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Fig. 1. The AST grid structure provides a new regular pattern for the adaptive fluid simulation that is able to be integrated with existing grid structures such
as an Octree. Active tilted cells in the AST grid are rendered in purple and darker blue color. (Left) A smoke plume passes around a sphere. Tilted cells and the
four-level Octree pattern are visualized. (Middle) A smoke plume passes through a solid porous grate. The AST grid places extra DoFs around smoke and in the
vicinity of the porous grate to capture detailed flow features. (Right) Two sources inject liquid to form a thin sheet. Tilted cells are activated in the narrowband
of the level set that is evolving with the liquid.

Enabling adaptivity on a uniform Cartesian grid is challenging due to its
highly structured grid cells and axis-aligned grid lines. In this paper, we
propose a new grid structure – the adaptive staggered-tilted (AST) grid –
to conduct adaptive fluid simulations on a regular discretization. The key
mechanics underpinning our new grid structure is to allow the emergence
of a new set of tilted grid cells from the nodal positions on a background
uniform grid. The original axis-aligned cells, in conjunction with the popu-
lated axis-tilted cells, jointly function as the geometric primitives to enable
adaptivity on a regular spatial discretization. By controlling the states of
the tilted cells both temporally and spatially, we can dynamically evolve the
adaptive discretizations on an Eulerian domain. Our grid structure preserves
almost all the computational merits of a uniform Cartesian grid, including
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the cache-coherent data layout, the easiness for parallelization, and the ex-
istence of high-performance numerical solvers. Further, our grid structure
can be integrated into other adaptive grid structures, such as an Octree or a
sparsely populated grid, to accommodate the T-junction-free hierarchy. We
demonstrate the efficacy of our AST grid by showing examples of large-scale
incompressible flow simulation in domains with irregular boundaries.
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tive simulation
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1 INTRODUCTION
Regularity is essential for building an Eulerian solver for large-scale
physical simulations. A regular Eulerian structure, e.g., a Cartesian
grid, is distinguished from its unstructured counterparts (e.g., par-
ticle or mesh) by its random access ability, cache coherent layout,
and easiness in hosting large-scale parallel solvers. By requiring
scarcely any additional large-bulk memory storage or acceleration
data structures, we can randomly access a degree of freedom or a
quadrature shape defined on a regular grid structure by performing
an O(1) operation. Such discretization regularity can be typically
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encoded in an analytical expression [Azevedo and Oliveira 2013;
Houston et al. 2006; Ibayashi et al. 2018], a cacheable index lookup
table [Zhu et al. 2013], or a hardware-accelerated page access mecha-
nism [Setaluri et al. 2014], etc. However, on the minus side, a regular
Cartesian discretization suffers from a handful of weaknesses. In
particular, compared with its mesh and particle counterparts, a
regular grid structure lacks the inherent ability for adaptivity and
dynamic Lagrangian structure tracking, limiting its capability in
capturing intricate dynamics and complicated geometries of a flow
system that exhibit multi-scale and heterogeneous features evolving
rapidly in space. To overcome these limits, two streams of previous
efforts have been successfully devoted to tackling the adaptivity
challenge. First, a variety of hierarchical or transformable geomet-
ric primitives have been created on an Eulerian grid structure to
enhance adaptivity. Most of the efforts within this category con-
duct a set of specific geometric operations on Cartesian grid cells
to enhance adaptivity, e.g., by splitting cells (Octree [Losasso et al.
2004]), deleting cells (SPGrid [Setaluri et al. 2014]), stretching cells
(far-field grid [Zhu et al. 2013]), merging cells (RLE grid[Chentanez
and Müller 2011; Irving et al. 2006]), deforming cells (curvilinear
grid [Azevedo and Oliveira 2013]), or rigidly translating and over-
lapping cells (Chimera grid [English et al. 2013]). These adaptive
grid structures realize their layout regularity by assuming a connec-
tivity that each grid cell should be a square (in 2D) or a cube (in 3D)
adjacent to up to six neighbors (on the same adaptive level). Second,
a surge of approaches has been proposed to regularize unstructured
mesh discretizations to benefit from both its Lagrangian tracking
and structured Eulerian data processing capability. For example,
Chentanez et al. [2007] build a body-centered cubic (BCC) lattice
using isosurface stuffing[Labelle and Shewchuk 2007], achieving
the storage saving by having only four shapes of the tetrahedron
in the interior of the mesh. Brochu et al. [2010] build a Voronoi
mesh by applying geometric-aware adaptive samples upon a regular
lattice mesh. Furthermore, particles can be used to create volumetric
parcels that partition the computation domain into Voronoi cells
[Sin et al. 2009] or power diagrams [De Goes et al. 2015].

Our proposed discretization strategy falls in the first category by
enriching adaptivity on a regular grid structure. In particular, we
aim to answer the question raised by the stringent regularity require-
ment for a Cartesian data structure: "Can we find another geometric
primitive, or a set of combinatorial basis primitives, to enable a
regular domain discretization that can naturally support adaptivity
while preserving the structural regularity?” Inspired by methods
from both (semi-)regular meshes such as a BCC and adaptive struc-
tured grids such as an Octree, we conducted preliminary research
to find the mechanism of regular-and-adaptive discretization from a
new perspective, by exploring the possibility of combining multiple
(2 in our case) overlapping regular primitives to generate a new reg-
ular Eulerian grid discretization to support adaptive and dynamic
tracking. As shown in Figure 3, the key mechanics of our adaptive
staggered-tilted (AST) grid structure is to modify a uniform grid by
placing an additional, tilted grid cell (e.g., rotated by 45-degree in
2D) on each grid node with locally varying cell size. When the size
of a tilted cell is zero, the grid is locally unmodified; when the size
of a tilted cell reaches its maximum, a new set of grid nodes (i.e., the

intersection of tilted cells at edge center) is created, which allows
another level of DoFs to emerge at those grid nodes.
Our AST grid structure is motivated by a thread of previous re-

search on a rotated Cartesian grid [Edwards and Zheng 2008; van Es
et al. 2014, 2016], pioneered by the foundational work [Saenger et al.
2000] and followed by a series of variations and modifications [Gao
and Huang 2017; Liu and Sen 2009; Saenger and Bohlen 2004]. Most
of these works were focused on capturing the anisotropic diffusion
or wave propagation by establishing a higher-order differential sten-
cil taking the additional grid nodes on the diagonal directions. In our
case, we keep the design philosophy of these rotated staggered-grids
by involving more degrees of freedom in the differential discretiza-
tion. The defining features of our AST grid distinguishing itself from
the previous ones consist in its staggered layout of the tilted DoFs
on grid nodes and its adaptively controlled tilted cell status which
is essential for dynamic feature tracking. Our grid structure can
support large-scale simulations in both two and three-dimensional
spaces, enabled by the software engineering practices to fit the grid
structure into the various modern data structures such as Octree
and parallel iterative solvers such as algebraic multigrid.
The proposed AST grid exhibits the following computational

merits. First, the cell-tilting mechanics is simple to implement on
a Cartesian grid, in particular, by overlapping two Cartesian grids
with different grid origin and spacing. In this sense, our tilted grid
structure can be seen as a plugin to an existing standard data struc-
ture to enable adaptivity in a straightforward fashion. Second, the
tilted grid structure has excellent flexibility while being a regular
discretization. We employ the cell status control on every tilted
cell independently to enable fast and cheap adaptive operations in
the computational domain. Last, this cell-tilting mechanism can be
seamlessly integrated into a hierarchical data structure such as an
Octree to eliminate the T-junctions. For example, an AST-modified
Octree can recover orthogonality [Aanjaneya et al. 2017] across
different levels by constraining the status of tilted cells in a local
region.

We summarize our main contributions as:

• We present a new tilted-staggered grid structure composed
of two sets of grid cells to enable adaptive simulation of large-
scale incompressible flow, which opens up the possibility
of creating new regular discretizations with combinatorial
geometric primitives.

• We present a novel way for the dynamic tracking of complex
Lagrangian features by switching the status of local tilted
cells with negligible additional cost (around 1%).

• Our AST grid presents a computational paradigm to accom-
modate the traditional adaptive grid structure, such as an
Octree, to preserve its discretization orthogonality and en-
hance its capability in controlling the adaptivity.

2 RELATED WORK
Structuredmethods. Computer graphics researchers invented a broad
spectrum of regular grid structures targeting adaptive fluid simula-
tion. The efforts on improving a Cartesian grid structure are solely
motivated by its various appealing benefits regarding the compu-
tation performance, such as the cache-friendly accessing pattern
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Fig. 2. Tilted cells dynamically evolve along with the boat and the wake to capture fine-scale details of fluid. The leftmost figure visualizes tilted cells. The
effective horizontal resolution is 1200 × 600 and the narrow-band level set has horizontal resolution of 2400 × 1200.

and the easy parallelization for the modern hardware. Octree, as an
enhancement to a uniform grid by splitting and deleting cells, is one
of the most potent regular grid structure and has been well-studied
over the past two decades. Originating from [Popinet 2003] and
[Roussel et al. 2003], Losasso et al. [2004] proposed an Octree data
structure accommodated by a set of symmetric differential opera-
tors to simulate incompressible flow adaptively. Losasso et al. [2006]
improved their work to achieve second-order accuracy in pressure
solving by a new gradient discretization over T-junctions. Setaluri et
al. [2014] recovered optimal cache performance for Octree by intro-
ducing SPGrid, which reformulates the conventional pointer-based
Octree to a pyramid of sparsely populated uniform grids. Nielsen et
al. [2018] differed Setaluri for using velocities collocated at voxel
corners, allowing sharper and faster interpolation. Aanjaneya et al.
[2017] improved pressure projection accuracy on Octree by exploit-
ing the power diagram to eliminate T-junctions in the cross-level
region. Goldade et al. [2019] introduced an efficient viscosity solver
for Octree with an adaptive variational finite-difference methodol-
ogy. Ando et al. [2020] presented an easy-to-implement algorithm
for high quality adaptive liquid simulation on Octree. Another class
of regular adaptive grid is obtained through merging or stretching
cells, forming stretched cell elements. For example, cells out of re-
gions of interest are replaced with tall cells stretched in single-axis
directions [Chentanez and Müller 2011; Irving et al. 2006] or are
represented by compressed encodings [Houston et al. 2006]. Zhu
et al. [2013] also employed stretched cells to achieve dimension-by-
dimension adaptivity by translating entire grid lines. Aside from
adjusting a Cartesian grid by applying operations on the unit of a
cell, the curved grid line (curvilinear grid) [Azevedo and Oliveira
2013] was proposed for smoke simulation, maintaining grid regu-
larity while achieving optimal alignment between grid and obstacle
boundary. Multiple regular grids of different resolutions could also
be grouped by rigidly translating and overlapping, forming a more
descriptive grid structure (Chimera grid) [Cohen et al. 2010; Dobashi
et al. 2008; English et al. 2013; Golas et al. 2012]. The spatially sparse
nature of the fluid simulation task also drives researchers to propose
more unified solutions, such as a high resolution sparse dynamic
data structure (VDB) supporting O(1) data access [Museth 2013],
a computational framework for sparsely populated grid [Liu et al.
2018] and a data-oriented programming language for spatial sparse
structure [Hu et al. 2019].

Unstructured and semi-structured methods. Mesh structures accom-
modate adaptive fluid simulation thanks to its inherent flexibility
in allocating degrees of freedom in a computational domain. Feld-
man et al. [2005] adapted the stable fluid approach [Stam 1999]
on the tetrahedral mesh, allowing underlying meshes to deform
in an arbitrary Lagrangian-Eulerian (ALE) way that could be in-
dependent of the fluid motion. Klingner et al. [2006] evolved the
discretized tetrahedron to align with the irregular boundaries and
place more mesh elements in visually important regions. Wojtan
and Turk [2008] proposed a tetrahedral finite element solver mak-
ing use of the high-resolution surface mesh, capturing viscoelastic
behavior with thin features. The unstructured tetrahedral mesh can
also be advected with the fluid flow by maintaining a high-quality
discretization with the help of a deformable simplicial complex [Mis-
ztal et al. 2010, 2012] or dynamic local remeshing [Clausen et al.
2013]. Though mesh-based methods are generally more natural to
align with complex boundaries, their strength comes with the cost of
an unstructured layout, which incurs non-trivial work related to ex-
plicit topological representation and thus suffers from poor memory
footprint. To overcome the overhead of remeshing algorithm and
data structure, the semi-structured lattice-based tetrahedral mesh is
proposed for better memory storage and faster point location com-
putation while maintaining mesh quality [Chentanez et al. 2007;
Labelle and Shewchuk 2007; Teran et al. 2005]. Batty et al. [2010]
extended these methods with embedded boundary techniques so
that neither air nor solid boundaries need to align with the mesh in
geometry, enabling simpler geometry and faster mesh generation.
Ando et al. [2013] improved mesh discretization by placing velocity
vectors at the barycenter of each cell and pressure values at each
node. By taking advantage of sample points of fluid flow, Voronoi
diagram has been used to construct the mesh on simulation parti-
cles [Sin et al. 2009] or to enable geometric-aware adaptive sampling
on a background uniform mesh [Brochu et al. 2010]. Power dia-
gram, a generalization of Voronoi diagram, can be used to treat fluid
particles not only as material points but also as volumetric parcels,
offering accurate pressure computation and removal of damping
arising from the kernel-based evaluation [De Goes et al. 2015; Zhai
et al. 2018]. These methods fall into the category of hybrid meth-
ods that benefit from both Eulerian and Lagrangian methods. More
works such as [Nielsen and Bridson 2016] and material point meth-
ods (MPM) [Gao et al. 2018; Hu et al. 2018; Stomakhin et al. 2013]
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Fig. 3. (a) Setup of the AST grid in 2D. The 45-degree-tilted grid cells are
placed at grid nodes of the uniform grid. (b) Setup of the AST grid in 3D.
Tilted cells are rendered as blue octahedra, and they truncate the original
cells of the uniform grid.

also demonstrate the balance between adaptivity and computational
efficiency.

3 GRID STRUCTURE
Geometric primitives. We construct an AST grid by introducing

two sets of grid cells – one set as the cells on a background uni-
form grid with its axes aligned with the world frame (the axis-
aligned grid) and the other set as the cells from an overlapped
grid with tilted axes in the world frame (the axis-tilted grid). As
shown in Figure 3, the center of a tilted cell is overlapped with the
original grid nodes, and the diagonals of a tilted cell are aligned
with the original grid lines, exhibiting a tilted-staggered cell lay-
out. We use half-diagonal length (e in the right figure) to measure
the size of an axis-tilted cell, and it can vary continuously within
the range of [0, ∆x2 ], with ∆x as the size of a uniform grid cell.
According to the cell size e , we define three
states of an axis-tilted cell: closed, open, and
fully open shown in the figure inset. An axis-
tilted cell is closed if its e = 0, in which case
it is excluded from the structure and the lo-
cal behavior of the grid will be identical to a
uniform grid. An axis-tilted cell is open when
e ∈ (0, ∆x2 ), in which case the axis-aligned
cells and the axis-tilted cells co-exist. An axis-
tilted cell is fully open when e = ∆x

2 , in which
case the local primitives are fully tilted in 2D
where the original axis-aligned cells of size
∆x degenerate to another set of tilted cells. Practically, in most of
our numerical examples (except the anisotropic test in Figure 12),
we choose to restrict the control strategy for the tilted cells to be
binary, which means a tilted cell can switch its status only between
closed and fully open. At the same time, we also want to note that
a continuous representation of the tilted cell size e can benefit the
computation in different scenarios, e.g., anisotropic diffusion, by
allowing the smooth flux transition along different axes (see Sec-
tion 7). By dynamically switching cell states temporally, the AST
grid enables us to design a host of control strategies to achieve dif-
ferent simulation goals (see Section 5). The axis-aligned cells and the
axis-tilted cells together form a hybrid, tight spatial discretization,

acting as two fundamental geometric primitives of the AST grid in
a joint way. We use the resolution of the axis-aligned grid (i.e., the
uniform grid) to denote the AST grid’s resolution. Computationally,
an AST grid has up to twice as many DoFs as the background uni-
form grid. For example, for an n × n uniform grid, its AST version
adds (n + 1)2 extra adaptive DoFs along with the original fixed n2
DoFs.

The domain discretization by the two sets of primitives is defined
by the intersection of the two sets, removing the axis-aligned node
underneath each tilted cell. In two spatial dimensions, each axis-
tilted cell is adjacent to four axis-aligned cells neighbors. Each axis-
aligned cell, which is an octagon, is adjacent to eight cells, including
four original neighboring axis-aligned cells and additional four
axis-tilted cells. In three spatial dimensions (see Figure 3b), the
AST grid subdivides the space using a combination of equilateral
octahedrons (axis-tilted cells) and truncated cubes (axis-aligned
cells). Each axis-tilted cell has eight axis-aligned cells neighbors,
and each axis-aligned cell (truncated cube) has extra eight neighbors
of axis-tilted type in addition to original six axis-aligned neighbors.

Data storage and memory access. The data storage for the AST
grid mainly resembles the one executed on a uniform Cartesian
grid. Specifically, the quantities stored at tilted cells could be viewed
as node-centered data in a standard Cartesian grid. We adopt the
staggered discretization, i.e., theMAC grid [Harlow andWelch 1965],
where scalar quantities are stored at the cell centers (both aligned
and tilted cells), and vector fields (e.g., velocity) are stored at all faces.
A linear sequential array is used to store scalar values at tilted cells.
For vector fields, xyz-components at axis-aligned cells are stored in
three separate memory blocks. Components at faces of a tilted cell
are grouped into a 4-tuple (or 8-tuple in 3D), and all defined tuples
are then packed into a continuous array to represent the vector field
on tilted cells. The storage above supports us to access data points
in an indexing manner. Therefore, to obtain neighboring cells (both
tilted and axis-aligned cells) around a random point, one only needs
to divide its position by cell size ∆x and truncate in each dimension.

Interpolation. To support random point data sampling on an AST
grid, we develop an interpolation scheme to include tilted cells. For
scalar quantities (located at cell centers) interpolation on arbitrary
position, we take the value stored on the tilted cell as a correction to
the bilinear (or trilinear) interpolation operated on the background
grid. The main idea follows the previous work of SPGrid [Setaluri
et al. 2014], which also shares common features with [Ando et al.
2013; Brochu et al. 2010]. As shown in the figure inset, we start
with a bilinear interpolation q∗f = bilinear(q00,q01,q10,q11, fx , fy ),
where (fx , fy ) is the normalized coordinate of the
sample point having range [0, 1]. If the tilted cell in
the center is closed, we take q∗f as the return value
directly. In the case where we have an active tilted
cell, which means it has a valid value, we proceed
by computing a correction δq = qt − 1

4 (q00 +q01 +
q10 + q11). And the final result of the interpolation is

qf = q
∗
f + 2δq ·min(fx , 1 − fx , fy , 1 − fy ) (1)
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Fig. 4. Two sources of water inject into a basin, with 5123 resolution and 10243 resolution for the narrow-band level set. The rightmost figure shows the tilted
cell adaptivity.

The interpolation scheme can be naturally extended to 3D. Note
that the computation of the index of a tilted cell is trivial because
it offsets the index of point q00 by one, which is a known value in
the bilinear interpolation pipeline. We show by experiments that
the overhead of our interpolation scheme compared with a pure
bilinear (or trilinear) interpolation is marginal (see Section 7.5).

For the vector quantity (e.g., velocity) interpolation, a naive way is
to borrow the idea from the interpolation scheme on an unstructured
mesh, by treating an AST grid as a mesh composed of a set of
predefined primitives [Brochu et al. 2010; Chentanez et al. 2007]. On
each cell (including both tilted and aligned), the vector components
stored on faces are mapped back to the cell center to obtain an
intermediate cell-centered vector field by solving a least-squares
problem [Elcott et al. 2007]. This face-to-center mapping introduces
numerical damping into the system. To alleviate this issue, we only
map faces components of active tilted cells. The mapped vector
values are used as a correction term rather than directly interpolated
values, similar to our scalar interpolation. In particular, we first
obtain the intermediate vector value ®v∗ using the interpolation
function I discretized on a uniform Cartesian grid. If the nearest
tilted cell ct is closed, then ®v∗ will return as the final result directly.
Otherwise, we compute δ ®v = ®vct − I (Pct ) as a correction, where ®vct
is the remapped vector at the tilted cell ct and Pct is the position of
it. The final result is computed using ®v∗ and the correction δ ®v by
Equation 1.

Relation to power diagram/BCC lattice. Besides having a straight-
forward geometric description, an AST grid can also be interpreted
as a special case of a power diagram by taking the cell center as
site and having the size of the tilted cell defined by weights. The
topology of an AST grid also shares some similarities with the BCC
lattice. Compared with Voronoi/power diagram based approaches
[Brochu et al. 2010; De Goes et al. 2015; Sin et al. 2009] and BCC lat-
tice based methods [Chentanez et al. 2007], our AST grid starts from
a regular grid (Eulerian perspective), which promises a structured
layout (both geometric and memory representation), allowing us to
toggle DoFs dynamically during the simulation while avoiding the
storage and the reconstruction of the mesh connectivity informa-
tion. Aanjaneya et al. [2017] also applied this perspective, starting
with a graded Octree. They embedded power diagrams only in the

level-transition region of the Octree to recover primal-dual orthogo-
nality, leaving the remaining part unchanged as a regular structured
grid. In our case, we constrain the additional sites (i.e., tilted cells)
to locate only at grid nodes to maintain the overall regularity of
the grid, which also provides a way to eliminate T-junctions (see
Section 6).

4 INCOMPRESSIBLE FLOW
We solve the inviscid incompressible Navier-Stokes equations:{ ∂®u

∂t
+ ®u · ∇®u +

1
ρ
∇p = ®f (2)

∇ · ®u =0 (3)

where ®u is velocity, ρ is density, p is pressure, and ®f is external
forces. In each time step, the Equations above are solved in a time
split fashion. First, the intermediate velocity ®u∗ is computed by the
semi-Lagrangian advection [Stam 1999], which is straightforward
with the correction-based interpolation described in Section 3. Then,
the body force is applied via ®u∗∗ = ®u∗ + ∆t ®f . The final velocity is
computed by ®un+1 = ®u∗∗ − ∆t∇p/ρ.

4.1 Discretized differential operators
Volume-weighted Gradient. As we have

extra DoFs on tilted cells, we define gra-
dient values on axis-tilted faces in addi-
tion to those on axis-aligned faces. The
orthogonality between a cell face and the
line connecting the centers of the two in-
cident cells is guaranteed thanks to our
cell tilting strategy, allowing us to build a
volume-weighted gradient operator [Zhu
et al. 2015]:

V∇p = V
pi − pj

li j
®n = (pi − pj )d ®A (4)

where V is the control volume (e.g., see pink and blue regions in
the figure inset), li j is the distance between the centers of cell i and
cell j , ®n is the unit face normal, and d ®A represents the area-weighted
normal of the shared face between two cells.
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Fig. 5. Smoke plume passes through a solid porous grate using around 55 million voxels. The left figure shows the AST-modified Octree pattern and the tilted
cell adaptivity. The right-bottom figures are the same frame sequence as the right-top figures but rendered in different camera setup and without the porous
grate. Effective resolution is 512 × 512 × 768.

Volume-weighted Divergence. Similar to the MAC grid [Harlow
and Welch 1965], the divergence of a vector field is computed at
the cell centers. Following the definition outlined in [Losasso et al.
2004], the discretized volume-weighted divergence formula can be
written as

Vcell∇ · ®u =
∑
f ∈Fc

®uf · d ®A (5)

where Vcell is the volume of the cell (shown as yellow and green
regions in the above inset figure), Fc is the faces of the cell, ®uf is the
vector representation of the vector component containing direction
information, and d ®A is the area-weighted normal pointing outwards.
Note that the size of the tilted cell affects the area of faces, which
provides a way to control flux through faces.

4.2 Poisson solver
Let’s first consider a Poisson boundary value problem with spatially
variable coefficients:

∇ · β(®x)∇ϕ(®x) = f (®x), ®x ∈ Ω

ϕ(®x) = д(®x), ®x ∈ ∂ΩD

®n · ∇ϕ(®x) = h(®x), ®x ∈ ∂ΩN

(6)

where Ω denotes the interior domain, ∂ΩD and ∂ΩN represent the
Dirichlet boundary and the Neumann boundary, and ®n is the unit
normal pointing outwards. We follow the convention of a MAC grid
discretization by defining ϕ(®x), д(®x), and f (®x) at cell centers and
β(®x) and h(®x) on faces. Equation 6 can be discretized on our grid
structure as

(−GT )M−1G ®Φ = V cell ®F (7)

where ®Φ and ®F are vectors of ϕ and f values, V cell is a diagonal
matrix containing cell volume values, G and -GT are the volume-
weighted gradient and divergence operators, andM is a diagonal

Grid L1 Error Order L∞ Error Order
64 × 64 4.88 × 10−4 - 1.08 × 10−3 -
128 × 128 1.22 × 10−4 2.00 2.73 × 10−4 1.99
256 × 256 3.05 × 10−5 2.00 6.87 × 10−5 1.99
512 × 512 7.63 × 10−6 2.00 1.72 × 10−5 2.00
1024 × 1024 1.91 × 10−6 2.00 4.31 × 10−6 2.00

Table 1. Poisson solver accuracy on the AST grid. A Poisson equation with
an analytic solution of ϕ(x , y) = sin(πx )sin(πy) is solved in the AST grid.

matrix assembled from theV /β values defined on faces. We enforce
the boundary conditions the same way as on a uniform grid by mod-
ifying the right-hand side of the equation and the corresponding
coefficients in the linear system on the left-hand side. The linear sys-
tem defined in Equation 7 is sparse, symmetric, and positive-definite
by construction. Such discretization enables a second-order accurate
solving, as demonstrated by our convergence tests in Table 1.

4.3 Pressure projection and free surface
To enforce incompressibility, we solve the Poisson equation of the
form ∇ · ∇p = ρ/∆t∇ · ®u∗∗ using the method above. We employ
the level set method [Osher and Fedkiw 2003], ghost fluid method
and cut-cell method [Batty et al. 2007, 2010; Enright et al. 2003;
Gibou et al. 2002] to handle the free surface and solid boundaries on
our grid structure. Surface tension is modeled as a pressure jump
across the free surface boundary by enforcing a Dirichlet boundary
condition pD = pair + γκ at the liquid-air interface, with γ as the
surface tension coefficient and κ = ∇ · ∇ϕ as the local interface
curvature, which is computed using a regular grid level set. A milk
crown example is shown in Figure 6.
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Fig. 6. Milk crown formation in the presence of surface tension, with the
resolution of 2563 and the tilted cell adaptivity. The right figure visualizes
tilted cells.

Fig. 7. Karman vortex street simulation. Left column figures visualize the
status of tilted cells of the same fluid object at different times. Right column
figures show the status of tilted cells of the same position at different times.

5 ADAPTIVITY AND DYNAMIC TRACKING
In this section, we present several strategies on an AST grid to enable
adaptive simulation. The efficacy of these strategies is demonstrated
by a set of simulation results in Section 7. In general, the spatial
adaptivity on an AST grid is controlled by the local tilted cell states
based on some specific policies, designed to track and capture flow
feature dynamically during the course of the simulation.

Advective tilted-cell tracking. For the case of smoke simulation,
the most basic dynamic tracking policy is based on density. As
shown in Figure 7, we dynamically activate tilted cells following
the density field along the Karman vortex street to provide locally
refined discretizations. In particular, we open the tilted cells when
the values of an advected scalar field that controls the local cell
opening and closing exceed a predefined threshold. From the La-
grangian point of view, this adaptivity advection scheme amounts
to the spatial continuous tracking of fluid material particles in an
Eulerian way.

Narrowband-based tracking. Another tracking principle is to re-
fine the grid near the regions of interest. In Figure 5 and 16, we

initialize tilted cells in the vicinity of the boundary and keep them
fully open while adjusting the remaining tilted cells based on the
flow in a dynamic way. For liquid simulations shown in Figure 2, 4
and 8, the tilted cells evolve with the liquid free surface, which is
straightforward to implement in the presence of the level set.

Vorticity tracking. As vorticity describes the local spinning mo-
tion of the fluid, we activate tilted cells in the region with high
vorticity values. As shown in our two-dimensional smoke simula-
tion comparison (Figure 14), the vorticity-based tracking captures
the details of the rotational motion of a smoke plume by controlling
the grid adaptivity based on the local vorticity.

Anisotropic tracking. The tilted cells can be adjusted to track
global anisotropic features, which served as the original motivation
of designing a rotated grid as in [Saenger et al. 2000; van Es et al.
2016]. The opened tilted cell introduces two (four in 3D) more axes
besides the original xy axes (xyz axes in 3D), enabling better align-
ment of the grid faces with the characteristic flux. Continuous size
control of the tilted cell further allows a smooth flux transition on
different axes. We showcase the anisotropic tracking capability of
our AST grid in the diffusion experiment (see Section 7.1).

Coarse-fine tracking. Integrating our AST grid with an existing
adaptive data structure (e.g., Octree) can empower the tracking to
have two different granularity (i.e., coarse tracking and fine track-
ing). The original adaptive structure provides a coarse-level control
by updating its structure every several frames, and at the same time,
the AST plugin provides a costless, fine-level control mechanism
that can be updated in every time step with negligible overhead
(around 1%). The example of plugging our AST discretization into a
traditional Octree can be seen in Section 6.

Implementation. The status of the tilted cell scaling can be con-
trolled either analytically or numerically. For an analytical control
mechanism, the open or close status of the tilted cell (or cell size
e) can be calculated on the fly without any memory storage using
a predefined analytical function. For example, we could use the
inequality p2x +p2y < 1 to fully open tilted cells inside the unit circle
while closing all remaining cells. For a numerical control strategy,
the status of the tilted cell is maintained in a separate memory block
that is shared among different fields. When the cell control is a
float operation, the block could be a sequential array of type float
representing the size of every tilted cell. When the cell control is
a binary operation, which is the case for our fluid examples, we
exploit bitmap in our implementation to optimize memory overhead
introduced by the grid structure. Including cached cell status (e.g.,
duplication at the axis-aligned cell to speed up computation), the
overall memory overhead for recording grid topology is no more
than 50MB in our fluid experiments. After updating the status of
tilted cells, we still need to store the memory block both at time
tn and tn+1 in order to interpolate data for the new tilted setup in
the advection step using semi-Lagrangian. As only a single memory
block needs to be maintained to record cell status and the structured
layout of the AST grid, the tracking process only adds around 1%
overhead to a single step of simulation (see Table 3).
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Fig. 8. Four sources pour liquid to four armadillo models with effective resolution 5123. Tilted cells are opened in the vicinity of liquid free surface. A fine
narrow-band level set with resolution 15363 is used for interface tracking.

(a) (b)

Fig. 9. Setup of the AST-modified Octree in 2D and 3D. (a) T-junctions (red
dots) are naturally eliminated by maximized tilted cells (red tilted cells). (b)
The half-tilted cell (white prism) is introduced to handle T-junctions.

6 OCTREE PLUGIN
The emergence of the tilted cell only relies on the existence of
intersection nodes of orthogonal grid lines in the uniform grid. It is
a fundamental characteristic of the uniform grid and can be found
in many other regular grids, such as far-field grid [Zhu et al. 2013]
and Octree [Losasso et al. 2004]. So the cell-tilting mechanism could
be applied to any of these grid structures that exhibit regular spatial
discretizations. We provide one example of marrying our AST grid
with an Octree to showcase its ability to enable another level of
adaptivity control and eliminate the T-junctions.

6.1 AST-Modified Octree
Similar to reformulation to the uniform grid, the AST grid modifies
an Octree grid by placing tilted cells in every grid node of it. The
topology of an AST-modified Octree is similar to the AST grid
described in Section 3. The size of the tilted cell follows the same
rules described in Section 3, but ∆x , which was the uniform grid’s
cell size, now represents the size of the largest uniform cell adjacent
to a tilted cell. Our AST grid can eliminate T-junctions on an Octree
by adjusting the status of tilted cells. The strategy is simple: as
shown in Figure 9a, tilted cells over T-junctions are constrained to
be closed (e = 0), and the remaining tilted cells in the level-transition
region are set to maximum size (e = ∆x0). This tilting strategy will
lead to a mix of primitives, including a set of triangles connecting
the truncated cells and tilted cells without the T-junction transition.
In three spatial dimensions, the maximized tilted cells alone are

not sufficient for T-junctions elimination. We further introduce a
square pyramid structure called half-tilted cell with its base placed
on the face of the coarser-level cell and apex on the vertex of the
neighboring finer-level cell, as illustrated in Figure 9b. The treatment
of the half-tilted cell is almost the same as the tilted cell except for an
extra flag recording the direction in implementation, which ensures
the topology simplicity and solvability of the pressure projection.

6.2 Linearized Storage
The main weakness of an Octree lies in its cache incoherency. We
modify our data storage pattern introduced in Section 3 to fit an AST-
modified Octree structure. As shown in Figure 10, data is stored in a
linearized fashion, while the linearized index is computed by a hash
table using the level and coordinate information of the cell as the
key. We composite level and coordinate of a cell into a single 64-bit
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integer, where the top 4 bits represent the level, and every following
20 bits represent the x,y, z coordinate, respectively. To enable data
access locality, we divide the data layout into different layers for
different Octree levels, and arrays allocated for each layer are stored
separately. In each layer, cells are stored in a fashion similar to the
uniform grid, where topologically adjacent cells are stored next
to each other. With the linearized index and multi-layer storage,
the AST-modified Octree preserves the cache coherent merits of a
uniform grid on an Octree. For example, the addition of two fields
(such as the force field and the velocity field) could be done directly
for data arrays in each layer without calculating coordination. For
more complex operations such as advection, where the position of
cells is involved in computation, we keep a single copy of auxiliary
data (e.g., coordination) to reduce the redundant access of the hash
table.

6.3 Ghost Cell
Neighboring relation in level transition regions of the Octree is
complex and computationally unfriendly. The introduction of tilted
cells makes it even worse. For example, the interpolation scheme
used in Section 3 would be ineffective because of the different
data points layout. It is challenging to identify the neighboring
cells in the level-transition region of an Octree if we choose the
interpolation methods for the unstructured mesh. To solve this
problem, we introduce a mechanism empowered by ghost cells
that lie outside the boundary of valid cells in the transition region.
Similar to [Setaluri et al. 2014], data
of ghost cells are stored in the same
way as valid cells within each level
and are interpolated from adjacent
levels.
The existence of tilted cells al-

lows us to perform a precise av-
erage to get values at ghost cells,
rather than extrapolation or ap-
proximation from known points
nearby. The figure inset illustrates
the ghost cell (draw in yellow color) update process:

(1) Borrow data from the adjacent level directly if the locations
of data points coincide, e.g., д3 = d7.

(2) Perform a precise average of cells in the adjacent level using
data stored on both tilted cells and axis-aligned cells, e.g.,
д1 =

1
4 (d1 + d2 + d3 + d4) and д2 =

1
2 (d5 + d6).

The structure of ghost cells turns cross-level interpolation and prop-
agation into the interpolation within a single level. It ensures that
the operations on a valid cell can always find either valid or ghost
cell quantities within the same level and thus avoid the complex
neighboring search. Also, the proposed interpolation scheme is still
valid for an AST-modified Octree. As verified in our simulations (see
Section 7), the interpolation and data acquisition methods for ghost
cells successfully guarantee the data continuity across different lev-
els of an AST-modified Octree, while reducing the implementation
complexity significantly.
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Fig. 10. Demonstration of the linearized storage for the AST-modified Oc-
tree. Each level has a hash table mapping the cell’s level coordinate to its
index (steps one and two), which is further used to fetch elements in the
array (step three). Note that all data array and node array share the same
index, which means map operations such as advection and addition of fields
can be done without hash table lookup.
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Fig. 11. Results of the directional anisotropic diffusion. From left to right,
the columns correspond to diffusion directions of 20◦, 30◦, 40◦, 45◦, and
the tilted cell sizes used in experiments are 0.01 ∆x

2 , 0.8 ∆x
2 , 0.99 ∆x

2 , ∆x
2 .

In small diffusion angle cases, the benefits brought by the tilted cell are
visually less observable as the diffusion direction is more aligned with the
grid line of the uniform grid. The negative density value is visualized as blue
and can be taken as a numerical error sourced from the supporting grid
structure. The absolute summation of the negative value on the uniform
grid is 892, 1515, 1288, and 1251 for each case, while our AST grid achieves
a lower numerical error in all cases with value 820, 960, 90, and 0.

7 RESULTS

7.1 Anisotropic Diffusion
We conduct a numerical experiment to demonstrate a continuous
representation of tilted cell size by preserving the diffusion features
along the additional axes in our AST grid. We solve an anisotropic,
generalized diffusion equation with the form ∂q

∂t = ∇ ·D∇q(®x, t) on
our AST grid, where q is a scalar diffusion quantity (e.g., heat) andD
matrix is the collective diffusion coefficient defined by the strength
of diffusion on principal axes (see Appendix A for the detailed for-
mulation). The numerical error exists when there are misalignments
between the principal axes and the axes of the underlying grid [van
Es et al. 2016]. Our AST grid alleviates this issue by adaptively con-
trolling non-axis-aligned tilted cells based on the local diffusion
direction (i.e., principal axes). A continuously distributed tilted cell
size e over the entire computational domain allows a smooth transi-
tion between zero-flux and full-flux on each axis. In the directional
diffusion experiment (Figure 11), the domain is initialized with a
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Fig. 12. Results of the circular anisotropic diffusionwith different underlying
grids and setups. The figure shows diffusion results at different time frames
(From top to bottom, t = 0.02s , 1s , 2s ). The table shows the error computed
against the high-resolution result (f).

Fig. 13. Surface tension simulation of an initially block-shaped liquid. Ob-
jects from left to right are an AST grid using correction-based interpolation,
an AST grid using interpolation of unstructured mesh, and the initial condi-
tion. Both examples have base resolution 643.

density value of one in the center and diffused in a specific direction.
In the circular diffusion experiment (Figure 12), we define the diffu-
sion direction of a given point as the tangent of the circle formed by
the point and the domain center. As shown in both examples, the
AST grid outperforms its uniform counterparts, and the continuous
e setup reduces the error even further compared to the setup of the
binary tilted cell states. All cases solve the same anisotropic diffu-
sion equation in an explicit-implicit splitting manner [Rasmussen
et al. 2004], which is suitable for the fast preconditioned conjugate
gradient solver because the explicit integration needs an extremely
small time step (e.g., ∆t = 0.0001s) to remain stable.

7.2 Correction-based Interpolation
We validate the velocity interpolation scheme in Section 3 by show-
ing a surface tension simulationwith a level-set-based free surface in

Figure 13. We compare the result from the correction-based scheme
with the result from the face-to-center remapping scheme on the
same AST grid. We show that the correction-based one can track
the interface evolution and preserves the shape feature in a sharper
way with the same grid resolution.

7.3 Visual Comparison
Figure 14 shows a set of 2D smoke simulations using the vorticity
tracking strategy.We compared the results among a uniform grid, an
AST grid, and a multi-level AST grid (Section 8). The additional num-
ber of DoFs we put on AST and multi-level AST are 11.3% and 12.3%,
respectively, compared with the uniform grid with the coarsest reso-
lution. The AST grid uses a two-layer hierarchy (aligned+tilted), and
the multi-level AST grid uses a three-layer hierarchy (the third layer
of adaptive cells are created on cell edges, as illustrated in Figure 14e).
It is shown in Figure 14 that with a two-layer hierarchy (c) on our
AST grid, we can obtain results comparable to the double-resolution
uniform grid. With a three-layer hierarchy (d), but still at a very low
computational cost, we can obtain the evolution of clear vortical
structures developed from the refined AST regions, which was not
possible even on a doubled-resolution uniform grid. Figure 15(a)-
(e) compare 3D smoke simulations with different resolutions and
initial conditions on a uniform grid and an AST grid. Our AST grid
produces results with clearer and refined flow structures around the
regions of interest, at the cost of around 20% − 30% increase of the
total simulation time (Table 3), using around 10% additional tilted
cells whose status are tracked based on the smoke density. We want
to highlight that our AST grid can solve the visual artifact of axis-
aligned smoke features and density gaps that have been existing as
one of the major artifacts for Eulerian fluid simulation (as marked
by red squares in the figure). These artifacts that are aligned to grid
axis directions are due to the interpolation scheme on axis-aligned
grid cells that are implemented for advection on a uniform grid. Our
AST grid can naturally solve this problem by introducing additional
DoFs in non-axis-aligned directions around the solid. Figure 15(f)(h)
show another comparison with the same scene setup as Figure 5.
The tilted cell is placed around the grate obstacle, which allows us
to capture narrow flow passing through the porous grate without
any staggered artifacts. Figure 15(i)(j) compare the two-level Oc-
tree and the AST-modified Octree. The simulation result obtained
by the AST-modified Octree has more visual details, and is closer
to the one generated on the uniform grid thanks to the recovered
orthogonality. The Octree structure provides around 50% additional
DoFs on the base resolution, and the tilted cell dynamically updates
status to add around 10% more.

7.4 Examples
We demonstrate the effectiveness of our AST grid and its integration
with Octree by simulating a number of examples. We illustrate our
framework’s dynamic tracking ability and adaptivity using two
smoke examples to exemplify the interesting fluid flow features
near a rigid body and solid porous boundaries. Figure 5 shows
smoke flow travels through a solid porous grate, with three levels of
Octree adaptivity. Figure 16 shows the smoke plume passes around
a static metal sphere with a source at the bottom. We use tilted
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(a) 192 × 384
Uniform

(b) 384 × 768
Uniform

(c) 192 × 384 AST
(Additional 11.3% DoFs)

(d) 192 × 384 Multi-level AST
(Additional 12.3% DoFs)

(e) Simplified multi-level AST

Fig. 14. 2D smoke simulation using different grid structures. The adaptive DoFs in images (c) and (d) are visualized beside the results, where tilted cells
are rendered as red color, and edge nodes are denoted by dark blue color. (a)(b) Simulation result based on the uniform grid with two different resolutions.
(c) Simulation result based on an AST grid. (d) Simulation result based on the simplified multi-level AST grid (Section 8). (e) Illustration of the simplified
multi-level AST grid, where new cells (i.e., edge cells) are placed on the uniform grid’s edge centers. It allows up to 4× DoFs increase on the background
uniform grid.

Fig. 15. Visual comparison of smoke simulations with different resolution and initial condition setup on the AST grid and its counterparts. (a)(b)(c) Simulation
on the AST grid and the uniform grid with resolution 192 × 192 × 192 (a)(b) and 242 × 242 × 242 (c). (d)(e) Simulation with resolution of 256 × 256 × 256. The
time frame is different different from (a)(b), and the artifacts produced by the uniform grid are marked by red squares. (f)(h) Simulation with resolution of
256 × 256 × 256 on the AST grid and the uniform grid. The porous grate is not rendered in the figure (refer Figure 5 for scene setup). (i)(j) Simulation on
the Octree and the AST-modified Octree with base resolution of 128 × 128 × 128. The Octree in both examples uses a two-level structure with around 50%
additional DoFs placed around the sphere obstacle. The Octree structure pattern and the tilted cell adaptivity (12% of tilted cell is open in this time frame) are
visualized in the rightmost figure.

adaptivity along with a four-level AST-modified Octree adaptive
pattern in this example. In both examples, the Octree topology is
finer near the flow and coarser away from it. The size of tilted cells
maintains maximum within the narrow-band of the boundary and
is dynamically updated based on the smoke density.
Examples of the liquid simulation are presented with different

obstacle setups, where tilted cell adaptivity is applied to follow the
liquid free surface and obstacle boundary. We use a regular grid level
set with a higher resolution than the simulation grid to track and
evolve the liquid free surface. Anonymous memory mapping [Se-
taluri et al. 2014] is used to store only the narrow-band region near
the zero level set, accompanying with a bitmap marker to indicate
inside/outside information for the whole domain. Figure 2 shows
the dynamic adaptation of a scripted boat traveling in a still water.
The tilted cells evolve dynamically along with the moving boat and

the accompanying wake, where tilted cells within the narrow-band
of the zero level set and the vicinity of obstacle boundary are opened.
Figure 4 shows two sources of water pouring into a container, creat-
ing a thin sheet that wobbles as the instability accumulates. Figure 8
shows four sources pour the liquid onto four armadillo models in a
container, exhibiting complex surface detail. Tilted cells are opened
in the vicinity of the free surface and evolve along with the liquid.
We use algebraic multigrid PCG solver and MICPCG solver in the
projection step for our smoke examples and liquid examples. Table 2
shows the running time of a single time step for these examples. The
liquid simulations use a serial level set reinitialization algorithm,
which is the bottleneck in our implementation.
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Fig. 16. Smoke plume passes around a static sphere using around 24 million voxels. The left figure shows the Octree adaptivity pattern and tilted cells, which
reside in the smoke region to capture fine-scale details and the Octree level transition region to recover orthogonality. Effective resolution is 768 × 768 × 1024.

7.5 Grid Overhead
The time overhead introduced by AST adaptivity control and the in-
terpolation scheme is marginal, which is around 1% on average (see
Table 2 and Table 3). It is achieved not only by the regular structure
of the AST grid, which promises an efficient memory footprint and
the random access ability but also by our well-performed dynamic
tracking strategy. Those active tilted cells are placed at regions
where DoFs are most needed thanks to our fine level adaptivity
control. Our AST grid can be regarded as a continuous adaptive
transition from a uniform grid with n3 grid cells to a double-refined
uniform grid with 2n3 grid cells. For an n3 AST grid, the tilted cell
adds another set of DoFs with the number ofm (up to around n3),
and introduces 8m (up to 8n3) new faces to the existing 3n3 faces.
From the memory consumption per DoF aspect, a tilted cell is more
costly than a uniform cell because every active tilted cell needs to
allocate eight faces compared with three for a uniform cell. However,
if the inequality 3n3 + 8m ≤ 6n3 is satisfied, which describes the
memory consumption of AST grid and the double-refined uniform
grid, the AST grid outperforms the double-refined uniform grid with
respect to the memory complexity. The inequality shows that at
most 37.5% of the tilted grid cells can be open at the same time. We
show that in practice, this number is a very generous upper bound
for our simulation settings. For example, Figure 4 and Figure 5 open
at most 10.3% and 6.3% of tilted cells, and Figure 16 has around 5%
tilted cells opened.

8 CONCLUSION, EXTENSION AND LIMITATIONS
We have presented the AST grid, an efficient data structure inher-
iting the merits of the Cartesian uniform grid while supporting
adaptivity naturally. Our grid is quite flexible with respect to cell
control. The capability of integrating with many regular grid struc-
tures makes the AST grid an effective plugin to enhance adaptivity
control. We have shown the seamless combination of our tilted cells

(a) (b) (c)

Fig. 17. (a) Triangle shape tilted cells grow on the regular honeycomb pattern.
(b) Hexagon shape tilted cells grow on the regular triangle pattern. (c) The
multi-level AST grid with recursively growing (axis-aligned or axis-tilted)
cells.

Fig 2 Fig 4 Fig 8 Fig 5 Fig 16
Advection 70 21 17 20 17
Projection 108 16 20 101 45

Level Set Reinitialization 146 50 42 - -
Adaptivity Update

Overhead 0.8% 1.7% 1.7% 1.1% 1.4%

Velocity Remapping
Overhead 1.3% 1.7% 1.1% 1.4% 1.5%

Total 356 100 92 125 66
Table 2. Average timing breakdown (in seconds) for examples. Figure 5 was
run on a machine with Intel Xeon 6136 at 3GHz, and the remaining examples
were run on Intel Xeon E5-2620 v4 at 2.1GHz.

and Octree to remove the T-junctions. We demonstrate various sim-
ulations to illustrate that the AST grid structure can support the
incompressible flow simulations with highly complicated features
by providing flexible and dynamic tracking schemes with a small
runtime overhead.
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Grid Resolution DoFs Increase Advection Projection Total Adaptivity Update
Overhead

Velocity Remapping
Overhead

Uniform 192 × 384 1.0 1 1 1 - -
AST 192 × 384 1.117 1.14 1.21 1.22 1.2% 1.1%

Simplified
Multi-level AST 192 × 384 1.123 1.32 1.26 1.34 3.9% 1.4%

Uniform 272 × 543 2.0 1.54 1.93 1.86 - -
Uniform 384 × 768 4.0 2.76 3.32 3.21 - -
Uniform 192 × 192 × 192 1.0 1.0 1.0 1.0 - -
AST 192 × 192 × 192 1.08 1.31 1.24 1.25 0.78% 0.33%

Uniform 242 × 242 × 242 2.01 2.14 1.84 1.88 - -
Uniform 256 × 256 × 256 1.0 1.0 1.0 1.0 - -
AST 256 × 256 × 256 1.08 1.39 1.32 1.33 0.76% 0.32%

Uniform 323 × 323 × 323 2.0 2.38 2.01 2.04 - -
Table 3. Timing data of simulations in Figure 14 and Figure 15(a-e). Timings are given as the ratio required of a simulation on the uniform grid with base
resolution. All simulations ran at a single machine with 16 threads (Intel Xeon E5-2620 v4 at 2.10GHz). The numbers in the DoFs increase column are given at a
specific frame because DoFs changes during simulation due to our dynamic tracking algorithm. Overhead of AST adaptivity update includes the tilted cell
(and the edge cell in multi-level AST) status update (i.e., dynamic tracking) and cached data update. Both AST adaptivity update and velocity remapping
overheads are computed against the total time of a single step simulation.

Multi-level AST Grid. The proposed adaptive staggered-tilted grid
provides a new adaptive-regular discretization perspective and can
be successfully applied to the fluid simulation pipeline to offer both
dynamic control and efficient computation. Though the AST grid is
defined as the overlapping of two sets of cells for an implementation
easiness, the tilted cell can also be viewed as a dynamic scaling
process with a tilted cell emerging and growing from a node of
the background uniform grid. Following this idea, we find that our
AST grid can be naturally extended to a multi-level setting in two
dimensions (see Figure 14e). New grid cells (i.e., edge cell) can be
placed at the center of grid edges, where new grid nodes are formed
by the tilted cell intersections. To validate its effectiveness, we im-
plement a simplified version with up to four times more DoFs, and
compare it against the AST grid and the uniform grid (Figure 14).
The implementation uses the same memory layout (i.e., linear stor-
age) with the AST grid and bilinear interpolation for regions where
edge cells are open. The result suggests the multi-level AST grid is a
promising structure and deserves further study (e.g., real multi-level
AST grid and 3D version multi-level AST structure). Moreover, it
is interesting that the tilted cell can also grow on different types
of regular patterns, such as a regular triangle discretization and
a honeycomb pattern, leading to the shapes combining a regular
hexagon and a regular triangle (see Figure17a and 17b). It suggests
that the majority of regular patterns have the potential to enable
adaptive control and alleviate the strong regular constraint.

Limitations. The proposed AST grid structure also incurs sev-
eral limitations. First, the default AST implementation provides
two levels of adaptivity only, which can be insufficient for some
applications. We demonstrated a simplified multi-level AST im-
plementation providing up to four times DoFs, and more level of
adaptivity can be achieved recursively (see Figure 17c). Although
the current hierarchical scheme applies to 2D only, we envision its
potential applications in other physics simulation settings, such as

for adaptive cloth or interfacial flow phenomena. We also remedy
the limited adaptivity by integrating the AST grid with an existing
adaptive regular pattern (i.e., an Octree), forming a new regular
pattern with coarse and fine level adaptivity tracking. Second, the
extra axes introduced in the AST grid are currently fixed directions
to keep the overall orthogonality of the grid structure, limiting the
grid’s potential to fully align with obstacles or anisotropic features.
One possible solution to this is sacrificing orthogonality out of re-
gions of interest, thus providing more alignment control. It is a
challenging and exciting future work since arbitrary alignment is
currently only possible with mesh-based schemes. Third, the pre-
sented AST-modified Octree does not allow a neighboring relation
among cells with the level difference more than one. However, this
constraint is satisfied in most Octree setups and can be ensured by
introducing some transition levels when it is violated.

A ANISOTROPIC DIFFUSION ON AST GRID
The generalized diffusion equation is defined as follows:

∂q

∂t
= ∇ · D∇q(®x, t) (8)

where q is a scalar diffusion quantity (e.g., mass, energy, heat, etc.),
and D is the collective diffusion coefficient. In a physical diffusion
problem, D tensor is defined by:

D =QΛQT (9)

Q = [ ®v1, ®v2],Λ =

[
D1 0
0 D2

]
(10)

where ®v1, ®v2 are orthogonal axes (also known as principal axes), and
D1,D2 are diffusion coefficients describing the strength of diffusion
in these two axes. The diffusion process is isotropic when D is
diagonal and anisotropic when D is a general symmetric matrix.
Normally, numerical error exists when there are misalignments
between principal axes and the grid line of the underlying grid
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structure. We solve the above anisotropic diffusion problem in an
explicit-implicit splitting manner [Rasmussen et al. 2004], where the
D tensor is divided into a non-diagonal matrix DN and a diagonal
matrix DD . To discretize the equation on the tilted cell, we need to
transform D to follow the tilted axes. We denoted the transformed
tensor as D

′
, and it is obtained by D

′
= RTDR, where R is a matrix

representing the rotation from the xy axes of the uniform grid to
the tilted axes.
In our anisotropic experiment (Section 7.1), we constrain one of

the diffusion coefficients to zero, and the other equals one, thus hav-
ing an extreme anisotropic setup. To capture this anisotropy in the
AST grid, we adjust the tilted cell status according to the principal
axes. In the directional diffusion experiment (Figure 11), the tilted
cell size is chosen heuristically to minimize the numerical error. In
the circular diffusion experiment (Figure 12), the tilted cell size e is
equal to cos(2θ )∆x2 , where θ has the range [0, π4 ] representing the
minimal angle between tilted axes and principal axes. This simple
yet effective rule allows the tilted cell to be fully open when the
diffusion direction is aligned with the tilted axes, and to smoothly
transit to fully closed as the diffusion direction diverges.
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