
CS 10:
Problem solving via Object Oriented

Programming

Runtime complexity

Part of the slides based on Dr. Kate Salesin slides

2

Main goals

• Characterize runtime complexity
• Work for memory too

• Compare list implementations

3

Agenda

1. Run-time complexity

2. Asymptotic notation

3. List analysis

27 11 3 42 18 7 15

4

Find an element in the list (unsorted)

27 11 3 42 18 7 15

5

Find an element in the list (unsorted)

Search algorithm (linear search):

for idx i = 0 ... n–1
 if list.get(i) equals target
 return I
return -1 (not found)

Best case?

Worst case?

3 7 11 15 18 27 42

6

Find an element in the list (sorted)

3 7 11 15 18 27 42

7

Find an element in the list (sorted)

min = 0
max = n–1
while min <= max
 idx = (min + max) / 2
 if list.get(i) equals target
 return idx
 if list.get(i) > target
 max = idx–1
 else
 min = idx +1

Best case?

Worst case?

Search algorithm (binary search):

8

Find the max element in the list (unsorted)

max_value = list.get(0)
for idx i = 1 ... n–1
 if list.get(i) > max_value
 max_value = list.get(i)
return max_value

Best case?

Worst case?

Max algorithm:

27 11 3 42 18 7 15

3 7 11 15 18 27 42

9

Find the max element in the list (sorted)

return list.get(0)

Best case?

Worst case?

Max algorithm

10

Comparing algorithms

Search algorithm (linear search):

for idx i = 0 ... n–1
 if list.get(i) equals target
 return I
return -1 (not found)

min = 0
max = n–1
while min <= max
 idx = (min + max) / 2
 if list.get(i) equals target
 return idx
 if list.get(i) > target
 max = idx–1
 else
 min = idx +1

Search algorithm (binary search):

11

Comparing algorithms

Search algorithm (linear search):

for idx i = 0 ... n–1
 if list.get(i) equals target
 return i
return -1 (not found)

min = 0
max = n–1
while min <= max
 idx = (min + max) / 2
 if list.get(i) equals target
 return idx
 if list.get(i) > target
 max = idx–1
 else
 min = idx +1

Search algorithm (binary search):

Worst case: check
every item in the list Worst case: check half of

the items in the list (though
more operations)

12

Comparing algorithms

Search algorithm (linear search):

for idx i = 0 ... n–1
 if list.get(i) equals target
 return i
return -1 (not found)

Best case, immediately
found No best or worst case, need

to check entire list

max_value = list.get(0)
for idx i = 1 ... n–1
 if list.get(i) > max_value
 max_value = list.get(i)
return max_value

Max algorithm:

Ideas:

– Time tests? But depends on specific
hardware...

– Count # of operations? But will vary depending
on size of list, and depends on exact
implementation details...

– Do we compare best case, worst case, or
average case?

13

How to compare efficiency?

• Key idea: typically in computer science, we
measure how the # of operations grows with
respect to the size of the input in the worst
case

• “Size” is not always the length of a list or array,
could also be the # characters in a string (as in
SA-3), the # nodes in a binary tree, etc.

14

How to compare efficiency?

• Examples of a single “operation”:

– Assign value to variable, x = 1

– Access element in array, x = array[i]

– Perform arithmetic operation, x = y + z, x++, etc.

– Compare two values, x == y, x < y, etc.

• In general, a single CPU computation or single
read/write from memory

15

How to count operations?

16

Example: Calculate sum of numbers from 1
to n

int sum(int n) {
 int total = 0
 for (int i = 1; i <= sum; i++) {
 total += i;
 }
 return total;
}

Algorithm 1:

1+2+3+…+n

17

Example: Calculate sum of numbers from 1
to n

operations
1
1; n+1; n
n

1

Total= 3n+4 operations

int sum(int n) {
 int total = 0
 for (int i = 1; i <= sum; i++) {
 total += i;
 }
 return total;
}

Algorithm 1:

1+2+3+…+n

Algorithm 2:

1+(1+1)+(1+1+1)+…+(1+1+…+1)

18

Example: Calculate sum of numbers from 1
to n

int sum(int n) {
 int total = 0
 for (int i = 1; i <= sum; i++) {
 for (int j = 1; j <= i; j++) {
 total += 1;
 }
 }
 return total;
}

Algorithm 2:

1+(1+1)+(1+1+1)+…+(1+1+…+1)

19

Example: Calculate sum of numbers from 1
to n

operations
1
1; n+1; n
n; (n+1)*(n+1)/2; n*(n+1)/2
n*(n+1)/2

1
Total= 3/2n2+11/2n+4
operations

int sum(int n) {
 int total = 0
 for (int i = 1; i <= sum; i++) {
 for (int j = 1; j <= i; j++) {
 total += 1;
 }
 }
 return total;
}

Algorithm 3: n*(n+1)/2

20

Example: Calculate sum of numbers from 1
to n

operations
4

Total= 4 operations

int sum(int n) {
 return n * (n+1) /2;
}

21

Example: Calculate sum of numbers from 1
to n

Algorithm 1:

1+2+3+…+n

Algorithm 2:

1+(1+1)+(1+1+1)+…+
(1+1+…+1)

Algorithm 3:
n*(n+1)/2

3/2n2+11/2n+4 43n+4

22

Example: Calculate sum of numbers from 1
to n

Algorithm 1:

1+2+3+…+n

Algorithm 2:

1+(1+1)+(1+1+1)+…+
(1+1+…+1)

Algorithm 3:
n*(n+1)/2

3/2n2+11/2n+4 43n+4

O(n) O(n2) O(1)

Big O notation
• Ignore lower-order terms – the biggest term will dominate as the input
size n grows asymptotically
• Ignore constant factors – depends on implementation details, not the
core algorithm

23

Often run-time will depend on the number
of elements an algorithm must process

Constant time O(1) – does not depend on number of items
 e.g., return first element of a list

Linear time O(n) – directly depends on number of items
 e.g., find value in a list

Polynomial time O(nk) – depends on a polynomial function of
number of items
 e.g., nested loop in an image

Logarithm time O(log n)– avoids operations on some items
 e.g., binary search

Exponential time O(2n)– base raised to power
 e.g., all possible bit combinations in n bits

24

For small numbers of items, run time does
not differ by much

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

Logarithm

Linear

Polynomial

Exponential

log2n

n

n2

2n

25

As n grows, number of operations between
different algorithms begins to diverge

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

Logarithm

Linear

Polynomial

Exponential

log2n

n

n2

2n

26

Even with only 60 items, there is a large
difference in number of operations

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s Logarithm

Linear

Polynomial

Exponential

log2n

n

n2

2n

27

Eventually, even with speedy computers,
some algorithms become impractical

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

log2n

n

n2

2n

Logarithm

Linear

Polynomial

Exponential

28

Sometimes complexity can hurt us,
sometimes it can help us

Hurts us
Can’t brute force chess
algorithm 2n

Helps us
Can’t crack password
algorithm 2n

Images: thechessstore.com; studyoffice.org

29

Agenda

1. Run-time complexity

2. Asymptotic notation

3. List analysis

30

We can extend Big Oh to any, not
necessarily linear, function
O gives an asymptotic upper bounds Run-time complexity is

O(f(n)) if there exists
constants n0 and c such
that:
• ∀n ≥ n0

• run time of size n is at
most cf(n), upper
bound

• O(f(n)) is the worst
case performance for
large n, but actual
performance could be
better

31

Run time can also be Ω (Big Omega), where
run time grows at least as fast
Ω gives an asymptotic lower bounds

Run-time complexity is
Ω(f(n)) if there exists
constants n0 and c1 such
that:
• ∀n ≥ n0

• run time of size n is at
least c1f(n), lower
bound

• Ω(n) is the best case
performance for large
n, but actual
performance can be
worse

32

Comparison

Example: find specific item in a list Example: find largest item in a list

33

Comparison

Example: find specific item in a list
• Might find item on first try
• Might not find it at all (must check

all n items in list)
• Worst case (upper bound) is O(n)

Example: find largest item in a list
• Must check each n items
• Largest item could be at end of

list, can’t stop early
• Can’t do better than Ω (n)

34

We use Θ (Big Theta) for tight bounds
when we can define O and Ω
Θ gives an asymptotic tight bounds

If an algorithm is O(f(n)) and Ω(f(n)), then it is Θ(f(n))
Run-time complexity is
Θ(f(n)) if there exists
constants n0 and c1 and
c2 such that:
• ∀n ≥ n0

• run time of size n is at
least c1f(n) and at
most c2f(n)

• Θ(n) gives a tight
bound, which means
run time will be within
a constant factor

• Generally we will use
either O or Θ

35

Comparison: which has a tight bound?

Example: find specific item in a list
• Might find item on first try
• Might not find it at all (must check

all n items in list)
• Worst case (upper bound) is O(n)

Example: find largest item in a list
• Must check each n items
• Largest item could be at end of

list, can’t stop early
• Can’t do better than Ω (n)

36

Comparison: which has a tight bound?

Example: find specific item in a list
• Might find item on first try
• Might not find it at all (must check

all n items in list)
• Worst case (upper bound) is O(n)

Example: find largest item in a list
• Must check each n items
• Largest item could be at end of

list, can’t stop early
• Can’t do better than Ω (n)

• Worst case: must check each
item, so O(n)

• Because Ω(n) and O(n) we say it
is Θ(n)

37

We ignore constants and low-order terms
in asymptotic notation

Constants don’t matter, just adjust c1 and c2

Low order terms don’t matter either

38

These concepts are applicable for memory
complexity as well

memory

39

Agenda

1. Run-time complexity

2. Asymptotic notation

3. List analysis

40

Difference between singly linked list and
array

data next

head

“Alice”

data next

“Bob”

data next

“Charlie”

Singly linked list

Array

0 1

“Alice” “Bob” “Charlie”

2 n-1

…

List ADT features

get()/set() element
anywhere in List

add()/remove() element
anywhere in List

No limit to number of
elements in List

41

Growing array is generally preferable to
linked list, except maybe growth operation

Linked list Growing array

get(i)

set(i,e)

add(i,e)

remove(i)

Worst case run-time complexity

Discussion

42

Growing array is generally preferable to
linked list, except maybe growth operation

Linked list Growing array

get(i) O(n) O(1)

set(i,e) O(n) O(1)

add(i,e) O(n) O(n) + growth

remove(i) O(n) O(n)

Worst case run-time complexity

43

Amortization is a concept from accounting
that allows us to spread costs over time

Accounting allows us to amortize
costs over several years
• Buy $70K truck on year 1
• Truck is good for 7 years

Amortized analysis

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Co
st

 $
K

/y
r

Year

Cost per year

Actual

Conceptual

44

Amortized analysis shows growing array is
actually only O(1)!

array

Amortized analysis

n items

45

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n items

46

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
4n items

47

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2nn items

48

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2nn items

New array

49

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2nn items

New array

50

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2nn items

New array

51

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n-n = nn items

New array

52

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
nn items

New array

n items

53

Growing array is generally preferable to
linked list

Linked list Growing array

get(i) O(n) O(1)

set(i,e) O(n) O(1)

add(i,e) O(n) O(n) + O(1) = O(n)

remove(i) O(n) O(n)

Worst case run-time complexity

54

Summary

• Runtime and memory complexity analysis

– Asymptotic notation
• O(1) constant, O(log(n)) logarithm, O(n) linear, O(n^2) polynomial,

O(2^n) exponential

• Runtime complexity analysis

– Get/set O(1)

– Add/remove O(n)
• Amortized analysis for growth operation

• List analysis: SinglyLinkedList vs ArrayList

– Growing array overall more efficient, unless specific
assumptions on operations

• Hierarchical relationships through trees

55

Next

Additional Resources

56

RUN-TIME COMPLEXITY

57

58

How long does it take to find an item in a
List?

Bob Elvis Abby Denise Charlie

0 1 2 3 4 n-2 n-1Index

Yancy Zephyr…

Assume there are n items in the List (index 0 … n-1)
Find index of “Paula” in List
What pseudo code would you use:

for i = 0 … n-1
 get item at index i

if item is equal to search value
 return index i

return -1 (or otherwise indicate search term not in List)
How long to find the item? Should we time how long it takes?
Time would depend on

• Hardware
• Where Paula was located in the List

What is the best case?
What is the worst case?
What is the average case?

59

How long does it take to find an item in a
List?

Bob Elvis Abby Denise Charlie

0 1 2 3 4 n-2 n-1Index

Yancy Zephyr…

Instead of timing execution we will count how many operations are needed in the
worst case
• Doesn’t depend on hardware or software environment
• Could use average case, but average is hard to define sometimes because it

would be based on the input’s distribution
• Worst case tells us it won’t take longer to execute
• Allows language-independent analysis based on number of elements

Operations to count
• Assign value to variable
• Following an object reference to heap memory
• Performing arithmetic operation (e.g., add two numbers)
• Compare two numbers (if statement)
• Access element in array
• Calling or returning from a method

60

Often run-time will depend on the number
of elements an algorithm must process

Constant time – does not depend on number of items
• Returning the first element of a list takes a constant amount of

time irrespective of the number of elements in the list
• Just return the first item
• No need to march down list to find the first element (head)
• Array get() implementation is also constant time (array get() is

constant time everywhere, linked list only constant at head)

Linear time – directly depends on number of items
• Example: searching for a particular value stored in a list
• Start at first item, compare value with value trying to find
• Keep going until find item, or end up at end of list
• Could get lucky and find item right away, might not find it at all
• Worst case is we check all n items

61

Often run-time will depend on the number
of elements an algorithm must process

Polynomial time – depends on a polynomial function of
number of items
• Example: nested loop in image and graphic methods
• If changing all pixels in n by n image, must do a total of n2

operations because inner and outer loops each run n times
• Normally runs slower than a constant or linear time algorithm

Logarithm time – avoids operations on some items
• Soon we will look at binary search
• Reduces the number of items algorithm must process (don’t

process all n items)
• Runs faster than linear or polynomial time (slower than constant)

Exponential time – base raised to power
• Combination problems: all possible bit combinations in n bits = 2n

• SLOW!

62

For small numbers of items, run time does
not differ by much

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

Logarithm

Linear

Polynomial

Exponential

Notice
Exponential and
Polynomial
cross each
other a few
times early on

log2n

n

n2

2n

63

As n grows, number of operations between
different algorithms begins to diverge

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

Logarithm

Linear

Polynomial

Exponential

After n=4
Exponential is
always greater
than
Polynomial

We will use that
soon to define
n0 (standby for
more info)

log2n

n

n2

2n

64

Even with only 60 items, there is a large
difference in number of operations

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s Logarithm

Linear

Polynomial

Exponential

log2n

n

n2

2n

65

Eventually, even with speedy computers,
some algorithms become impractical

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

log2n

n

n2

2n

Logarithm

Linear

Polynomial

Exponential

ASYMPTOTIC NOTATION

66

67

Computer scientists describe upper bounds
on orders of growth with “Big Oh” notation
O gives an asymptotic upper bounds

Run-time complexity is
O(n) if there exists
constants n0 and c such
that:
• ∀n ≥ n0

• run time of size n is at
most cn, upper bound

68

Computer scientists describe upper bounds
on orders of growth with “Big Oh” notation
O gives an asymptotic upper bounds

Run-time complexity is
O(n) if there exists
constants n0 and c such
that:
• ∀n ≥ n0

• run time of size n is at
most cn, upper bound

• O(n) is the worst case
performance for large
n, but actual
performance could be
better

• O(n) is said to be
“linear” time

• O(1) means constant
time

Example: find specific item in a list
• Might find item on first try
• Might not find it at all (must check

all n items in list)
• Worst case (upper bound) is O(n)

“Big Oh of n”, and “Oh of n”, and “order n”
all mean the same thing!

69

We can extend Big Oh to any, not
necessarily linear, function
O gives an asymptotic upper bounds Run-time complexity is

O(f(n)) if there exists
constants n0 and c such
that:
• ∀n ≥ n0

• run time of size n is at
most cf(n), upper
bound

• O(f(n)) is the worst
case performance for
large n, but actual
performance could be
better

• f(n) can be a non-
linear function such as
n2 or log(n)

• In that case O(n2) or
O(log n)

70

Run time can also be Ω (Big Omega), where
run time grows at least as fast
Ω gives an asymptotic lower bounds

Run-time complexity is
Ω(f(n)) if there exists
constants n0 and c1 such
that:
• ∀n ≥ n0

• run time of size n is at
least c1f(n), lower
bound

• Ω(n) is the best case
performance for large
n, but actual
performance can be
worse

Example: find largest item in a list
• Must check each n items
• Largest item could be at end of

list, can’t stop early
• Can’t do better than Ω (n)

71

We use Θ (Big Theta) for tight bounds
when we can define O and Ω
Θ gives an asymptotic tight bounds

Run-time complexity is
Θ(f(n)) if there exists
constants n0 and c1 and
c2 such that:
• ∀n ≥ n0

• run time of size n is at
least c1f(n) and at
most c2f(n)

• Θ(n) gives a tight
bound, which means
run time will be within
a constant factor

• Generally we will use
either O or Θ

• O, Ω, Θ called
asymptotic notation

Example: find largest item in a list
• Best case: already seen it is Ω(n)
• Worst case: must check each item, so O(n)
• Because Ω(n) and O(n) we say it is Θ(n)

We can also apply these concepts to how
much memory an algorithm uses (not just
run-time complexity)

72

We ignore constants and low-order terms
in asymptotic notation

Constants don’t matter, just adjust c1 and c2

• Constant multiplicative factors are absorbed into c1 (and c2)
• Example: 1000n2 is O(n2) because we can choose c1 to be 1000

(remember bounded by c1n)
• Do care in practice – if an operation takes a constant time, O(1),

but more than 24 hours to complete, can’t run it everyday

Low order terms don’t matter either
• If n2+1000n, then choose c1 = 1, so now n2 +1000n ≥ c1n2

• Now must find c2 such that n2 +1000n ≤ c2n2

• Subtract n2 from both sides and get 1000n ≤ c2n2 - n2 = (c2-1)n2

• Divide both sides by (c2-1)n gives 1000/(c2-1) ≤ n
• Pick c2 = 2 and n0 = 1000, then ∀n ≥ n0, 1000 ≤ n
• So, n2 +1000n ≤ c2n2, try with n=1000 get n2 + 10002 = 2*n2

• In practice, we simply ignore constants and low order terms

73

How to write them

Constant time
O(1)

Linear time
O(n)

Polynomial time
O(n2)

DESCRIPTION OF PROS AND CONS

74

75

At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Contiguous block of
memory

• Random access aspect
of arrays makes
get()/set() easy and fast

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Fast to find element, but
slow once there

• Have to make (or fill)
hole by copying over

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

• Arrays declared of fixed
size

ANNOTATED SLIDES

ArrTest.java

76

77

Random access aspect of arrays makes it
easy to get or set any element

• Array reserves a contiguous
block of memory

• Big enough to hold specified
number of elements (10 here)
times size of each element (4
bytes for integers) = 40 bytes

• Indices are 0…9

78

Random access aspect of arrays makes it
easy to get or set any element

0 1 2 3 4 5 6 7 8 9Index

79

Random access aspect of arrays makes it
easy to get or set any element

2

0 1 2 3 4 5 6 7 8 9Index

No need to march down list to get or
set element

To find element:
• Start at base address of array (this is

where “numbers” array points)
• Element at index idx is at address:

base addr + idx*size(element)

80

Random access aspect of arrays makes it
easy to get or set any element

2

0 1 2 3 4 5 6 7 8 9Index

No need to march down list to get or
set element

To find element:
• Start at base address of array (this is

where “numbers” array points)
• Element at index idx is at address:

base addr + idx*size(element)
• Index 2 at base addr + 2*4 bytes
• Time to access element is constant

anywhere in array (just simple math
operation to calculate any index)

• With linked list have to march down
list, takes longer to find elements at
end

81

Random access aspect of arrays makes it
easy to get or set any element

2 10

0 1 2 3 4 5 6 7 8 9Index

82

Random access aspect of arrays makes it
easy to get or set any element

2 10

0 1 2 3 4 5 6 7 8 9Index

What values will a, b and c have?

83

Random access aspect of arrays makes it
easy to get or set any element

2 10

0 1 2 3 4 5 6 7 8 9Index

What values will a, b and c have?

EXAMPLE OF INSERTION IN
ARRAYLIST

84

85

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2

0 0 0 0

0 1 2 3 4 5 6 7 8 9

86

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2
• Slide indices ≥ idx to the

right to make a hole
• Copy each element to

next index

0 0 0 0

0 1 2 3 4 5 6 7 8 9

87

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

88

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

89

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 25 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

90

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 2 25 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

91

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 2 25 -8

Index

14 Insert 14 at index 2

10

Copy new element
into index

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

92

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 14 2 25 -8

Index

10

• Works, but takes a lot of time (said to be “expensive”)
• Especially expensive with respect to time if the array is

large and we insert at the front
• Linked list is slow to find the right place (have to march

down list starting from head), but fast to insert, just
update two pointers and you’re done

• Linked list is fast, however, if only dealing with head
• With arrays, easy to find right place, but slow afterward

due to copying to make a hole

0 0 0

0 1 2 3 4 5 6 7 8 9

EXAMPLE OF GROWING ARRAYLIST

93

94

Arrays are of fixed size, but List ADT allows
for growth

16 7 14 2 25 -8

Index

10 52 -19 6

0 1 2 3 4 5 6 7 8 9

What do we do when the array is full, but
we want to add more elements?

Answer: create another, larger array, and
copy elements from old array into new array

95

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array

96

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

97

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

98

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

99

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

100

Arrays are of fixed size, but List ADT allows
for growth

array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
3. Set instance variable to point at new array (old

array will be garbage collected)

Room for more
elements

101

Arrays are of fixed size, but List ADT allows
for growth

array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
3. Set instance variable to point at new array (old

array will be garbage collected)

Room for more
elements

Growing is expensive operation,
but we don’t have to do it
frequently if new array size is
multiple of old array size

ANNOTATED SLIDES

GrowingArray.java

102

public class GrowingArray<T> implements SimpleList<T>, Iterable<T> {
 private T[] array;
 private int size; // how much of the array is actually filled up so far
 private static final int initCap = 10; // how big the array should be initially

 public GrowingArray() {
 array = (T[]) new Object[initCap]; // java generics oddness – cast array of objects
 size = 0;
 }

 /**
 * Return the number of elements in the List (they are indexed 0..size-1)
 * @return number of elements
 */
 public int size() {
 return size;
 }

103

GrowingArray.java: implements List ADT
using an array instead of a linked list

Implements SimpleList and Iterable from last class

Array is now the data structure used to
store elements in List

• Array initially sized to 10 Objects (note the funky Java
allocation syntax, must cast to array of generic type)

• Remember, arrays are of fixed size, but the List ADT
does not specify a size

Track size
Will increment on each add and
decrement on each remove
Run-time complexity?
O(1)

/**
 * Return item at index idx
 * @param idx index of item to return
 * @return item stored at index idx
 * @throws Exception invalid index
 */
public T get(int idx) throws Exception {
 if (idx >= 0 && idx < size) return array[idx];
 else throw new Exception("invalid index");
}

/**
 * Overwrite item at index idx with item parameter
 * @param idx index of item to get
 * @param item overwrite existing item at index idx with this item
 * @throws Exception invalid index
 */
public void set(int idx, T item) throws Exception {
 if (idx >= 0 && idx < size) array[idx] = item;
 else throw new Exception("invalid index");
}

104

GrowingArray.java: get()/set() are easy and
fast with an array implementation

Get and set are easy, just make sure
index is valid, then return or set item

Notice: no curly braces!

Only next line in if statement

Run-time complexity?
O(1) for any index!
Just two math operations to compute
memory address

array.length is how many
elements array can hold

size has how many elements
array does hold

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

105

GrowingArray.java: With growing trick, can
implement the List interface with an array

add() makes a new,
larger array if needed

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

106

GrowingArray.java: With growing trick, can
implement the List interface with an array

Copy elements one at a
time into new array

array.length is how many
elements array can hold

size has how many elements
array does hold

add() makes a new,
larger array if needed

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

107

GrowingArray.java: With growing trick, can
implement the List interface with an array

Copy elements one at a
time into new array

array.length is how many
elements array can hold

size has how many elements
array does hold

add() makes a new,
larger array if needed

Update instance
variable to new array

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

108

GrowingArray.java: With growing trick, can
implement the List interface with an array

• Here we know we have enough
room to add a new element

• Now do insert
• Start from last item and copy

to one index larger
• Stop at index idx
• Set item at idx to item

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

public void add(T item) throws Exception {
 add(size,item);
}

109

GrowingArray.java: With growing trick, can
implement the List interface with an array

Add an item at the end is easy
Just call add with size as index

What did we call it when two
methods have the same name but
different variables?
Overloading

Run-time complexity
O(1)

/**
 * Remove and return the item at index idx. Move items left to fill hole.
 * @param idx index of item to remove
 * @return the value previously at index idx
 * @throws Exception invalid index
 */
public T remove(int idx) throws Exception {
 if (idx > size-1 || idx < 0) throw new Exception("invalid index");
 T data = array[idx];
 // Shift left to cover it over
 for (int i=idx; i<size-1; i++) array[i] = array[i+1];
 size--;
 return data;
}

110

GrowingArray.java: With growing trick, can
implement the List interface with an array

remove() slides
elements left one slot
for index > idx

Run-time complexity?
O(n)

LIST ANALYSIS

111

112

Growing array is generally preferable to
linked list, except maybe growth operation

Linked list Growing array

get(i) O(n) O(1)

set(i,e) O(n) O(1)

add(i,e) O(n) O(n) + growth

remove(i) O(n) O(n)

• Start at head and march down to find
index i

• Slow to get to index, O(n)
• Once there, operations are fast O(1)
• Best case: all operations on head

• Faster get()/set() than linked list
• Tie with linked list on remove()
• Best case: all operation at tail
• add() might cause expensive

growth operation
• How should be think about that?

Worst case run-time complexity

113

Amortization is a concept from accounting
that allows us to spread costs over time

Accounting allows us to amortize
costs over several years
• Buy $70K truck on year 1
• Truck is good for 7 years
• Can think of the cost as

$10K/year instead of one
payment of $70K on year 1

• Actually pay $70K on year 1, but
this is equivalent to paying
$10K/year for 7 years

• Idea is to spread the cost
(“amortize” the cost) over the
lifetime of the truck

• We will use this concept to “pre-
pay” for expensive growth
operation

Amortized analysis

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Co
st

 $
K

/y
r

Year

Cost per year

Actual

Conceptual

114

Amortized analysis shows growing array is
actually only O(1)!

array

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation

Amortized analysis

n items

115

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n items

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation

116

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
4n items

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation

117

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank

n items

118

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array

n items

New array

119

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array

n items

New array

120

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array

n items

New array

121

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n-n = n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank

n items

New array

122

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces

n items

New array

n items

123

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces
Charging a little extra for each add spreads out cost for infrequent growth operation

n items

New array

n items

124

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces
Charging a little extra for each add spreads out cost for infrequent growth operation
The charge, however, is a constant, so O(3) = O(1)

n items

New array

n items

125

Growing array is generally preferable to
linked list

Linked list Growing array

get(i) O(n) O(1)

set(i,e) O(n) O(1)

add(i,e) O(n) O(n) + O(1) = O(n)

remove(i) O(n) O(n)

• Faster get()/set() than linked list
• Tie with linked list on remove()
• Best case: all operations on tail
• add() might cause expensive

growth operation

Amortized analysis shows
infrequent growth operation
is constant time

Pay a constant amount more
on each add() to pay for the
occasional expensive growth

Worst case run-time complexity

• Start at head and march down to find
index i

• Slow to get to index, O(n)
• Once there, operations are fast O(1)
• Best case: all operations on head

	Slide 1
	Slide 2: Main goals
	Slide 3: Agenda
	Slide 4: Find an element in the list (unsorted)
	Slide 5: Find an element in the list (unsorted)
	Slide 6: Find an element in the list (sorted)
	Slide 7: Find an element in the list (sorted)
	Slide 8: Find the max element in the list (unsorted)
	Slide 9: Find the max element in the list (sorted)
	Slide 10: Comparing algorithms
	Slide 11: Comparing algorithms
	Slide 12: Comparing algorithms
	Slide 13: How to compare efficiency?
	Slide 14: How to compare efficiency?
	Slide 15: How to count operations?
	Slide 16: Example: Calculate sum of numbers from 1 to n
	Slide 17: Example: Calculate sum of numbers from 1 to n
	Slide 18: Example: Calculate sum of numbers from 1 to n
	Slide 19: Example: Calculate sum of numbers from 1 to n
	Slide 20: Example: Calculate sum of numbers from 1 to n
	Slide 21: Example: Calculate sum of numbers from 1 to n
	Slide 22: Example: Calculate sum of numbers from 1 to n
	Slide 23: Often run-time will depend on the number of elements an algorithm must process
	Slide 24: For small numbers of items, run time does not differ by much
	Slide 25: As n grows, number of operations between different algorithms begins to diverge
	Slide 26: Even with only 60 items, there is a large difference in number of operations
	Slide 27: Eventually, even with speedy computers, some algorithms become impractical
	Slide 28: Sometimes complexity can hurt us, sometimes it can help us
	Slide 29: Agenda
	Slide 30: We can extend Big Oh to any, not necessarily linear, function
	Slide 31: Run time can also be Ω (Big Omega), where run time grows at least as fast
	Slide 32: Comparison
	Slide 33: Comparison
	Slide 34: We use Θ (Big Theta) for tight bounds when we can define O and Ω
	Slide 35: Comparison: which has a tight bound?
	Slide 36: Comparison: which has a tight bound?
	Slide 37: We ignore constants and low-order terms in asymptotic notation
	Slide 38: These concepts are applicable for memory complexity as well
	Slide 39: Agenda
	Slide 40: Difference between singly linked list and array
	Slide 41: Growing array is generally preferable to linked list, except maybe growth operation
	Slide 42: Growing array is generally preferable to linked list, except maybe growth operation
	Slide 43: Amortization is a concept from accounting that allows us to spread costs over time
	Slide 44: Amortized analysis shows growing array is actually only O(1)!
	Slide 45: Amortized analysis shows growing array is actually only O(1)!
	Slide 46: Amortized analysis shows growing array is actually only O(1)!
	Slide 47: Amortized analysis shows growing array is actually only O(1)!
	Slide 48: Amortized analysis shows growing array is actually only O(1)!
	Slide 49: Amortized analysis shows growing array is actually only O(1)!
	Slide 50: Amortized analysis shows growing array is actually only O(1)!
	Slide 51: Amortized analysis shows growing array is actually only O(1)!
	Slide 52: Amortized analysis shows growing array is actually only O(1)!
	Slide 53: Growing array is generally preferable to linked list
	Slide 54: Summary
	Slide 55: Next
	Slide 56: Additional Resources
	Slide 57: Run-time complexity
	Slide 58: How long does it take to find an item in a List?
	Slide 59: How long does it take to find an item in a List?
	Slide 60: Often run-time will depend on the number of elements an algorithm must process
	Slide 61: Often run-time will depend on the number of elements an algorithm must process
	Slide 62: For small numbers of items, run time does not differ by much
	Slide 63: As n grows, number of operations between different algorithms begins to diverge
	Slide 64: Even with only 60 items, there is a large difference in number of operations
	Slide 65: Eventually, even with speedy computers, some algorithms become impractical
	Slide 66: Asymptotic notation
	Slide 67: Computer scientists describe upper bounds on orders of growth with “Big Oh” notation
	Slide 68: Computer scientists describe upper bounds on orders of growth with “Big Oh” notation
	Slide 69: We can extend Big Oh to any, not necessarily linear, function
	Slide 70: Run time can also be Ω (Big Omega), where run time grows at least as fast
	Slide 71: We use Θ (Big Theta) for tight bounds when we can define O and Ω
	Slide 72: We ignore constants and low-order terms in asymptotic notation
	Slide 73: How to write them
	Slide 74: Description of Pros and cons
	Slide 75: At first arrays seem to be a poor choice to implement the List ADT
	Slide 76: Annotated slides
	Slide 77: Random access aspect of arrays makes it easy to get or set any element
	Slide 78: Random access aspect of arrays makes it easy to get or set any element
	Slide 79: Random access aspect of arrays makes it easy to get or set any element
	Slide 80: Random access aspect of arrays makes it easy to get or set any element
	Slide 81: Random access aspect of arrays makes it easy to get or set any element
	Slide 82: Random access aspect of arrays makes it easy to get or set any element
	Slide 83: Random access aspect of arrays makes it easy to get or set any element
	Slide 84: Example of insertion in ArrayList
	Slide 85: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 86: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 87: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 88: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 89: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 90: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 91: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 92: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 93: Example of growing ArrayList
	Slide 94: Arrays are of fixed size, but List ADT allows for growth
	Slide 95: Arrays are of fixed size, but List ADT allows for growth
	Slide 96: Arrays are of fixed size, but List ADT allows for growth
	Slide 97: Arrays are of fixed size, but List ADT allows for growth
	Slide 98: Arrays are of fixed size, but List ADT allows for growth
	Slide 99: Arrays are of fixed size, but List ADT allows for growth
	Slide 100: Arrays are of fixed size, but List ADT allows for growth
	Slide 101: Arrays are of fixed size, but List ADT allows for growth
	Slide 102: Annotated slides
	Slide 103: GrowingArray.java: implements List ADT using an array instead of a linked list
	Slide 104: GrowingArray.java: get()/set() are easy and fast with an array implementation
	Slide 105: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 106: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 107: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 108: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 109: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 110: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 111: List analysis
	Slide 112: Growing array is generally preferable to linked list, except maybe growth operation
	Slide 113: Amortization is a concept from accounting that allows us to spread costs over time
	Slide 114: Amortized analysis shows growing array is actually only O(1)!
	Slide 115: Amortized analysis shows growing array is actually only O(1)!
	Slide 116: Amortized analysis shows growing array is actually only O(1)!
	Slide 117: Amortized analysis shows growing array is actually only O(1)!
	Slide 118: Amortized analysis shows growing array is actually only O(1)!
	Slide 119: Amortized analysis shows growing array is actually only O(1)!
	Slide 120: Amortized analysis shows growing array is actually only O(1)!
	Slide 121: Amortized analysis shows growing array is actually only O(1)!
	Slide 122: Amortized analysis shows growing array is actually only O(1)!
	Slide 123: Amortized analysis shows growing array is actually only O(1)!
	Slide 124: Amortized analysis shows growing array is actually only O(1)!
	Slide 125: Growing array is generally preferable to linked list

