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Fig. 1. Various codimensional fluid phenomena simulated using our codimensional MLS particle method. (Far Left) Film catenoid: A membrane attached to
two rings contracts due to surface tension. (Middle Left) Water bell: Two vertical jets of water strike together, resulting in a bell-like water sheet. (Middle
Right) Fluid polygon: Two vertical jets of water collide and form a polygonal thin sheet with pinched off filaments. (Far Right) Dripping water and fluid chain:
Water flows from a pipe and forms droplets; Two jets collide and form a chain-like structure.

We propose a new Eulerian-Lagrangian approach to simulate the various
surface tension phenomena characterized by volume, thin sheets, thin fila-
ments, and points using Moving-Least-Squares (MLS) particles. At the center
of our approach is a meshless Lagrangian description of the different types
of codimensional geometries and their transitions using an MLS approxima-
tion. In particular, we differentiate the codimension-1 and codimension-2
geometries on Lagrangian MLS particles to precisely describe the evolution
of thin sheets and filaments, and we discretize the codimension-0 operators
on a background Cartesian grid for efficient volumetric processing. Physical
forces including surface tension and pressure across different codimensions
are coupled in a monolithic manner by solving one single linear system
to evolve the surface-tension driven Navier-Stokes system in a complex
non-manifold space. The codimensional transitions are handled explicitly by
tracking a codimension number stored on each particle, which replaces the
tedious meshing operators in a conventional mesh-based approach. Using
the proposed framework, we simulate a broad array of visually appealing
surface tension phenomena, including the fluid chain, bell, polygon, catenoid,
and dripping, to demonstrate the efficacy of our approach in capturing the
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complex fluid characteristics with mixed codimensions, in a robust, versatile,
and connectivity-free manner.
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1 INTRODUCTION
Particle methods are inherently adaptive. With particles, a broad
array of interesting interfacial fluid phenomena can be modeled
effectively by deploying a sufficient number of point samples around
the region of interest to produce high-quality simulations. Typical
examples can be seen in particle level-set methods [Enright et al.
2002], adaptive SPH [Adams et al. 2007; Winchenbach et al. 2017],
adaptive MPM [Gao et al. 2017], narrow-band PIC/FLIP [Ferstl et al.
2016], etc. All these methods build the discrete differential operators
in a volumetric way, either on particles directly or on an auxiliary
background grid, by treating each particle as an isotropic point
sample in space. The success of these computational paradigms
relies on a well-defined sample distribution over the computational
domain, which needs to be sufficiently dense and regular, to carry
out local approximations by smoothed particle quantities using a
mollified kernel function (see [Cottet et al. 2000]). However, on the
minus side, particle methods are not inherently codimensional. It is
extremely challenging to simulate complex fluid systems composed
of volumes and codimensional features. These feature types include
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Fig. 2. Blowing bubble: The soap membrane is stretched due to the wind flow and generates individual bubbles.

fluid volume (codimension-0), thin sheets (codimension-1), filaments
(codimension-2), and points (codimension-3), which are commonly
seen in a variety of phenomena such as "fluid polygon" [Buckingham
and Bush 2001] and "waterbell" [Clanet 2007].
Despite the pioneering research done in computer graphics on

enabling particles to simulate physics on thin geometries (e.g., see
[Ando et al. 2012; Martin et al. 2010]), the vast majority of previous
literature on the numerical modeling of a codimensional system re-
lies on the leverage of a mesh structure [Chang et al. 2019; Zhu et al.
2015, 2014]. Regardless of the places where a computational stencil
is actually built, e.g. on particles [Zhu et al. 2014] or on a background
grid [Jiang et al. 2017], the mesh connectivity information plays a
pivotal role in describing the local geometry and accommodating
the physics differentiation and domain evolution. On the computa-
tional side, the maintenance of a valid mesh structure is expensive,
particularly in a highly dynamic physical setting, when the mesh
topology needs to be updated frequently. In addition, the difficulties
in implementing robust and high-performance meshing code that
can automatically perform the various remeshing operations (e.g.,
[Brochu and Bridson 2009; Da et al. 2016; Weidner et al. 2018]) raise
the bar for a mesh-based algorithm to be widely used.

In this paper, we tackle the computational dilemma between parti-
cles andmesh by introducing amesh-free Lagrangian representation
based on MLS particles to model a codimensional system character-
ized by complex geometric features and dynamic evolutions. The
fundamental philosophy of our approach is to "divide-and-couple"
particles with different types. Unlike a traditional meshfree method,
which treats all features using one unified isotropic kernel, we sub-
divide the particles into different groups according to their codi-
mensions and specify their transition, coupling, and evolution in
an explicit fashion. In this sense, a particle system enhanced by its
codimension information, which can be thought of as "weak" or
"smoothed" connectivities, can resemble the functions of a codimen-
sional mesh when describing the local geometric features without
maintaining its mesh elements.
We designed two essential mechanisms in our algorithm to en-

able a particle system to accommodate the geometric evolution

and numerical PDE discretization in a non-manifold setting. First,
we assign a codimension number to each particle to distinguish
its various numerical behaviors among the four different codimen-
sion groups. This codimension number is updated for each particle
when a codimension transition event happens (e.g., when a volume
particle gets merged to a surface). Second, we build three sets of dif-
ferential operators, one for each codimension, to solve a numerical
PDE discretized on the codimensional particle system. In particular,
we devise the codimension-1 and codimension-2 operators based on
an MLS method to approximate the local geometry on a point cloud
[Liang et al. 2012; Liang and Zhao 2013]. The codimension-0 opera-
tors are discretized on a background grid for efficiency. The com-
munications across different codimensional groups are restricted
stringently by predefining all the feasible coupling effects, e.g., the
differential operator coupling between thin sheets and filaments, in
a physically-plausible way.

With these two numerical tools in hand, we are able to design an
efficient and versatile approach to solve the codimensional Navier-
Stokes equations on a meshfree, non-manifold discretization, with
its efficacy demonstrated by a broad range of complex surface ten-
sion phenomena, including bubbles, film catenoids, dripping water,
waterbells, and fluid polygons. Compared with previous literature,
our method shows its unique merits in robustly and efficiently
evolving a PDE-driven dynamic system characterized by various
codimensional features without maintaining explicit connectivity.

The main contributions of our work can be summarized as:

• The first mesh-free Lagrangian solver to model complex codi-
mensional fluids exhibiting rich thin features.

• A novel "divide-and-couple" mechanism to model the evolu-
tion and transitions of a codimensional particle system.

• A set of discrete operators based on MLS approximation to
solve PDEs on a codimensional mesh-free discretization.

• A monolithic coupling algorithm to model the codimensional
surface tension and incompressibility in one linear system.
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Fig. 3. Fluid chain: Two jets collide and form a chain-like structure due to
the surface tension and the inertia.

2 RELATED WORK
Mesh-based methods. On a Lagrangian mesh with connectivity

information, a mesh surface can be used to accommodate the sur-
face tension computation, with the differential operators defined
on a mesh node and its incident triangles [Crane 2018; Zheng et al.
2015]. Zhang et al. [2011] simulate droplets on a surface mesh using
deformation operators. Batty et al. [2012] model thin viscous sheets
with the single-layer mesh with thickness. Da et al. [2015] model
complex bubble structures with a Lagrangian non-manifold triangle
mesh and integrate the surface tension into vertex-based circula-
tions. Da et al. [2016] develop a surface-only simulation framework
that reduces a general 3D fluid solver onto the surface mesh. Ishida
et al. [2017] replace the curvature by the gradient of the surface
area functional, to handle the non-manifold junctions of films and
bubbles robustly. Zhu et al. [2015; 2014] propose a unified frame-
work that simulates codimensional phenomena using codimensional
simplicial complexes. Jiang et al. [2017] integrate the Lagrangian
meshes into the MPM framework and propose a codimensional hy-
brid update of the deformation gradient to simulate elastoplastic
materials like clothes and hair. Guo et al. [2018] further improve
this method to support thin shells.

Particle-based and hybrid methods. In general, there are two com-
putational paradigms of particle-based surface tension. An inter-
particle interaction force (IIF) method [Becker and Teschner 2007;
Hong et al. 2008a; Tartakovsky and Meakin 2005] models the surface
tension as a cohesive force between the interface and the interior
particles, while a continuum surface force (CSF) method [He et al.
2014; Hu and Adams 2006; Müller et al. 2003] models the surface
tension as an interfacial energy minimization on the surface area.
By combining the IIF and CSF models, Akinci et al. [2013] propose
a method to robustly model surface tension on SPH particles. Wang
et al. [2017] incorporate this model into IISPH [Ihmsen et al. 2013]
framework. We refer readers to [Huber et al. 2015] for a bench-
mark of different particle-based surface tension methods. As for
particle-based viscosity, a series of implicit solvers for SPH fluids
have been proposed to enhance the various viscous simulation ef-
fects [Peer and Teschner 2016; Takahashi et al. 2015; Weiler et al.
2018]. Hybrid particle-mesh methods have been drawing increasing

Fig. 4. Overview of our MLS particle method. The fluid volume is discretized
to meshless particles with codimension numbers, and the physical forces
across different codimensions are solved in a monolithic coupled way.

attention recently, including PIC [Harlow 1962; Harlow and Welch
1965], FLIP [Brackbill et al. 1988; Brackbill and Ruppel 1986] and
their combinations [Zhu and Bridson 2005]. The APIC [Jiang et al.
2015a] method addresses the dissipation issue of PIC by adding
locally affine descriptions. For surface tension in hybrid methods,
Boyd et al. [2012] construct a level set with the particle level set
(PLS) method and compute surface tension on it, Thürey et al. [2010]
simulate surface tension on the grid for stability and on the mesh
for sub-grid detail, and Schroeder et al. [2012] apply semi-implicit
surface tension on a Lagrangian mesh to a Eulerian discretization.

Point-based surface. Surface differential operators can be approx-
imated by various methods. In smoothed particle hydrodynamics
(SPH) [Gingold and Monaghan 1977; Monaghan 1992], the differ-
ential operators are approximated by radial symmetrical smooth-
ing kernels. The traditional SPH method lacks the capability of
conducting differential operations on a codimensional manifold;
Petronetto et al. [2013] propose an SPH-style Laplacian-Beltrami
operator [Schmidt 2014] with an optimization mechanism to esti-
mate the area of the local element. Other approximation methods
include graph Laplacian [Belkin and Niyogi 2008], local triangular
mesh [Belkin et al. 2009; Lai et al. 2013], closest point method (CPM)
[Cheung et al. 2015; Ruuth and Merriman 2008], and moving least
squares (MLS) [Lancaster and Salkauskas 1981; Levin 1998; Nealen
2004]. CPM embeds the function defined on codimensional manifold
to a Cartesian space and interpolates the result back to the manifold
after solving PDE in the Cartesian space. It can be used for differ-
ent underlying discretizations, such as particles, meshes, implicit
surfaces, and different codimensional structures. Some works [Auer
et al. 2012; Auer and Westermann 2013; Kim et al. 2013] adopted
CPM to solve surface flow. Saye et al. [2014] present an efficient
method for calculating high-order approximations of closest points
on implicit surfaces. By tracking the particle-sampled surface us-
ing grid-based particle method (GBPM) [Leung and Zhao 2009a,b],
Leung et al. [2011] solve PDEs on the evolving surface.
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Fig. 5. Waterbell: Two vertical jets collide and generate a circular fluid sheet, resulting in a bell shape

Moving Least Squares. The Moving-Least-Squares method was
proposed for continuous function approximation based on point
cloud data. It can be used in surface approximation [Alexa et al.
2001; Levin 1998], surface rendering [Ledergerber et al. 2008] or
PDE solving [Liang et al. 2012; Liang and Zhao 2013]. In particu-
lar, Alexa et al. [2001] reconstruct a smooth manifold from a set of
points by creating local maps and approximating these local maps
by the MLS method. The computer graphics community uses the
MLS method to simulate elastic/plastic materials [Müller et al. 2004],
fractures [Pauly et al. 2005], and fluids [Band et al. 2018, 2017; Hong
et al. 2008b; Shobeyri and Afshar 2010]. Hu et al. [2018] integrate
the MLS method into an MPM framework, leading to a unified im-
plementation and a significant speed-up of the simulation pipeline.
Zhang et al. [2010] add the surface tension onto SPH-based particles
by approximating curvature using the MLS method.

3 CODIMENSIONAL GEOMETRY
Codimensional particles. We discretize the volume of fluid in a

Lagrangian way by a set of meshless particles. Each particle carries a
set of physical properties such as position ®x , velocity ®u, and massm.
In addition, each particle carries an integer codimension number C,
specifying the codimensionality of its local geometry. Specifically,
we have C = 0 for volume, C = 1 for thin films, C = 2 for thin
filaments, and C = 3 for discrete points. We divide the particles
into four groups according to their codimension numbers that are
initialized properly at the beginning. For example, all the particles
on the boundary have codimension number C = 1 and all the
particles in the interior have codimension number C = 0. This
number is updated during the simulation steps by tracking the
codimension transition events. For example, we have C : 0 → 1,
when a volumetric particle is merged into an interface, or C : 1 → 2,
when a thin sheet particle is pinched off into a filament particle, as
in Figure 4. The codimensional transition events are captured by
monitoring the local particle distribution. We refer the readers to
Section 8 for a more detailed discussion.

3.1 Operator definition
Naming convention. We use a superscript to indicate a coordinate

index. For example, vk stands for the k-th component of a vector
field ®v . We use a subscript to denote the particle index. For example,
®xq stands for the position of the q-th particle. We also use subscripts
to denote the index of the polynomial basis. We use a subscript
within parentheses to denote the codimension for the operator, e.g.,
∇2
(1) is the Laplacian operator defined on codimension-1 particles.
Next, we define the three differential operators on a codimen-

sional shape. Given a codimension-i geometry in Rd , with i ∈ [0, 2],
we write the unified formulae for the gradient of a scalar field s , the
divergence of a vector field ®v , and the Laplacian of a scalar field s as



∇(i)s =
d−i∑
k=1

(d−i∑
l=1

дkl
∂s

∂ξ l

)
®tk , (1a)

∇(i) · ®v =
1
√
д

d−i∑
k=1

∂

∂ξk
(
√
дvk ), (1b)

∇2
(i)s =

1
√
д

d−i∑
k ,l=1

∂

∂ξk
(
√
ддkl

∂s

∂ξ l
), (1c)

where k, l ∈ [1,d − i] are the coordinate indices, ®tk stands for the
k-th basis of the local tangent space, ξk is the k-th local coordinate,
and vk is the k-th component of ®v that satisfies ®v =

∑
k v

k®tk . We
define [дkl ] as the (d − i) × (d − i) metric tensor, [дkl ] as its inverse,
and д = det([дkl ]) as its determinant. We refer the readers to [Jost
2008] for a detailed description of the Riemannian manifolds.
To instantiate Equation (1) for a specific codimension, we first

consider a volume V ⊂ R3 (i = 0) that is parameterized by three
parameters (ξ 1, ξ 2, ξ 3) in a three-dimensional Cartesian coordinate
system where the basis ®tk is orthonormal. The metric tensor [дkl ]
becomes a 3 × 3 identity matrix and the codimension-0 differential
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Fig. 6. Film catenoid: The thin membrane is attached to two rings. As two rings separate, the membrane contracts, splits into two surfaces and generates a
bubble in the middle.

operators have simpler formulae as

∇(0)s =
3∑

k=1

(
∂s

∂ξk

)
®tk , (2a)

∇(0) · ®v =
3∑

k=1

∂vk

∂ξk
, (2b)

∇2
(0)s =

3∑
k=1

∂2s

(∂ξk )2
. (2c)

For the case of codimension-1, we consider a surface S ⊂ R3

(i = 1) with its local space parameterized by two parameters (ξ 1, ξ 2).
Similarly, we have a filament F ⊂ R3 (i = 2) that is parameterized
by a single parameter ξ 1. The differential operators for these two
codimensional cases can be defined by substituting the values of i
and d into Equation (1).

3.2 Operator discretization
The three differential operators introduced above are discretized in
two different manners according to the local codimension number
C. In particular, for a volumetric operator (C = 0), we leverage a
background grid to establish the Eulerian computational stencils by
interpolating the quantities back-and-forth between the particles
and the grid cells. For a thin-sheet or thin-filament operator (C =
1, 2), we employ a Moving-Least-Squares approximation to create
the local basis and devise the differential stencils purely from the
Lagrangian particles. We do not employ a differential operator on a
discrete point (C = 3).

3.2.1 Codimension-0 operators. In our framework, codimension-0
operators are discretized in a Eulerian way to take advantage of
its Cartesian nature. Following the convention in PIC/FLIP [Zhu
and Bridson 2005], the discretized differential stencils are built on a
background MAC grid by first transferring the data from particles
to the grid, conducting the operator on the local grid cells and faces,

and transferring the quantities back from the grid to particles. For
the grid operation, the gradient, divergence, and Laplacian operators
are discretized using a standard finite-difference stencil [Fedkiw et al.
2001] that is widely recognized in the computational physics and
graphics communities.

3.2.2 Codimension-1 operators. We build the Lagrangian opera-
tors on a particle-sampled surface following the seminal work of
[Liang and Zhao 2013] on solving point-cloud PDEs using the
Moving-Least-Squares method. The key idea is to create a poly-
nomial approximation for the local geometry around a particle
and then build discrete operators on top of it. For a codimension-1
particle p, surrounded by n neighboring codimension-1 particles
Np = {q | | | ®xp − ®xq | | < h}, with h as the local supporting radius, we
define a local frame Fp with its origin co-locating with ®xp and the
three axes ®b1, ®b2, ®b3 aligned with the three eigenvectors of the local
covariance matrix [Mitra and Nguyen 2003]. In particular, ®b1 and ®b2

are tangential to the local plane and ®b3 is the normal (see Appendix
A for the detailed steps of building Fp ).

We use a polynomial ŝ(β, ξ 1, ξ 2) with two variables (ξ 1, ξ 2) and
six coefficients β = [β1, β2, ..., β6]T to describe a local scalar field s
as:

ŝ(β, ξ 1, ξ 2) = β1 + β2ξ
1 + β3ξ

2 + β4(ξ
1)2 + β5(ξ

1ξ 2)+ β6(ξ
2)2. (3)

Given discrete values s = [s1, s2, ..., sn ]T stored on particles, we
can find the values of β by solving the following MLS problem:

min
β

∑
q

Ψ(dq )(ŝ(β, ξ
1
q , ξ

2
q ) − sq )

2 (4)

with dq = | | ®xp − ®xq | | and Ψ is a local weighting function. Different
s gives us different β . In particular, if s = ξ 3, β encodes the local
shape information that can be used to build the metric tensor [дkl ].

We can write the MLS objective in Equation (4) in a matrix form
as (Bβ − s)TW(Bβ − s). B is an n × 6 matrix with each row Bq as
the polynomial basis vector of a particle q. The matrixW is an n ×n
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Fig. 7. Process of building differential operators on the surface using MLS
method: (1) Find neighboring particles in supporting radius h; (2) Define
the local frame Fp ; (3) Fitting the local surface and the local function (4)
Build the codimensional operators

diagonal matrix with each diagonal term Wqq defined by Ψ(dq ).
Minimizing Equation (4) amounts to solving the normal equations

(BTWB)β = BTWs, (5)

with the solution β = (BTWB)−1BTWs. It is noteworthy that
BTWBwon’t be singular because its diagonal terms are theweighted
squared sum of the terms in the polynomial, which are always posi-
tive. By further defining H = (BTWB)−1BTW, we can get a matrix
expression for β as β = Hs.
When using s = ξ 3, the second and the third components of β

can be used to approximate the tangent vector basis as ®t1 = (1, 0, β2),
®t2 = (0, 1, β3) and the local metric tensor as

[дkl ] =

[
β2

2 + 1 β2β3

β2β3 β2
3 + 1

]
. (6)

With H and [дkl ] in hand, we can define the codimension-1 dif-
ferential operators given in Equation (1) on surface particles by
substituting Equation (3) into Equation (1a)-(1c) with i = 1:

∇(1)sp = (д11β2 + д
12β3)®t

1 + (д21β2 + д
22β3)®t

2, (7a)
∇(1) · ®vp = γ2 + δ3, (7b)

∇2
(1)sp = 2д11β4 + (д

12 + д21)β5 + 2д22β6. (7c)

Here we assume the two components of the vector field v1
p and

v2
p are approximated by the polynomial coefficients [γ1, ...,γ6] and
[δ1, ..., δ6] respectively. Similar to [Liang and Zhao 2013], we ignore
the partial derivative of the metric tensor.

3.2.3 Codimension-2 operators. We build the Lagrangian differen-
tial operators on filaments the same way as we did for thin sheets.

Algorithm 1: Temporal evolution for a single timestep

1: Particle advection
2: Update codimension number C
3: Reseed C-1 and C-2 particles
4: Add body force on all particles
5: Interpolate velocities from C-0 particles to the grid
6: Solve viscosity on the grid and on C-1 and C-2 particles
7: Solve surface tension and incompressibility in a monolithic

system coupling C-1 and C-2 particles and the grid
8: Correct velocities on the grid and interpolate the values back

to C-0 particles using PIC/FLIP

We parameterize a filament using one parameter ξ 1, and run MLS
to fit two quadratics to approximate the tangent vector basis and
the metric tensor for the codimension-2 particles on the filament. In
particular, we use the polynomials ŝ(β, ξ 1) = β1 + β2ξ 1 + β3(ξ 1)2 to
fit a scalar field and v̂1(γ, ξ 1) = γ1+γ2ξ 1+γ3(ξ 1)2 to fit a vector field
on a filament. The three codimension-2 operators can be defined as:

∇(2)sp = (д11β2)®t
1, (8a)

∇(2) · ®vp = γ2, (8b)

∇2
(2)sp = 2д11β3. (8c)

3.2.4 Codimension-1 and codimension-2 joint operators. We define
the joint operator across codimension-1 and codimension-2 based
on a geometric intuition by simply merging the two operators in one
single expression, namely, by considering the thin sheet particles
and the thin filament particles simultaneously in one operator. Thus,
the size of the matrix H on a codimension-1 particle is extended to
6 × (n(1) + n(2)), and 3 × (n(1) + n(2)) for a codimension-2 particle,
by incorporating the particles from both codimensions. For a better
MLS approximation, we lower the local weights from neighbor-
ing particles with different codimensions. For example, we set the
weight of codimension-1 particles to be 0.25 in a codimension-2
MLS fitting procedure for diffusion.

4 TIME INTEGRATION
With the codimensional Lagrangian operators in hand, we establish
our numerical solver to model the evolution of a surface-tension-
driven fluid system. For the physical model, we consider the La-
grangian form of the incompressible Navier-Stokes equations

 ρ
D®u

Dt
= −∇p + µ∇2®u + ®f , (9a)

∇ · ®u = 0, (9b)

where ®u is the velocity, ρ is the density, p is the pressure, µ is the
viscosity coefficient, ®f represents external forces including gravity
and surface tension.
Our temporal evolution scheme with codimensional particles

starts from a standard PIC/FLIP solver [Zhu and Bridson 2005]. As
shown in Algorithm 1, a standard PIC/FLIP solver follows the steps
of advection, body force, particle-to-grid interpolation, viscosity,
projection, and grid-to-particle interpolation (steps with black texts
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Fig. 8. Droplet collision: two droplets collide, merge and oscillate due to surface tension.

in Algorithm 1). Our codimensional particle method takes four addi-
tional steps (with colored texts in Algorithm 1) to enhance its ability
in capturing codimensional features, including the codimension
number update, codimensional particle reseeding, an MLS solve for
codimensional viscosity, and a monolithic solve for the implicit cou-
pling between surface tension and incompressibility. In particular,
in the codimension number update step, we capture all the codimen-
sional transition events and update their codimension number C
accordingly. The particle reseeding step adds and deletes codimen-
sional particles to maintain a uniform density distribution in the
corresponding codimensional space. The viscosity step solves vis-
cous forces on C − 1 and C − 2 particles in an implicit way using the
MLS operators. The monolithic solve step couples the semi-implicit
surface tension on C − 1 and C − 2 particles with the volumet-
ric incompressibility condition on the background grid by setting
impulse-based constraints, leading to a monolithic linear system
which to solve the effects of surface tension and incompressibility
simultaneously.

Our time integration scheme follows a splitting scheme [Fedkiw
et al. 2001] by accumulating the effects from each force term in the
Navier-Stokes equations onto intermediate velocities. In particular,
by starting with ®un , we get ®u∗ after advection and applying gravity.
It becomes ®u∗∗ by solving viscosity and becomes ®un+1 after the
monolithic solve step.

5 VISCOSITY
To allow a large timestep and to reuse our codimensional Poisson
solver, we take an implicit scheme to solve the viscosity in a com-
ponent decoupled way (see [Rasmussen et al. 2004] for details). We
want to point out that one of the main limitations of such decoupled
scheme is that it enforces an inaccurate viscous boundary condition
which could result in large damping effects near the interface (see
[Batty and Bridson 2008]). An accurate, component-coupled scheme
is a better option, especially for viscous flow simulations (e.g., see
[Larionov et al. 2017]). We solve the volumetric viscosity on the
background grid and the coupled sheet-and-filament viscosity on

codimension-1 and codimension-2 particles. The two solvers follow
the same governing equations (see below) with the subscript (i)
denoting the codimension.

The viscosity term in Equation (9) can be split as

ρ
D®u

Dt
= µ∇2

(i)®u, i = 0, 1, 2. (10)

By defining particle volume V =m/ρ, we can rewrite Equation
(10) for each particle as

m
D®u

Dt
= µV∇2

(i)®u, i = 0, 1, 2. (11)

By taking an implicit time integration, we get

m®u∗∗ =m®u∗ + µV∇2
(i)®u

∗∗∆t, i = 0, 1, 2, (12)
which can be further written in a matrix form as

(M(i) − µ∆tV(i)L(i))u
∗∗
(i) = M(i)u

∗
(i), i = 0, 1, 2 (13)

where M(i) and V(i) stand for the mass and volume matrix of the
codimension-i group, and L(i) stands for the codimension-i Lapla-
cian matrix.

To solve viscosity on codimension-1 and codimension-2 particles
together, we define the joint Laplacian matrix based on Section
3.2.4. For codimension-1 particles, the matrix is [L(1)L(1)(2)] with
L(1)(2) denoting the contribution from codimension-2 particles. And
for codimension-2 particles, the matrix is defined as [L(2)L(2)(1)].
Alternatively, an explicit viscosity solver can be implemented by
replacing the ®u∗∗ on RHS with ®u∗ in Equation (12), at the expense
of smaller timesteps.

6 SURFACE TENSION
We solve the semi-implicit surface tension force applied on a codi-
mensional particle by leveraging the codimension-1 and codimension-
2 differential operators derived in Section 3 to construct the linear
system. This semi-implicit step will be coupled with the projection
step to formulate a set of monolithic equations that will be solved
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Fig. 9. Bursting bubble: The bubble is initialized with a hole. The rim of the
hole shrinks inwards and pinches off thin filaments and points.

for the velocity ®un+1 for the next time step. In this section, we in-
troduce the numerical discretization for the surface tension model
on different codimensional geometries and we will introduce its
implicit coupling with the pressure force in the next section.
Following the codimensional surface tension model proposed

in [Zhu et al. 2014], we consider the surface tension effects on
four different types of codimensional geometries – thin sheets, thin
filaments, the rim (sheet boundary) and the bud (filament boundary).
The surface tension force on a thin-sheet or thin-filament particle
is defined as

®fs = ∆pS(i) = σκ®nS(i) = σ∇2
(i) ®xS(i), i = 1, 2, (14)

where ∆p is the pressure jump caused by surface tension on the
fluid surface, S(i) is the control surface area (see Appendix D for
a detailed discussion), σ is surface tension coefficient and κ®n is
the curvature vector calculated as κ®n = ∇2

(i) ®x . Following the semi-
implicit scheme for surface tension in [Zheng et al. 2006], we derive
our semi-implicit codimensional surface tension time integration as

m®un+1 =m®u∗∗ + ®f n+1
s ∆t

=m®u∗∗ + σ∇2
(i) ®x

n+1S(i)∆t

=m®u∗∗ + σ∇2
(i)(®x

n + ®un+1∆t)S(i)∆t, i = 1, 2,

(15)

which can be solved as a linear system

(M(i) − σ∆t2S(i)L(i))u
n+1
(i) = σ∆tS(i)L(i)x

n
(i) +M(i)u

∗∗
(i), i = 1, 2.

(16)
By further denoting f̄(i) = σS(i)L(i)xn as the explicit part of the

surface tension force and letting L̄(i) = σ∆t2S(i)L(i), Equation (16)
is simplified as

(M(i) − L̄(i))u
n+1
(i) = ∆t f̄(i) +M(i)u

∗∗
(i), i = 1, 2, (17)

which will be integrated into the coupled system and solved together
with the pressure (see details in Section 7).

Fig. 10. Dripping water: The water drips from a pipe, forming the neck
due to the surface tension. The droplets pinch off at the end of the stream
afterward. The surface tension coefficients are 0.015, 0.03, 0.045 and 0.06
N/m from A to D.

Rim and bud surface tension. The rim surface tension force [Bush
and Hasha 2004] is applied to those codimension-2 particles on
the rim of the thin sheets, which causes the shrinkage of the sheet.
Because the current MLS scheme cannot approximate a thickened
rim geometry with a single layer of particles on the boundary of a
thin sheet, we model the rim surface tension as an explicit force term
which will be added on the right-hand side of the linear system.
We approximate its direction ®n with ®b2 in Fp , which is also the
normal of the rim in the tangent plane. The rim curvature is the
reciprocal of the particle radius rp . According to Equation (14), we
calculate the rim surface tension force as σ ®nSr ,p/rp (see Appendix
D for surface area approximation). We also model the explicit bud
surface tension on those codimension-2 particles at the bud of each
filament to deliver tangential shrinkage. The local geometry at the
bud is treated numerically as a sphere with its radius as rp .

7 CODIMESIONAL COUPLING
We model the coupling between the codimension-0 DoFs on a
MAC grid and codimension-1 and codimension-2 DoFs on par-
ticles by introducing a new set of DoFs λ to model the impulse
transferred between particles and the grid. Our coupling scheme
modifies the monolithic two-way solid-fluid coupling algorithm pro-
posed in [Robinson-Mosher et al. 2011] and [Schroeder et al. 2012]
by introducing two sets of Lagrangian DoFs for codimension-1 and
codimension-2 particles. The impulse is applied to the interface
between the volume and the surface, which is discretized by a set
of constraint faces on the MAC grid. We mark a cell that contains
at least one codimension-0 particle as a fluid cell. And we mark a
face that has at least one codimension-1 particle within its control
volume as a constraint face. An equality constraint is enforced on
every constraint face to guarantee that, for time step n + 1, the
codimension-0 velocity vn+1

(0) stored on the faces equals the veloc-
ity interpolated from codimension-1 particles un+1

(1) , which can be
summarized in a matrix form as

Kvn+1
(0) = KJun+1

(1) (18)
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Fig. 11. Droplet on the plane: Droplets with different viscosities fall on the
plane. The shape changes due to the impact of gravity and surface tension.
We demonstrated the effects of different parameter sets. In particular, the
viscosity for A to C are 0.01, 0.05, and 0.25 mPa·s.

with K as a selection matrix to pick out the constraint faces from
all grid faces and J as an interpolation matrix that interpolates the
codimension-1 particle velocities onto grid faces.
Next, we present four equations to describe the codimensional

coupling between particles and the background grid. First, we give
the pressure projection equation on the MAC grid by considering λ
on the right-hand side as

M(0)v
n+1
(0) −M(0)v

∗∗
(0) = −∆tG(0)p + K

T λ
(19)

whereM(0) is the diagonal mass matrix for MAC faces, G(0) is the
volume-weighted gradient matrix on MAC faces and p is the pres-
sure field. By defining p̄ = ∆tp, and substituting Equation (19) into
the divergence-free constraint −GT

(0)v
n+1
(0) = 0, we have the Poisson

equation with both the pressure p̄ and the impulse λ as unknowns:

GT
(0)M

−1
(0)G(0)p̄ − GT

(0)M
−1
(0)K

T λ = GT
(0)v

∗∗
(0). (20)

Second, for the codimension-1 particles on a liquid surface, we
write the momentum equation for semi-implicit surface tension by
considering the contributions of both the impulse (from volume)
and the Laplacian operator (from filaments) as

(M(1) − L̄(1))u
n+1
(1) − L̄(1)(2)u

n+1
(2) + J

TKT λ = ∆t f̄(1) +M(1)u
∗∗
(1) (21)

where JTKT maps the impulse to the surface particles. As we did
for viscosity (see Section 5), here we use the symbol L̄(1)(2) to de-
note the Laplacian contribution from codimension-2 particles to
codimension-1 particles.
Similarly, for the codimension-2 particles on filaments, we can

write its momentum equation by coupling the codimensional inter-
action as

(M(2) − L̄(2))u
n+1
(2) − L̄(2)(1)u

n+1
(1) = ∆t f̄(2) +M(2)u

∗∗
(2), (22)

with the symbol L̄(2)(1) denoting the Laplacian contribution from
codimension-1 particles to codimension-2 particles. Note that we

Fig. 12. Diffusion on butterfly: The butterfly wing is sampled by both surface
(blue) and filament (yellow) particles. Our codimensional operator can solve
the diffusion in the mixed-codimension scene.

did not consider the impulse from volume to filament in Equation
(22).

Last, for the velocity constraints on grid faces, we substitute
Equation (19) into Equation (18) to get:

−KM−1
(0)G(0)p̄ − KJun+1

(1) + KM
−1
(0)K

T λ = −Kv∗∗
(0). (23)

Combing Equation (20) (21) (22) and (23) yields a monolithically
coupled linear system for codimension-0 grid pressure, codimension-
1 particle velocity, codimension-2 particle velocity, and impulse:


GT
(0)M

−1
(0)G(0) 0 0 −GT

(0)M
−1
(0)K

T

0 L̄(1) −M(1) L̄(1)(2) −JTKT

0 L̄(2)(1) L̄(2) −M(2) 0
−KM−1

(0)G(0) −KJ 0 KM−1
(0)K

T




p̄
un+1
(1)

un+1
(2)
λ


=


GT
(0)v

∗∗
(0)

−∆t f̄(1) −M(1)u∗∗(1)
−∆t f̄(2) −M(2)u∗∗(2)

−Kv∗∗
(0)


.

(24)
It is noteworthy that in Equation (24), the rim surface tension

and the bud surface tension are integrated into the system explic-
itly by adding additional force terms into the explicit part of the
surface tension force f̄(2). Because the rim surface tension has al-
ready considered the contribution from the surface particles to the
rim particles, we exclude the effects from the surface particles on
the semi-implicit surface tension on rim particles by letting local
weights of codimension-1 particles in codimension-2 MLS fitting be
zeros. Due to the non-symmetric nature of the MLS Laplacian oper-
ator, we solve Equation (24) using the BiCGSTAB method [Van der
Vorst 1992] with an incomplete-LU preconditioner and the tolerance
10−9.

�
1/2

�3

�

(a) Codimension 0-to-1

�
1/2

�3�

(b) Codimension 1-to-0

Fig. 13. Transition event detection: We use a pair of spherical cones to detect
codimensional transition events.
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Fig. 14. Reseeding process: For each surface particle, the neighboring parti-
cles are projected onto its tangent space. The particle insertion and removal
are then determined by the particle distribution on a 5 × 5 2D grid.

8 CODIMENSIONAL TRANSITION
To ensure the codimensional compatibility, we enable the various
codimensional transitions to ensure a consistent codimension num-
ber governed by the following rules:

Codimension 0-to-1 transition: A 0-to-1 transition happens when
a volume particle is merged to a thin sheet, under either one of
the two following conditions: (1) the particle is on one side of the
codimension-1 interface while all the neighboring particles are on
the other side; (2) the volume becomes sufficiently thin. To detect
these conditions, we construct two opposite spherical cones with
cone angle θ = π/3 and radius h at the particle along the normal
direction (®b3) of the local frame Fp . Condition (1) is satisfied if
there is one and only one cone that contains codimension-0 or
codimension-1 particles, as shown in Figure 13(a). Condition (2) is
satisfied if both cones contain at least one codimension-1 particle
and the minimum distance between the two sets of particles is below
a threshold.

Codimension 1-to-0 transition: We employ the same strategy to
detect the 1-to-0 transition. If both cones with cone angle θ = π/4
along ®b3 contain at least one codimension-0 particle, the codimension-
1 particle needs to be merged into the volume (see Figure 13(b)).

Codimension 1-to-2 transition: We employ a pair of cones with
angle π/6, but aligned with ®b2 in Fp , to detect the 1-to-2 transi-
tion. The transition will happen if one and only one cone contains
codimension-1 or codimension-2 particles. We did not implement
the codimension 2-to-1 mechanism although we could.

Codimension 2-to-3 transition: A 2-to-3 transition happens when
there is no codimension-2 particle in its supporting radius. The
continuity of the particles’ velocity avoids the unnecessary re-
classification of particles into different codimensional groups.

9 PARTICLE RESEEDING
The fluid may be stretched or compressed during the evolution,
which will cause the change of surface area or filament length,
necessitating a particle reseeding process (see [Jones et al. 2014]
[Yue et al. 2015] [Gao et al. 2017] [Jiang et al. 2015b] [Ando et al.
2012] for examples). For a codimensional particle system, we reseed
particles for different codimensions in separate passes. As shown in
Figure 14, for a codimension-1 reseeding, we reseed new particles
in a local frame Fp by following the steps of particle projection,

Fig. 15. Sphere deformation under a flow field: The initial sphere is sam-
pled with particles sparsely and advected in a flow field. Our reseeding
method can maintain a smooth particle-sampled surface even under great
deformation.

insertion, and removal. First, we project the surrounding particles
onto a 5 × 5 two-dimensional grid within the local tangential plane
formed by ®b1 and ®b2 centered at ®xp . The 2D cell size is 0.4h. Next,
we iterate over the inner 3 × 3 cells and fill in a new particle for
each empty cell that is fully surrounded by filled cells. The position
of the new particle is then projected onto the local MLS surface.
The mass and momentum are conserved during this process by
redistributing the quantities from the existing particles to the new
particles. Last, in the removal step, for every particle, we delete
its closest neighbor if its distance is below a threshold between
0.1h and 0.2h. For codimension-2 reseeding, we project particles
onto a one-dimensional grid and conduct a similar process to the
codimension-1 case. We did not employ a codimension-0 reseeding
because our initial particle distribution and the smooth nature of
surface tension flow avoid the significant particle distortion over the
simulations. Adaptive schemes, such as [Adams et al. 2007; Ferstl
et al. 2016; Winchenbach et al. 2017], can be considered for a better
sampling strategy.

10 RESULTS

10.1 Numerical validation
Sphere diffusion. We compare the accuracy of our MLS-based PDE

solver with other approaches including the closest point method [Ru-
uth and Merriman 2008] and the projected SPH method [Petronetto
et al. 2013]. First, we solve a diffusion PDE ∂s

∂t = ∇2
(1)s on a unit

sphere with the initial condition specified within a spherical coordi-
nate system s(θ ,ϕ, 0) = cosϕ. According to [Liang and Zhao 2013],
the analytical solution at time t is given by s(θ,ϕ, t) = e−2tcosϕ. We
discretize the problem on a unit sphere sampled by 30k particles
and solve it using the forward Euler method with ∆t = 0.001. For
comparison, we use the same kernel radius h = 0.1 in MLS and
SPH and ∆x = 0.1 as the cell size in CPM. Figure 17 shows the re-
sults of diffusion and the error. On a particle-sampled surface, CPM
can only build the cell-particle mapping from the existing particles,
which results in increasing error on cells close to the surface. The
SPH-based method achieves a better accuracy(10−3), while causing
chaotic error distribution on the surface. The MLS method achieves
the best accuracy(10−4) and keeps a smooth error distribution on
the surface.

Butterfly diffusion. To show the codimensional coupling ability
of MLS on PDE solver, we solve a diffusion equation implicitly on
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Fig. 16. Fluid polygon: Two jets collide vertically and generate a thin sheet. Multiplying the rim surface tension with a user-specified period function
parameterized by the yaw angle of relative position produces the customized fluid polygon phenomena.

a butterfly-wing geometry, consisting of both codimension-1 and
codimension-2 features. As shown in Figure 12, the rim of wings
and thin tails are sampled by filament particles. The heat smoothly
diffuses from the wing root to the entire region.

Sphere deformation. We demonstrate our reseeding method by
showing a sphere deformation example in Figure 15. We advect
the particles using the midpoint method with ∆t = 0.01s in a flow
field proposed in [LeVeque 1996]. We start from a sparsely-sampled
surface with about 50k particles. When the surface is stretched to
the maximum at t = 0.61s , there are about 170k particles. Then the
particle surface shrinks in an inverse flow field and restores its rest
shape at t = 1.22s with about 100k particles.

10.2 Examples
Here we show a number of simulations to showcase our codimen-
sional particle solver. The physical parameters in the examples are
listed in Appendix E. We rendered the liquid surface from particles
directly using Houdini.

Blowing bubble, film catenoid, bursting bubble. Figure 2 shows
that a membrane suspended on a ring expands because of the wind
blowing and generates some separate bubbles. As shown in Figure
6, the thin membrane is attached to two rings. When two rings
separate, the membrane contracts, separates into two membranes
and generates a bubble in the middle. We simulate a bursting bubble
in Figure 9. Due to the rim surface tension and the bud surface
tension, the rim shrinks inwards and pinches off some filaments
and droplets.

Droplet on the plane, droplet collision, dripping water. Figure 11
shows spherical droplets with various viscosities falling on a solid
plane. The shape changes due to the impact of gravity and sur-
face tension. In the droplet collision scene (see Figure 8), two cu-
bic droplets with the opposite velocity collide and merge into one
droplet. In the dripping water example, as shown in Figure 10, we

show the water drips from a pipe with different surface tension
coefficients. Due to the surface tension, the neck is formed and the
droplets pinch off at the end of the stream afterward. This phenom-
enon is also called Rayleigh-Plateau instability.

Fluid chain, waterbell, fluid polygon. In Figure 3, two opposite
jets with the same velocity and radius collide with an angle of 90◦.
The fluid expands into a plate due to the inertia and converges
due to the surface tension, forming the chain-like structure. The
waterbell phenomenon [Clanet 2007] is implemented by two vertical
jets colliding in Figure 5. As the generated plate falling, driven by
surface tension, the lower part of the fluid converges and results
in the bell-like shape. We simulate the fluid polygon mentioned
in [Buckingham and Bush 2001]. To generate the user-specified
fluid polygon, we multiply the rim surface tension with a period
saw-tooth function parameterized by the yaw angle of the relative
particle position. The result is shown in Figure 16.

10.3 Performance
We parallelize most of the steps in our method using OpenMP,
and implement the GPU version of the BiCGSTAB solver using
CUDA. Our examples are performed on a PCwith an 8-core 3.40GHz
CPU and NVIDIA GeForce GTX 1060 graphics card. The run time
ranges widely depending on the complexity of the scene. The most
expensive example is the waterbell example with about 14,000 active
cells and 163,000 surface particles, which spends about 110s per
frame including 35s for the viscosity step and 59s for the monolithic
solve step. The bursting bubble example takes 22 seconds per frame
with about 72k particles and 2 seconds when there are only 2k
particles left. In the blowing bubble example, each individual bubble
sampled with 20k-40k surface particles takes about 2-5 seconds to
compute per frame. Besides, the average run time of the catenoid,
droplet on the plane, droplet collision, dripping water, fluid chain,
fluid polygon examples are 6s, 6.5s, 7s, 15s, 60s and 80s respectively.
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(a) Diffusion result at 0.5s
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Fig. 17. Heat diffusion on the sphere: We compare MLS with CPM[Ruuth and Merriman 2008] and SPH-based method[Petronetto et al. 2013] in a sphere
diffusion example. We show the diffusion result at 0.5s in (a). In (b), the curves in light color denote the maximum absolute error, and the curves in dark color
denote the L1-norm error.

11 DISCUSSION AND CONCLUSION
We propose a novel mesh-free simulation infrastructure to simulate
codimensional surface tension phenomena. Our method models
fluid features with volumes, thin sheets, filaments, and droplets, in
different codimensions without requiring the tedious mesh evolu-
tion. At the heart of our approach is a set of codimensional MLS
particles that can accommodate the numerical differentiation on the
codimensional particle surfaces, thin threads, and the monolithic
coupling across different codimensions. To the best of our knowl-
edge, this numerical infrastructure is the first mesh-free Lagrangian
solver that supports the codimensional PDE solvers and the non-
manifold geometric transitions without maintaining explicit mesh
connectivities.

From a Eulerian-Lagrangian perspective, our codimensional MLS
method that couples particles and a background grid enables an
accurate way to capture the intricate interfacial phenomena driven
by strong surface tension by enhancing a standard PIC/FLIP solver
with a monolithic solid-fluid coupling framework. From a purely
Lagrangian point of view, our MLS particle approximation for thin
sheets and filaments enables a connectivity-free approach to track
the complex topological changes and differentiate physics on a non-
manifold structure. The codimensional MLS particles, which can
be regarded as a loosely defined Lagrangian mesh, provide non-
trivial flexibility in handling topological and geometric evolutions,
thanks to their particle nature. In this sense, our approach bridges
the subareas of Lagrangian and Eulerian simulations by provid-
ing a unified approach that can start from either side and land on
the other. Furthermore, the inherent connection of our codimen-
sional particles with the point-based surface (in particular [Alexa
et al. 2001]) in computer graphics bridges the communities of point
cloud processing, rendering, and physics simulation, opening up
new possibilities on the creation of novel dynamic simulation in-
frastructures by borrowing ideas from static geometry processing
and data visualization.

One of the main limitations, which is also an interesting direction
for our future work, is to reformulate the MLS operator to be sym-
metric. This reformulation can further lead to a positive-definite
symmetric system for the monolithic coupling system to access the
widely available high-performance multigrid solvers for large-scale
simulations. The asymmetric nature of a particle MLS kernel has
been a longstanding challenge in the point cloud processing com-
munity [Liang and Zhao 2013], with its codimensional variation to
be even more challenging and promising. Second, our framework
cannot simulate geometries exhibiting topological complexities,
such as the Plateau borders of bubble clusters, due to the lack of
effective representations of the codimensional topological connec-
tivities on particles. This makes the work to develop point-based
approaches that can capture more intricate codimensional transi-
tions and explore the various fluid structural stabilization problems
another interesting avenue for future work. Third, the meshless na-
ture of our Lagrangian surface makes it challenging to distinguish
interfaces that are close to each other, which could result in an
incorrect codimensional transition or particle reseeding. Therefore,
this approach is not suitable for modeling phenomena consisting
of complex evolving thin sheets with frequent self collisions and
merges. A more temporally consistent Lagrangian interface tracking
scheme is needed to track multiple thin features that are interacting
with each other. Last, our decoupled viscosity scheme simplifies the
boundary conditions, which results in a Poisson-like linear system
while introducing errors at the boundary. We plan to further investi-
gate the fully coupled viscosity scheme that allows better modeling
of viscosity with accurate boundary conditions.
For future work, we plan to explore the unified MLS scheme for

particle fluids. We currently opt to use PIC/FLIP for codimension-
0 simulation because we observed that particle-grid interpolation
exhibits performance merits compared with particle least-squares
fitting. Also, solving the projection step on a background grid allows
the fewer number of degrees of freedom to describe the motion of a
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large bulk of liquids. On another front, unifying the projection step
with an MLS expression is a valuable future direction to explore,
following the existing literature (e.g., [Sin et al. 2009]) in this area.
Specifically, we want to emphasize the possibility and the practical-
ity to develop a particle-only variant by formulating the volumetric
differential operators also using particle MLS in a Cartesian frame,
as shown in Equation (2). Also, the meshless Lagrangian nature
of our numerical infrastructure opens up possibilities in exploring
structural design problems with thin sheets and filaments as the
design constraints. We aim to develop this codimensional MLS par-
ticle tool to accommodate the challenging computational problems
in a broad spectrum of areas in science and engineering to handle
codimensional simulations and optimizations.
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A WEIGHTED PCA
To obtain the local frame Fp on a particle, we employ the weighted
version of principal component analysis (WPCA) [Yu and Turk
2010] to robustly generate the three frame axes from a discrete
point cloud. For a particle ®xp surrounded by a set of neighboring
particles Np = {q | | | ®xp − ®xq | | < h}, with h as the local supporting
radius, the covariance matrix Cp is computed as:

Cp =

∑
q Φpq (®xq − ®xwp )(®xq − ®xwp )T∑

q Φpq
, (25)

®xwp =

∑
q Φpq ®xq∑
q Φpq

(26)

with the weighting function Φ defined as

Φpq =

1 − (
|| ®xp − ®xq | |

h
)3, i f | | ®xp − ®xq | | < h

0, otherwise
(27)

We obtain the eigenvectors and eigenvalues from the covariance
matrix by performing singular value decomposition (SVD):

Cp = RΣRT , (28)

Σ =


b1

b2

b3

 (29)

where R is a rotation matrix with principal axes as column vec-
tors. The resulting eigenvectors ®b1,®b2,®b3 of the covariance matrix
C give the three orthonormal basis vectors of the local frame Fp ,
corresponding to the eigenvalues b1, b2, b3 (sorted by descending
order).

B MLS
We construct the codimensional differential operators using MLS
following thework of [Liang and Zhao 2013]. The procedure consists
of 3 steps.

Step I: Local frame. The local frame Fp is built on each particle
following Appendix A. Specifically, in codimension-1, ®b3 describes
the surface normal and ®b1, ®b2 are the tangent vectors in the local
plane, while in codimension-2, ®b1, ®b2, ®b3 are the tangent, normal,
and binormal vector of the filament respectively.

Step II: Local function approximation. Consider a codimension-
1 particle p, the local position of a neighboring particle q in its
local frame is denoted as (ξ 1

q , ξ
2
q , ξ

3
q ). With the MLS method, the

underlying surface (i.e., a continuous approximation of ξ 3) can be
approximated with a bivariate quadratic function

ξ̂ 3(β, ξ 1, ξ 2) = β1+β2ξ
1+β3ξ

2+β4(ξ
1)2+β5(ξ

1ξ 2)+β6(ξ
2)2 (30)

where β = [β1, β2, ..., β6]T is the coefficient vector.
The approximation is obtained by minimizing the weighted sum

of the squared errors on each particle q as

min
β

∑
q

Ψ(dq )(ξ̂
3(β, ξ 1

q , ξ
2
q ) − ξ 3

q )
2. (31)

We adopt the weighting function introduced in [Liang et al. 2012]

Ψ(d) =


1, d = 0
1/n, d > 0 and d ≤ h

0, d > h

. (32)

By further defining ξ 3 = [ξ 3
1 , ξ

3
2 , ..., ξ

3
n ]
T , the vectorized form of

Equation (31) becomes

min
β

(Bβ − ξ 3)TW(Bβ − ξ 3). (33)

Here B is an n × 6 matrix with each row as the polynomial basis
vector of a neighboring particle q

B =


1 ξ 1

0 ξ 2
0 (ξ 1

0 )
2 (ξ 1

0 ξ
2
0 ) (ξ 2

0 )
2

1 ξ 1
1 ξ 2

1 (ξ 1
1 )

2 (ξ 1
1 ξ

2
1 ) (ξ 2

1 )
2

...
...

...
...

...
...

1 ξ 1
n ξ 2

n (ξ 1
n )

2 (ξ 1
nξ

2
n ) (ξ 2

n )
2


.

The matrix W is an n × n diagonal with q-th diagonal element as
theweightΨ(rq ). The solution of (33) is given as β = (BTWB)−1BTWξ 3.
By letting H = (BTWB)−1BTW, the solution can be simplified as

β = Hξ 3 (34)

Then, two tangent basis vectors are given by ®t1 = (1, ∂ξ
3

∂ξ 1 , 0) =

(1, β2, 0) and ®t2 = (1, 0, ∂ξ
3

∂ξ 2 ) = (1, 0, β3), and the metric tensor is

[дkl ] =

[
β2

2 + 1 β2β3

β2β3 β2
3 + 1

]
.

To approximate a scalar field s , the same procedure is performed
with the polynomial ŝ(γ, ξ 1, ξ 2), which yields γ = Hs. For a vector
field ®v , two scalar components of it are approximated separately.
Note that H is reusable to fit any field on the same particle distribu-
tion.

Step III: Local Differential Operator. In the last step, we define the
local differential operator on the codimension-1 surface for a scalar
field s or a vector field ®v . After the MLS fitting in Step II, the first and
second order derivatives of s can be deduced easily, e.g., ∂s

∂ξ 1 = γ2

and ∂2s
(∂ξ 2)2

= 2γ6. With the metric tensor and partial derivatives,
we obtain the codimension-1 operators as Equation (7). To further
construct the Laplacian matrix L(1) used in Equation (13)(16), we
write Equation (7c) as

∇2
(1)sp = gTHs, (35)

where g = [0, 0, 0, 2д11,д12 + д21, 2д22]T . gTH is a 1 × n row vec-
tor describing the contribution from neighboring particles. We ex-
tend gTH into a 1 × N(1) row vector by filling respective entries of
non-neighboring particles with 0 and stack the row vectors of all
codimension-1 particles to form the Laplacian matrix L(1).
As for the codimension-2 filament parameterized with one pa-

rameter ξ 1, we can approximate its underlying manifold using two
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quardratic functions ξ̂ 2(γ, ξ 1), ξ̂ 3(δ, ξ 1). The tangent basis vector is
®t1 = (1, ∂ξ 2/∂ξ 1, ∂ξ 3/∂ξ 1) = (1,γ1, δ1) and the 1 × 1 metric tensor
is [д] = [1+γ 2

2 + δ
2
2 ]. The differential operators are then built in the

same way.

C BOUNDARY CONDITION
The free surface boundary is treated by different codimensional
groups implicitly. The solid boundary is represented using the stan-
dard cut-cell method in the projection step. Besides, in the blowing
bubble and catenoid examples, we sampled the solid rings with static
boundary particles, which are incorporated in the codimension-1
MLS solver.

D SURFACE AREA APPROXIMATION
As shown in Equation (17), the surface areas on codimension-1 and
codimension-2 particles are necessary for calculating the surface
tension force for each particle. For a codimension-1 particle, we
estimate its surface area using a simplified version of the local
Voronoi method (e.g., see [Lai et al. 2013]). For a thin film that is not
the surface of a fluid volume, we double the surface area to consider
the surface tension existing on both sides. For a codimension-2
particle, we treat its local geometry as a cylindrical tube with its
radius as the particle radius rp and the length lp as the distance
between the two closest particles and estimate its surface area as
the lateral area of the tube. For a rim particle, we follow [Bush and
Hasha 2004] to divide its surface tension into two components: the
rim surface tension component with the surface area Sr ,p = 2rplp
equal to the sectional area of the tube, and the codimension-2 surface
tension component where the surface area Sf ,p = 2(π − 1)rplp is
the lateral area of the tube subtracting the sectional area. And for
a bud particle, the surface area used in the bud surface tension is
Sb ,p = πr2

p .

E PHYSICAL PARAMETER
The density is 1000 kд/m3. The resolutions and other parameters
are listed in Table 1 and Table 2. In the blowing bubble example, the
radius of the circle membrane is 0.0192m. In the bursting bubble
example, the bubble radius is 0.0576m. In the catenoid example, the
cylinder membrane is initialized with the length 0.0384m and the
radius 0.0512m. We initialized the droplet with the radius 0.0128m in

Scene #grid res #active #C0 #C1 #C2
cells

Blowing bubble - - 0 239k 0
Film catenoid - - 0 63k 0
Bursting bubble - - 0 70k 2k

Droplet on the plane 64×64×64 1k 52k 9.7k 0
Droplet collision 64×64×64 4k 191k 20k 0
Dripping water 64×200×64 3k 63k 32k 0
Fluidchain 96×256×96 13k 222k 119k 0
Waterbell 192×192×192 14k 273k 163k 0
Polygon-6 192×72×192 2k 39k 157k 5k
Polygon-8 192×72×192 2k 37k 148k 4k

Table 1. Simulation resolutions in scenarios

Scene ∆t(s) σ (N/m) µ(mPa· s) v0(m/s)
Blowing bubble 0.005 0.01 0 0
Film catenoid 0.005 0.015 0 0
Bursting bubble 0.002 5 × 10−4 0 0

Droplet on the plane 0.003 0.03 0.01-0.25 0
Droplet collision 0.005 0.03 0 ±0.02
Dripping water 0.005 0.015-0.06 0 0.07
Fluidchain 0.005 0.045 0 0.2
Waterbell 0.002 0.0075 0.1 ±0.12

Fluid Polygon 0.005 0.05 0 ±0.15
Table 2. Physical parameters in scenarios

the droplet on the plane example. The cubic droplets with the length
0.024m are constructed in the droplet collision example. In the fluid
chain and dripping water examples, we emit the jets with the radii
0.008m. In the waterbell example and fluid polygon example, the
radii are 0.007m.

F PARTICLE EMISSION AND DISTRIBUTION
During the initialization step, the cubic droplets in the droplet colli-
sion example (see Figure 8) are sampled on a regular grid with the
outermost layer composed of codimension-1 particles. The spheri-
cal droplet is constructed using equidistributed concentric sphere
surfaces of equidistant radii with the initial particle spacing as the
intervals. The equidistributed sphere is sampled by placing particles
evenly on circles of latitude. The intervals between circles and the
intervals between particles in longitude are the same as the initial
particle spacing. We emit cylindrical jets using equidistributed circle
patterns where the outline of the circle is sampled by codimension-1
particles in dripping water, fluid chain, waterbell, and fluid polygon
examples. Other shapes, such as the circle membrane in the bubble
examples and the cylinder membrane in the catenoid example, are
sampled in a similar way. The particle properties, e.g., particle mass,
are initialized uniformly during the emission step. A particle’s ra-
dius is initialized according to its initial mass at the beginning and
evolved accordingly afterward. The cell size for our simulation is
∆x = h. The initial particle spacing is ∆x/4 for the droplet collision
and the droplet on the plane examples, and ∆x/3 for other examples.
We observed that a higher distribution density avoids missing the
constraint faces where codimensional coupling happens and the
interior cells where large deformation happens.
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