), where

run time grows at least as fast

Q gives an asymptotic lower bounds

Run-time complexity is

Q(f(n)) if there exists

constants n, and c¢; such

that:

* Vn2n,

WTJ:S:QE * run time of size nis at

least c.f(n), lower

c1 fin) bound

* Q(n)is the best case
performance for large
n, but actual
performance can be
worse

A c2fin)

My
Example: find largest item in a list
* Must check each n items
e Largestitem could be at end of
list, can’t stop early
e Can’tdo better than Q (n) 70

We use O (Big Theta) for tight bounds

when we can define O and Q

O gives an asymptotic tight bounds

We can also apply these concepts to how Run-time complexity is

much memory an algorithm uses (not just O(f(n)) if there exists
run-time complexity) constants n, and c; and

A c2 finy C2such that:
* Vn2n,
~* runtime of size nis at
hme. leastcf(n) and at
most ¢,f(n)
cfin) e @(n) gives a tight
bound, which means
run time will be within

= 1 a constant factor
Hy _
Example: find largest item in a list G.enerally we will use
either O or ©

* Best case: already seen it is Q(n)
* Worst case: must check each item, so O(n) * 0,Q,0called

* Because Q(n) and O(n) we say it is O(n) asymptotic notation
71

We ighore constants and low-order terms

In asymptotic notation

Constants don’t matter, just adjust ¢; and c,
* Constant multiplicative factors are absorbed into ¢, (and c,)
* Example: 1000n?is O(n?) because we can choose c, to be 1000
(remember bounded by c;n)
* Do care in practice — if an operation takes a constant time, O(1),
but more than 24 hours to complete, can’t run it everyday

Low order terms don’t matter either
* If n?+1000n, then choose ¢, = 1, so now n? +1000n 2 c,n?
* Now must find ¢, such that n? +1000n < c,n?
e Subtract n? from both sides and get 1000n < c,n?- n? = (c,-1)n?
* Divide both sides by (c,-1)n gives 1000/(c,-1) <n
* Pickc,=2andn,=1000, then Vn2n, 1000 < n
* So, n? +1000n < c,n?, try with n=1000 get n? + 1000° = 2*n?
* In practice, we simply ignore constants and low order terms

72

How to write them

Constant time Linear time Polynomial time
O(1) O(n) O(n?)

73

DESCRIPTION OF PROS AND CONS

At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

add()/remove() element
anywhere in List

No limit to number of
elements in List

Start at head and march
down to index in list
Slow to find element,
but fast once there

Start at head and march
down to index in list
Slow to find element,
but fast once there

Built in feature of how
linked lists work

Just create a new
element and splice it in

Contiguous block of
memory

Random access aspect
of arrays makes
get()/set() easy and fast

Fast to find element, but
slow once there

Have to make (or fill)
hole by copying over

Arrays declared of fixed
size

75

ArrTest.java

ANNOTATED SLIDES

Random access aspect of arrays makes it

easy to get or set any element

coNOUT DS WN |

O

10
11
12
13
14
15
16
17
18
19

public class ArrTest {
public static void main(Strin args) {
//declare array
- int[] numbers = new int[10]; //indices 0..9
//set some elements

numbers[2] = 2;
numbers[5] 10;

//get some elements

int a = numbers[2];

int b = numbers[5];

int ¢ = numbers[1]; //we did not set this
System.out.println("a="+a+" b="+b+" c="+cC);

* | Problems @ Javadoc Declaration [E) Console £3 ‘:’“ Debug &9 Expressions Error Log _z° Call Hierarchy

<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.

Array reserves a contiguous
block of memory

Big enough to hold specified
number of elements (10 here)
times size of each element (4
bytes for integers) = 40 bytes
Indices are 0...9

77

Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9
5 public class ArrTest {
3
4e public static void main(String[] args) {
5 //declare array
6 » int[] numbers = new int[10]; //indices 0..9
7
8 //set some elements

9 numbers[2] = 2;

10 numbers[5] = 10;

11

12 //get some elements

13 int a = numbers[2];

14 int b = numbers[5];

15 int ¢ = numbers[1]; //we did not set this
16 System.out.println("a="+a+" b="+b+" c="+cC);
177 }

18 }

19

Problems @ Javadoc Declaration [E] Console $8 %5 Debug 69" Expressions Error Log _z° Call Hierarchy

<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.

78

Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9

Wl | L]

2 public ¢

3 No need to march down list to get or

4- public static vo1i in(String[] args) { set element

5 //declare array

6 int[] numbers = new int[/indices 0..9

7 To find element:

; //set sone elements « Start at base address of array (this is
» numbers[2] = 2; .

10 numbers[5] = 10; where “numbers” array points)

E P — * Element at index idx is at address:

13 inﬂea j°’:ﬁm§eﬁ’;‘§§]f base addr + idx*size(element)

14 int b = numbers[5];

15 int ¢ = numbers[1]; //we did not set this

16 System.out.println("a="+a+" b="+b+" c="+cC);

17 }

18 }

19

Problems @ Javadoc Declaration [E) Console £3 :’“ Debug 6" Expressions Error Log _z° Call Hierarchy
<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.

79

Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9

Wl | L]

2 public class ArrTest {]
3 No need to march down list to get or
4= public static void main(§tring[] args) { set element
5 //declare array
6 int[] numbers = new int[M@]; //indices 0..9
7 To find element:
: //set sone elements « Start at base address of array (this is
9 numbers[2] = 2; N) .
10 numbers[5] = 10; where “numbers” array points)
E P — * Element at index idx is at address:
get some elements . ks
13 b6k 6 = GUTBEFSIE]E base addr + idx*size(element)
14 int b = numbers[5]; * Index 2 at base addr + 2*4 bytes
15 int ¢ = numbers[1]; //we did not set this Time to access element is constant
16 System.out.println("a="+a+" b="+b+" c="+c); . .]
17 } anywhere in array (just simple math
18 } operation to calculate any index)
19 . . .
* With linked list have to march down
Problems @ Javadoc Declaration [E] Console £2 %5 Debug 69" Expressions Error Log _z° Call Hierarchy IiSt’ ta kes Ionger to find elements at
<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6. e n d

80

Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9
2 public class ArrTest {
3
4= public static void main(String[] args) {
> //declare array
6 int[] numbers = new int[10]; //indices 0..9
7
8 //set some elements

O

numbers[2] = 2;

10 » numbers[5] = 10;

11

12 //get some elements

13 int a = numbers[2];

14 int b = numbers[5];

15 int ¢ = numbers[1l]; //we did not set this
16 System.out.println("a="+a+" b="+b+" c="+c);
17 3

18 }

19

¢! Problems @ Javadoc Declaration [Console §8 %3 Debug &< Expressions Error Log _z° Call Hierarchy

<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.

81

Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9
2 public class ArrTest {
3
4= public static void main(String[] args) {
> //declare array
6 int[] numbers = new int[10]; //indices 0..9
7
8 //set some elements

9 numbers[2] = 2;

10 numbers[5] = 10;

11

12 //get some elements

13 int a = numbers[2]; What values will a, b and c have?
14 int b = numbers[5];

15 int ¢ = numbers[1l]; //we did not set this
16 Q System.out.println("a="+a+" b="+b+" c="+c);
17

18 }

19

7. Problems @ Javadoc Declaration E Console g2 3‘::? Debug 69" Expressions Error Log ° Call Hierarchy
<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.

82

Random access aspect of arrays makes it

easy to get or set any element

Index 0 1 2 3 4 5 6 7 8 9
2 public class ArrTest {
3
4= public static void main(String[] args) {
> //declare array
6 int[] numbers = new int[10]; //indices 0..9
7
8 //set some elements

9 numbers[2] = 2;

10 numbers[5] = 10;

11

12 //get some elements

13 int a = numbers[2]; What values will a, b and c have?
14 int b = numbers[5];

15 int ¢ = numbers[1l]; //we did not set this
16 Q System.out.println("a="+a+" b="+b+" c="+c);
17

18 }

19

7. Problems @ Javadoc Declaration E Console g2 3‘::? Debug 69" Expressions Error Log ° Call Hierarchy
<terminated> ArrTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Dec 31, 2017, 6.

a=2 b=10 c=0 83

EXAMPLE OF INSERTION IN
ARRAYLIST

Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 4 5 6 7 8 9

14 Insert 14 at index 2

85

Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 4 5 6 7 8 9

* Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index

86

Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 4 s 7 8 9

ol 72|z o]0l o]0

T * Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index

87

Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 / 5 6 7 8 9

* Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index

88

Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 5 6 7 8 9

* Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index

89

Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 4 5 6 7 8 9

* Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index

90

Because arrays are a contiguous block of

memory, hard to insert (except at end)

Index 0 1 2 3 4 5 6 7 8 9

e Slide indices 2 idx to the
14 Insert 14 at index 2 right to make a hole
* Copy each element to
next index
Copy new element
into index

91

Because arrays are a contiguous block of

memory, hard to insert (except at end)

0 1 2 3 4 5 6 7 8 9

Index

16 7 14 2 25 -8 10 0 0 0

Works, but takes a lot of time (said to be “expensive”)
Especially expensive with respect to time if the array is
large and we insert at the front

Linked list is slow to find the right place (have to march
down list starting from head), but fast to insert, just
update two pointers and you’re done

Linked list is fast, however, if only dealing with head
With arrays, easy to find right place, but slow afterward
due to copying to make a hole

92

EXAMPLE OF GROWING ARRAYLIST

Arrays are of fixed size, but List ADT allows

for growth

Index 0 1 2 3 4 5 6 7 8 9

What do we do when the array is full, but
we want to add more elements?

Answer: create another, larger array, and
copy elements from old array into new array

94

Arrays are of fixed size, but List ADT allows

for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array

95

Arrays are of fixed size, but List ADT allows

for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

96

Arrays are of fixed size, but List ADT allows

for growth

Old array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

97

Arrays are of fixed size, but List ADT allows

for growth

Old array

bl

New array | |

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

98

Arrays are of fixed size, but List ADT allows

for growth

Old array

bl 1

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

99

Arrays are of fixed size, but List ADT allows

for growth

Room for more
elements

)

array

Grow array

1. Make new array, say 2 times larger than old array

2. Copy elements one at a time from old array to new

3. Set instance variable to point at new array (old
array will be garbage collected)

100

Arrays are of fixed size, but List ADT allows

for growth

Growing is expensive operation,
but we don’t have to do it
frequently if new array size is

. : elements
multiple of old array size |

| |
array
Grow array

Room for more

1. Make new array, say 2 times larger than old array

2. Copy elements one at a time from old array to new

3. Set instance variable to point at new array (old
array will be garbage collected)

101

GrowingArray.java

ANNOTATED SLIDES

GrowingArray.java: implements List ADT

using an array instead of a linked list

public class GrowingArray<T> implements SimpleList<T>, Iterable<T> {

private T[] array; Implements SimpleList and Iterable from last class
private int size; //ho of the array is actually filled up so far
private static final int initCap = 10; big the array should be initially

Array is now the data structure used to

public GrowingArray() { store elements in List

array = (T[]) new Object[initCap]; // java generics oddness — cast array of objects

size = 0; * Array initially sized to 10 Objects (note the funky Java
} allocation syntax, must cast to array of generic type)
Jun « Remember, arrays are of fixed size, but the List ADT

does not specify a size
* Return the number of elements in the List (they are indexed O..size-1)

* @return number okelements

*/

public int size() { Track size
return size;

) Will increment on each add and
decrement on each remove
Run-time complexity?
0(1) 103

GrowingArray.java: get()/set() are easy and

fast with an array implementation
o

* Return item at index idx

* @param idx index of item to return
* @return item stored at index idx

* @throws Exception invalid index

*/ Notice: no curly braces!
public T get(int idx) throwsW Only next line in if statement
if (idx >=0 && idx < size) return array[idx];

else throw new Exception("invalid index");

Get and set are easy, just make sure
index is valid, then return or set item

} Run-time complexity?
O(1) for any index!

/** :
* Overwrite item at index idx with item parameter Just two math operations to compute
* @param idx index of item to get memory address

* @param item overwrite existing item at index idx with this item
* @throws Exception invalid index
¥/
public void set(int idx, T item) throws Exception {
if (idx >= 0 && idx < size) array[idx] = item;
else throw new Exception("invalid index");

}

104

GrowingArray.java: With growing trick, can

implement the List interface with an array

public void add(int idx, T item) throws Exception {
if (idx >size || idx < 0) throw new Exception("invalid index"); .
e array.length is how many
if (size == array.length)§™
_ elements array can hold
// Double the size of the array, to leave more space
T[] copy = (T[]) new Object[size*2];
// Copy it over
for (int i=0; i<size; i++) copyli] = array]i];
array = copy;
} add() makes a new,
// Shift right to make room larger array if needed
for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
array[idx] = item;
Size++;

size has how many elements
array does hold

105

GrowingArray.java: With growing trick, can

implement the List interface with an array

public void add(int idx, T item) throws Exception {
if (idx >size || idx < 0) throw new Exception("invalid index"); .
e array.length is how many
if (size == array.length)§™
_ elements array can hold
// Double the size of the array, to leave more space
T[] copy = (T[]) new Object[size*2];
// Copy it over
for (int i=0; i<size; i++) copyli] = array]i];
array = copy;
} add() makes a new,
// Shift right to make room larger array if needed
for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
array[idx] = item;
Size++;

size has how many elements
array does hold

Copy elements one at a
time into new array

106

GrowingArray.java: With growing trick, can

implement the List interface with an array

public void add(int idx, T item) throws Exception {
if (idx >size || idx < 0) throw new Exception("invalid index"); .
e array.length is how many
if (size == array.length)§™
_ elements array can hold

// Double the size of the array, to leave more space

T[] copy = (T[]) new Object[size*2];

// Copy it over

for (int i=0; i<size; i++) copyli] = array]i];

drray = copy; Update instance
} ™S P add() makes a new,
variable to new array

// Shift right to make room larger array if needed
for (int i=size-1; i>=idx; i--) array[i+1] = array][i];
array[idx] = item;

Size++;

size has how many elements
array does hold

Copy elements one at a
time into new array

107

GrowingArray.java: With growing trick, can

implement the List interface with an array

public void add(int idx, T item) throws Exception {

if (idx >size || idx < 0) throw new Exception("invalid index");

if (size == array.length) {
// Double the size of the array, to leave more space
T[] copy = (T[]) new Object[size*2];
// Copy it over
for (int i=0; i<size; i++) copyli] = array]i];
array = copy;

} /
// Shift right to make room .

for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
array[idx] = item;
Size++;

Here we know we have enough
room to add a new element
Now do insert

Start from last item and copy
to one index larger

Stop at index idx

Set item at idx to item

108

GrowingArray.java: With growing trick, can

implement the List interface with an array

public void add(int idx, T item) throws Exception {

if (idx >size || idx < 0) throw new Exception("invalid index");
if (size == array.length) {

// Double the size of the array, to leave more space

T[] copy = (T[]) new Object[size*2];

// Copy it over

for (int i=0; i<size; i++) copyli] = array]i];

array = copy;
} Add an item at the end is easy
// Shift right to make room Just call add with size as index
for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
array[idx] = item;
Size++;

What did we call it when two
methods have the same name but
different variables?
Overloading
public void add(T item) throws Exception {

add(size,item); Run-time complexity
} o(1)

109

GrowingArray.java: With growing trick, can

implement the List interface with an array

/**
* Remove and return the item at index idx. Move items left to fill hole.
* @param idx index of item to remove
* @return the value previously at index idx
* @throws Exception invalid index
*/
public T remove(int idx) throws Exception {
if (idx >size-1 || idx < 0) throw new Exception("invalid index");

T data = array[idx]; remove() slides

// Shift left to cover it over «— elements left one slot

for (int i=idx; i<size-1; i++) array[i] = array[i+1]; for index > idx
size--;

return data; Run-time complexity?

} o(n)

110

LIST ANALYSIS

Growing array is generally preferable to

linked list, except maybe growth operation

Worst case run-time complexity

Linked list Growing array

get(i) O(n) O(1)
set(i,e) O(n) O(1)
add(i,e) O(n) O(n) + growth
remove(i) O(n) O(n)
e Start at head and march down to find * Faster get()/set() than linked list
index i * Tie with linked list on remove()
* Slow to get to index, O(n) * Best case: all operation at tail
* Once there, operations are fast O(1) * add() might cause expensive
* Best case: all operations on head growth operation

* How should be think about that?

Amortization is a concept from accounting

that allows us to spread costs over time

Amortized analysis

Accounting allows us to amortize
costs over several years
B Actual e Buy $70K truck on year 1
e Truck is good for 7 years
Can think of the cost as
S10K/year instead of one
payment of $70K on year 1
* Actually pay S70K on year 1, but
this is equivalent to paying
S10K/year for 7 years
Idea is to spread the cost
(“amortize” the cost) over the
lifetime of the truck
* We will use this concept to “pre-
Year pay” for expensive growth
operation

Cost per year

[o]
o

~N
o

Conceptual

Cost SK/yr
= N w B wn D
o o o o o o
[]

o

113

Amortized analysis shows growing array is

actually only O(1)!

Amortized analysis

nitems

array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

114

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

115

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

116

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank

117

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

array

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

118

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

!
v

array

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

119

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n

array

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

120

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems 2n-n=n

array

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy n items, so charge n pre-paid tokens from bank

121

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array nitems

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent
growth operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy n items, so charge n pre-paid tokens from bank

Remaining n items in bank “pay for” empty n spaces

122

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array nitems

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent growth
operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy n items, so charge n pre-paid tokens from bank

Remaining n items in bank “pay for” empty n spaces

Charging a little extra for each add spreads out cost for infrequent growth ope%tion

Amortized analysis shows growing array is

actually only O(1)!

Bank

nitems

array nitems

New array

Each time add an item to array, conceptually charge 3 “tokens”

* One token pays for current add()

* Two tokens go into “Bank”

 We are spread out (amortizing) the cost of the expensive, but infrequent growth
operation

After n add() operations, array is full, but have 2n tokens in bank

Allocate new 2X larger array

Copy elements from old array to new array

Have to copy n items, so charge n pre-paid tokens from bank

Remaining n items in bank “pay for” empty n spaces

Charging a little extra for each add spreads out cost for infrequent growth ope@}ion

The charge, however, is a constant, so O(3) = 0(1)

Growing array is generally preferable to

linked list

Worst case run-time complexity /;i\\‘:‘:‘f;ﬁ‘*z,,s

Linked list

; Amortized analysis shows
gE‘t(I) O (n) 0(1) infrequent grovzth operation
set(i,e) O(n) O(]_) is constant time
add(i,e) O(n) O(n) + O(1) = O(n)

. Pay a constant amount more
remove(/) O (n) O(n) onyeach a;d()tto pay f(t)r the

occasional expensive growth
e Start at head and march down to find * Faster get()/set() than linked list

index i * Tie with linked list on remove()
* Slow to get to index, O(n) e Best case: all operations on tail
* Once there, operations are fast O(1) e add() might cause expensive

* Best case: all operations on head growth operation

125

	Slide 1
	Slide 2: Main goals
	Slide 3: Agenda
	Slide 4: Find an element in the list (unsorted)
	Slide 5: Find an element in the list (unsorted)
	Slide 6: Find an element in the list (sorted)
	Slide 7: Find an element in the list (sorted)
	Slide 8: Find the max element in the list (unsorted)
	Slide 9: Find the max element in the list (sorted)
	Slide 10: Comparing algorithms
	Slide 11: Comparing algorithms
	Slide 12: Comparing algorithms
	Slide 13: How to compare efficiency?
	Slide 14: How to compare efficiency?
	Slide 15: How to count operations?
	Slide 16: Example: Calculate sum of numbers from 1 to n
	Slide 17: Example: Calculate sum of numbers from 1 to n
	Slide 18: Example: Calculate sum of numbers from 1 to n
	Slide 19: Example: Calculate sum of numbers from 1 to n
	Slide 20: Example: Calculate sum of numbers from 1 to n
	Slide 21: Example: Calculate sum of numbers from 1 to n
	Slide 22: Example: Calculate sum of numbers from 1 to n
	Slide 23: Often run-time will depend on the number of elements an algorithm must process
	Slide 24: For small numbers of items, run time does not differ by much
	Slide 25: As n grows, number of operations between different algorithms begins to diverge
	Slide 26: Even with only 60 items, there is a large difference in number of operations
	Slide 27: Eventually, even with speedy computers, some algorithms become impractical
	Slide 28: Sometimes complexity can hurt us, sometimes it can help us
	Slide 29: Agenda
	Slide 30: We can extend Big Oh to any, not necessarily linear, function
	Slide 31: Run time can also be Ω (Big Omega), where run time grows at least as fast
	Slide 32: Comparison
	Slide 33: Comparison
	Slide 34: We use Θ (Big Theta) for tight bounds when we can define O and Ω
	Slide 35: Comparison: which has a tight bound?
	Slide 36: Comparison: which has a tight bound?
	Slide 37: We ignore constants and low-order terms in asymptotic notation
	Slide 38: These concepts are applicable for memory complexity as well
	Slide 39: Agenda
	Slide 40: Difference between singly linked list and array
	Slide 41: Growing array is generally preferable to linked list, except maybe growth operation
	Slide 42: Growing array is generally preferable to linked list, except maybe growth operation
	Slide 43: Amortization is a concept from accounting that allows us to spread costs over time
	Slide 44: Amortized analysis shows growing array is actually only O(1)!
	Slide 45: Amortized analysis shows growing array is actually only O(1)!
	Slide 46: Amortized analysis shows growing array is actually only O(1)!
	Slide 47: Amortized analysis shows growing array is actually only O(1)!
	Slide 48: Amortized analysis shows growing array is actually only O(1)!
	Slide 49: Amortized analysis shows growing array is actually only O(1)!
	Slide 50: Amortized analysis shows growing array is actually only O(1)!
	Slide 51: Amortized analysis shows growing array is actually only O(1)!
	Slide 52: Amortized analysis shows growing array is actually only O(1)!
	Slide 53: Growing array is generally preferable to linked list
	Slide 54: Summary
	Slide 55: Next
	Slide 56: Additional Resources
	Slide 57: Run-time complexity
	Slide 58: How long does it take to find an item in a List?
	Slide 59: How long does it take to find an item in a List?
	Slide 60: Often run-time will depend on the number of elements an algorithm must process
	Slide 61: Often run-time will depend on the number of elements an algorithm must process
	Slide 62: For small numbers of items, run time does not differ by much
	Slide 63: As n grows, number of operations between different algorithms begins to diverge
	Slide 64: Even with only 60 items, there is a large difference in number of operations
	Slide 65: Eventually, even with speedy computers, some algorithms become impractical
	Slide 66: Asymptotic notation
	Slide 67: Computer scientists describe upper bounds on orders of growth with “Big Oh” notation
	Slide 68: Computer scientists describe upper bounds on orders of growth with “Big Oh” notation
	Slide 69: We can extend Big Oh to any, not necessarily linear, function
	Slide 70: Run time can also be Ω (Big Omega), where run time grows at least as fast
	Slide 71: We use Θ (Big Theta) for tight bounds when we can define O and Ω
	Slide 72: We ignore constants and low-order terms in asymptotic notation
	Slide 73: How to write them
	Slide 74: Description of Pros and cons
	Slide 75: At first arrays seem to be a poor choice to implement the List ADT
	Slide 76: Annotated slides
	Slide 77: Random access aspect of arrays makes it easy to get or set any element
	Slide 78: Random access aspect of arrays makes it easy to get or set any element
	Slide 79: Random access aspect of arrays makes it easy to get or set any element
	Slide 80: Random access aspect of arrays makes it easy to get or set any element
	Slide 81: Random access aspect of arrays makes it easy to get or set any element
	Slide 82: Random access aspect of arrays makes it easy to get or set any element
	Slide 83: Random access aspect of arrays makes it easy to get or set any element
	Slide 84: Example of insertion in ArrayList
	Slide 85: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 86: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 87: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 88: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 89: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 90: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 91: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 92: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 93: Example of growing ArrayList
	Slide 94: Arrays are of fixed size, but List ADT allows for growth
	Slide 95: Arrays are of fixed size, but List ADT allows for growth
	Slide 96: Arrays are of fixed size, but List ADT allows for growth
	Slide 97: Arrays are of fixed size, but List ADT allows for growth
	Slide 98: Arrays are of fixed size, but List ADT allows for growth
	Slide 99: Arrays are of fixed size, but List ADT allows for growth
	Slide 100: Arrays are of fixed size, but List ADT allows for growth
	Slide 101: Arrays are of fixed size, but List ADT allows for growth
	Slide 102: Annotated slides
	Slide 103: GrowingArray.java: implements List ADT using an array instead of a linked list
	Slide 104: GrowingArray.java: get()/set() are easy and fast with an array implementation
	Slide 105: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 106: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 107: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 108: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 109: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 110: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 111: List analysis
	Slide 112: Growing array is generally preferable to linked list, except maybe growth operation
	Slide 113: Amortization is a concept from accounting that allows us to spread costs over time
	Slide 114: Amortized analysis shows growing array is actually only O(1)!
	Slide 115: Amortized analysis shows growing array is actually only O(1)!
	Slide 116: Amortized analysis shows growing array is actually only O(1)!
	Slide 117: Amortized analysis shows growing array is actually only O(1)!
	Slide 118: Amortized analysis shows growing array is actually only O(1)!
	Slide 119: Amortized analysis shows growing array is actually only O(1)!
	Slide 120: Amortized analysis shows growing array is actually only O(1)!
	Slide 121: Amortized analysis shows growing array is actually only O(1)!
	Slide 122: Amortized analysis shows growing array is actually only O(1)!
	Slide 123: Amortized analysis shows growing array is actually only O(1)!
	Slide 124: Amortized analysis shows growing array is actually only O(1)!
	Slide 125: Growing array is generally preferable to linked list

