
Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2022) 65:125
https://doi.org/10.1007/s00158-022-03214-z

RESEARCH PAPER

A marker‑and‑cell method for large‑scale flow‑based topology
optimization on GPU

Jinyuan Liu1 · Zangyueyang Xian1 · Yuqing Zhou2 · Tsuyoshi Nomura3 · Ercan M. Dede2 · Bo Zhu1

Received: 22 October 2021 / Revised: 23 February 2022 / Accepted: 25 February 2022 / Published online: 29 March 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The focus of this paper is to propose a novel computational approach for the solution of large-scale flow-based topology
optimization problems using a graphics processing unit (GPU). A marker-and-cell method is first used to discretize a fluid
flow design domain. This is followed by a finite difference method to solve the Stokes equations for steady-state incompress-
ible fluid flow. An adjoint method is then employed to conduct design sensitivity analysis for the optimization. We use a
generalized minimal residual method as the base solver for the linear system and develop an efficient geometric multigrid
preconditioner on GPU in a matrix-free form. We simplify the treatment of different boundary conditions with improved
accuracy based on the theory of discrete exterior calculus. Numerical results utilizing different resolutions are presented and
highlight a nearly linear computational time scalability. Consequently, intricate branching flow structures may be automati-
cally and efficiently discovered at high resolutions. Our approach is capable of solving indefinite problems (i.e., one forward
solution of the Stokes equations) with over 7 million elements in three dimensions (3D) and over 16 million elements in two
dimensions (2D) within two minutes using a single desktop computer. Furthermore, all numerical experiments reported in
this paper are performed on a single NVIDIA Quadro RTX 8000 graphics card. We subsequently compare the optimized
flow structures obtained using the newly proposed method with those obtained by commercial finite element software in an
established optimization loop and find the optimized structures from both methods to be in good agreement. To highlight
the advantage of GPU acceleration, a quantitative run-time comparison study with the commercial finite element software
is performed. Our implementation is shown to solve fluid flow problems with orders of magnitude higher resolution using
only a fraction of the computational time.

Keywords Topology optimization · Stokes flow · Geometric multigrid on GPU · Finite difference method · Discrete
exterior calculus

1 Introduction

Topology optimization has demonstrated its effectiveness
in generating creative designs with superior properties in a
variety of scientific and engineering applications, such as
3D printing and precision manufacturing, to name a few;
see Sigmund and Maute (2013), Deaton and Grandhi (2014),
Rozvany (2009) for surveys. Starting from a spatial domain
uniformly filled with material, a standard topology optimiza-
tion algorithm iteratively searches for the optimal material
distribution for some design objectives, given the prescribed
volume constraint and boundary conditions. Garnering ben-
efits from the recent advances in computing power and effi-
cient algorithms, the resolution of the design domain has
been pushed forward to a level of billions of voxels (Aage
et al. 2017; Liu et al. 2018).

Responsible Editor: Joe Alexandersen.

Topical Collection: Flow-driven Multiphysics.
Guest Editors: J Alexandersen, C S Andreasen, K Giannakoglou,
K Maute, K Yaji.

 * Ercan M. Dede
 eric.dede@toyota.com

1 Department of Computer Science, Dartmouth College,
Hanover, NH 03755, USA

2 Electronics Research Department, Toyota Research Institute
of North America, Ann Arbor, MI 48105, USA

3 Applied Mathematics Research Domain, Toyota Central R &
D Labs., Inc., Tokyo 112-0004, Japan

http://orcid.org/0000-0001-6740-5916
http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-022-03214-z&domain=pdf

 J. Liu et al.

1 3

125 Page 2 of 18

The above concept can be naturally extended to fluid flow
problems. A series of fluid-related metrics may be optimized
by reasonably determining optimal flow channels surrounded
by solid boundaries; refer to Alexandersen and Andreasen
(2020) for a survey. Among all optimization approaches, the
density-based methods benefit from the unified treatment of
fluid and solid by using permeability, which is insensitive
to the drastic change of topology and interface. A challenge
with such an approach is that the velocity and pressure fields
are present everywhere, which will use a large amount of
memory. Thus, memory assignment and reuse need to be
properly managed for a high-resolution design space.

In this paper, we present a system for large-scale topology
optimization of Stokes flow on a desktop computer equipped
with modern GPUs. We develop an efficient GPU-parallel-
ized multigrid preconditioner to solve the indefinite Stokes
equations. A performance comparison between our imple-
mentation and other commonly used numerical solvers is
presented. Matrices are considered as linear mapping func-
tions and represented in matrix-free forms to save memory.
The Marker-and-Cell (MAC) scheme is used to discretize
the system, which eases the descriptions of differential oper-
ators in a coupled way, as well as the sampling processes in
the multigrid V-cycle. The validation study and numerical
examples provided herein show our algorithm to be fast,
stable and capable of automatically discovering complex
flow structures.

2 Related work

Pioneered by the work of Borrvall and Petersson (2003), the
optimization of fluid-based problems has drawn research-
ers’ interests in a vast number of fields, such as Stokes flow
(Guest and Prévost 2006; Aage et al. 2008; Challis and Guest
2009), steady state flow (Zhou and Li 2008; Olesen et al.
2006), unsteady flow (Kreissl 2011; Yaji et al. 2018), turbu-
lence (Dilgen et al. 2018; Papoutsis-Kiachagias and Gian-
nakoglou 2016), compressible flow (Evgrafov 2006; Sá et al.
2021), viscous flow (Kontoleontos et al. 2013), microfluid-
ics (Andreasen et al. 2009), MEMS Maute and Frangopol
(2003), functional device (Du et al. 2020) and fluid-struc-
ture interaction (Andreasen and Sigmund 2013; Yoon 2010;
Vicente et al. 2015), to name a few. A multitude of design
objectives have been proposed to optimize a device’s fluid
mechanical performance, including the power dissipation
(Gersborg-Hansen et al. 2005), drag minimization (Kon-
doh et al. 2012), conjugate heat transfer (Dede 2009, 2012;
Alexandersen et al. 2016) and flow rate distribution (Dede
et al. 2020), etc. The design and optimization of large-scale
fluid systems remains a challenging topic due to the system
complexity and very large number of degrees of freedom
(DoFs) involved.

Hardware acceleration has been employed to boost the
performance of solvers in a number of high-resolution topol-
ogy optimization implementations. Supercomputing tech-
niques have power to optimize problems involving millions
to over a billion elements (Aage et al. 2017, 2015). The main
bottleneck for supercomputing is the network traffic across
nodes. GPU-based approaches are also subject to such bot-
tlenecks, but they are still popular solutions in speeding up
topology optimization programs (Wadbro and Berggren
2009; Schmidt and Schulz 2011; Challis et al. 2014; Wu
et al. 2015; Yadav and Suresh 2014; Liu et al. 2018) with
better flexibility and accessibility. One shortage of a GPU
is the relatively small amount of memory when compared
to a CPU. Thus, we require a careful way of allocating and
transferring data on a GPU. Solvers fitted with multi-GPU
capability have been proposed in recent years to relax this
limitation (Herrero-Pérez and Castejón 2021; Martínez-
Frutos and Herrero-Pérez 2016). Besides supercomputer
and GPU, heterogeneous (CPU/GPU) computing has also
been explored (Liu et al. 2016). However, very few of these
techniques have been adapted to tackle fluid-related optimi-
zation problems.

3 Topology optimization

A schematic of our density-based topology optimization
method is shown in Fig. 1, together with some intermedi-
ate states that it generates for a representative problem. Our
system starts from a rectangular domain discretized using
a MAC grid, which is a standard voxel-based approach in
computer graphics that allows for refined representation of
arbitrary geometry with increased resolution. The alloca-
tions of the pressure, P, design variable, � , and velocity com-
ponents, (u, v), for a single grid cell, (i, j), in 2D are shown
in Fig. 2. Different kinds of boundary conditions can then
be specified by the user, including a no slip wall condition,
the magnitude of a pressure jump, as well as the flow rate
across the boundary grid faces.

In this section, we discuss the discretized model and
implementation in detail. The state variables are obtained by
solving the modified Stokes equations subject to boundary
conditions using the finite difference method (Chen 2016).
The objective is to find an optimized shape such that the
fluid flow resistance is minimized under the constraint of a
prescribed upper-bound target volume fraction of fluid mate-
rial. An adjoint-based method is then applied to conduct
sensitivity analysis, which is used to update the material
distribution.

A marker-and-cell method for large-scale flow-based topology optimization on GPU

1 3

Page 3 of 18 125

3.1 Flow model

The modified Stokes equations using the design variable,
� , are

where � , P, and � are the velocity field, pressure field,
and external force, respectively. The specified velocity at
the boundary is �b , while � is the dynamic viscosity. Δ , ∇
and ∇⋅ are the Laplace, gradient and divergence operators,
respectively. The design variable, � , represents the portion
of fluid within each grid cell with 1 meaning complete fluid
(i.e., void) and 0 meaning complete solid. The term � is a

(1)

[−�Δ + �(�)]� + ∇P = � in Ω,

−∇ ⋅ � = 0 in Ω,

� = �b in �Ω.

mapping function associated with � to map the design vari-
able to inverse permeability:

in which q > 0 is a constant value that controls the shape of
the inverse permeability on intermediate values of the fluid’s
portion. In (2), �̄� and � are the upper and lower bound of � .
This differentiable continuous mapping provides a soft no-
penetration condition for solids. For all examples, we set �
to be 1, and �̄� and � are set to be 104 and 10−4 respectively.
Here, �̄� is far larger than the viscosity and thus can represent
a non-permeable solid obstacle, but this value is not too
large which can make the system of equations too singular
and significantly attenuate the solver’s convergence speed.
Since �(�) is multiplied with the velocity which lies on the
grid face, we compute the fluid design density variable, � ,
on a face by averaging the values carried by cells on both
sides of the face.

The local index system for all state and design variables
using the MAC scheme in 2D is shown in Fig. 3. The dis-
cretized version of (1) on a non-boundary cell (i, j) can be
written as (3) based on the index system (with dynamic
viscosity set to 1 for simplicity). Please be aware that the
vector Laplacian, Δ� = ∇(∇ ⋅ �) − ∇ × (∇ × �) , has been
reduced to the simpler scalar Laplacian, Δu = ∇ ⋅ ∇u
and Δv = ∇ ⋅ ∇v , as we decompose the vector field, � , to
orthogonal components, u and v. For a boundary cell, the
vector Laplacian is used to handle boundary conditions
accurately. Here, h is the grid cell size. The first two equa-
tions correspond to the velocities in the x direction at the
left and right faces, and the next two equations are for the
velocities in the y direction. The last equation enforces the
incompressibility condition for cell (i, j). Note that for a
2D domain composed of m × n grid cells, the pressure is
discretized as P(1 : m, 1 : n), and the velocity components
are u(1 ∶ m, 1 ∶ n + 1) and v(1 ∶ m + 1, 1 ∶ n) . This discrete
view can be easily extended to 3D cases. Stacking all the

(2)𝛼(𝜌) = �̄� + (𝛼 − �̄�)𝜌
1 + q

𝜌 + q
.

Fig. 1 A pipeline description of a representative system with optimization approach and intermediate topologies

Fig. 2 Marker and cell discretization of variables

 J. Liu et al.

1 3

125 Page 4 of 18

unknown state variables provides a symmetric yet indefi-
nite linear system. Please note that m and n can be defined
arbitrarily, but to obtain the best convergence performance,
our solver requires that m is equal to n and further equal to
some integer power of 2. Further details are explained in
Sect. 6.5. The reason for this requirement is that our sam-
pling technique in multigrid is relatively rigid, where we
always cut DoFs along each dimension by 2. More flexible
sampling techniques can be designed, but that is not a main
aim of this paper.

(3)

4u
i−

1

2
,j
− u

i−
3

2
,j
− u

i+
1

2
,j
− u

i−
1

2
,j−1

− u
i−

1

2
,j+1

h2

+
�(�i−1,j) + �(�i,j)

2
u
i−

1

2
,j
+

Pi,j − Pi−1,j

h
= f

i−
1

2
,j

4u
i+

1

2
,j
− u

i−
1

2
,j
− u

i+
3

2
,j
− u

i+
1

2
,j−1

− u
i+

1

2
,j+1

h2

+
�(�i,j) + �(�i+1,j)

2
u
i+

1

2
,j
+

Pi+1,j − Pi,j

h
= f

i+
1

2
,j

4v
i,j−

1

2

− v
i,j−

3

2

− v
i,j+

1

2

− v
i−1,j−

1

2

− v
i+1,j−

1

2

h2

+
�(�i,j−1) + �(�i,j)

2
v
i,j−

1

2

+
Pi,j − Pi,j−1

h
= f

i,j−
1

2

4v
i,j+

1

2

− v
i,j−

1

2

− v
i,j+

3

2

− v
i−1,j+

1

2

− v
i+1,j+

1

2

h2

+
�(�i,j) + �(�i,j+1)

2
v
i,j+

1

2

+
Pi,j+1 − Pi,j

h
= f

i,j+
1

2

u
i+

1

2
,j
− u

i−
1

2
,j

h
+

v
i,j+

1

2

− v
i,j−

1

2

h
= 0

3.2 Optimization formulation

In this study, we use a multi-objective function similar to
Gersborg-Hansen et al. (2005) and Challis and Guest (2009)
to minimize the energy dissipation across the domain and
penalize the leakage of fluid in solid regions. The optimiza-
tion problem can be formulated as follows:

where V0 and V̄ are the total volume of the design domain
and the prescribed fluid material volume fraction target,
respectively. For the objective function, J, we discretize
the integration of the terms by summing up each individ-
ual value throughout the domain. For the first term of the
objective function with respect to velocity lying on the grid
face, we simply sum over the faces in all dimensions. The
fluid design density variable, as before, is averaged by val-
ues from the two neighboring cells. The second term of the
objective function regarding the velocity gradient tensor is
not as trivial. We therefore compute ∇� for each grid cell
and sum over all cells. For the center cell shown in Fig. 3,
the corresponding discretized local gradient is written in (5).
This treatment can be naturally extended to 3D cases and
handle special types of cells (e.g., edge cells, cells contain-
ing boundary faces, etc.).

For the sensitivity analysis, we refer the reader to Appendix
1 for details. We use a standard adjoint method to solve for
the objective gradient with respect to the design variables. A
general review of this approach is presented in Allaire (2015).

We use a first order method of moving asymptotes (MMA)
Jiang et al. (1970) for optimization. Besides the objective and
its gradient, we compute the volume constraint and its gradi-
ent at each optimization iteration, which are utilized by the
optimizer to fit a different problem to solve. Thus, our volume
constraint may not be tightly satisfied, but the difference is
minimal. We also do not use any filtering technique for the
design density field.

(4)

min𝜌: J =
1

2 �
Ω

𝛼(𝜌)� ⋅ � +
𝜇

2 �
Ω

∇� ∶ ∇�,

s.t.:

[

−𝜇Δ + 𝛼(𝜌) ∇

−∇⋅ 0

] [

�

P

]

=

[

�

0

]

in Ω,

� = �b on 𝜕Ω,

𝜌
�
∈ [0, 1] ∀� ∈ Ω,

�
Ω

𝜌

V0

d Ω ≤ V̄ .

Fig. 3 Indices of variables involved in the local state equations for
cell (i, j)

A marker-and-cell method for large-scale flow-based topology optimization on GPU

1 3

Page 5 of 18 125

3.3 Post processing

Once the optimization algorithm reaches the maximal itera-
tion number, the final topology represented by a solid/void
density field is exported for numerical validation. For 2D
examples, we directly draw a grayscale colormap using the
density value. For 3D examples, the isosurface between
solid and void cells is extracted and further smoothed by a
box filter to reduce staircase artifacts resulting from the grid
structural representation. Finally, the smoothed 3D model
is exported as a binary STL format, which is used in com-
mercial software for validation analysis and comparisons.

4 Multigrid solver

The performance bottleneck in topology optimization is
solving the static Stokes equations, (1), to obtain the fluid
velocity and pressure state variables. It involves assembling
a large, sparse matrix, A , and solving the linear system,
A� = � , which takes most of the processing time. Direct
sparse solvers find the exact solution but are unscalable.
Iterative solvers find approximate solutions at a much faster
rate. However, effective preconditioners need to be designed
and applied to maintain a decent convergence rate especially
for high resolutions.

Coupled multigrid methods have been proven as efficient
solvers for the incompressible Navier-Stokes equations
(Benzi et al. 2005; Wittum 1989), which combine a hierar-
chy of coarser grids and relaxation schemes (smoothers) to
recursively restrict a fine-grid residual to the next coarser
grid where a correction term is computed and interpolated
back. This leads to a basic grid traversal scheme referred
to as the V-cycle outlined in Algorithm 1. In this work, we
use a geometric multigrid solver as the preconditioner for a
GMRES solver.

We test the performance of our solver by solving Stokes
flow passing over an obstacle in both two and three dimen-
sions. We place a circular cylinder at the center of a square

(5)

∇� =

[

�u

�x

�u

�y
�v

�x

�v

�y

]

,

�u

�x
=

u
i+

1

2
,j
− u

i−
1

2
,j

h
,

�u

�y
=

u
i−

1

2
,j+1

+ u
i+

1

2
,j+1

− u
i−

1

2
,j−1

− u
i+

1

2
,j−1

4h
,

�v

�x
=

v
i+1,j−

1

2

+ v
i+1,j+

1

2

− v
i−1,j−

1

2

− v
i−1,j+

1

2

4h
,

�v

�y
=

u
i+

1

2
,j
− u

i−
1

2
,j

h
.

2D channel, as shown in Fig. 4, and a sphere in the center
of a cube shaped duct for a similar 3D test case. The cen-
tral obstacle is modeled as weakly permeable material with
large � (set as 103 here) instead of a solid boundary condi-
tion. For comparison, we also use AMGCL (Demidov 2019)
with a VexCL backend which provides CUDA paralleliza-
tion to solve the same problem, and summarize each solver’s
performance in Table 1. For AMGCL, preconditioners like
AMG fail when having zero diagonal parts in the system
matrix, which happens with our pressure unknowns. We
follow Demidov et al. (2021) by using a composite Schur
Pressure Correction preconditioner together with GMRES
as the outer iterative solver. For the velocity part, we use
smoothed aggregation and ILU(0) as the coarsening and
relaxation strategy. For the pressure part, we use the SPAI-0
smoother. We also use a mixed precision approach and set
the smoothing iteration to be 4, which controls the num-
ber of GMRES iterations such that restarting is not needed.
These setups are mostly borrowed from an AMGCL tuto-
rial study for Stokes-like problems, and have been tested by
us to perform best on our system when compared to other
settings. We compare times on transferring data from CPU
to GPU, solver initialization, and solving. Please note that
the behaviours between our solver and AMGCL are differ-
ent. For transferring data, AMGCL needs to build up the
system matrix and transfer it to the GPU, but our solver is
matrix free and only needs to transfer the description of the
current state, which takes much less time and memory. The
initialization between the solvers is also different due to the
preconditioning strategy. Our initialization includes propa-
gating the system description from top layer to bottom in
the multigrid V-cycle and then updating the preconditioner

Fig. 4 2D benchmark problem for AMGCL and our solver: Stokes
flow passing over a cylinder in a channel

 J. Liu et al.

1 3

125 Page 6 of 18

at each layer. Please also note that both solvers are dealing
with a badly conditioned system due to the large � . For real
Stokes equations, both solvers will be much faster. It turns
out that our solver outperforms AMGCL’s in both memory
footprint and time efficiency.

4.1 Smoothing

The numerical performance of different relaxation meth-
ods and multigrid methods for the parallel solution of the
incompressible Navier–Stokes equations has been studied
(John and Tobiska 2000). It has been proven that to obtain
a good smoothing rate, the unknowns need to be updated in
a locally coupled manner. We hereby use box-relaxation,
a coupled smoother introduced by Vanka (1986), which
smooths a group of related velocity and pressure unknowns
at once. The box stencil is associated with each pressure
unknown, Pi , and the action of the smoother is solving for
the updates Ai��i = �i, ��i = [��i, �Pi]

T for each box in a
sequential way for all grid cells. Here, �i is the residual and

Ai is the local operator restricted from the global matrix, A ,
to the rows and columns corresponding to the elements in
cell i. The size of Ai is small (5 × 5 for 2D and 7 × 7 for 3D).
Therefore, direct methods can be used. We further parallel-
ize the sequential smoothing process by coloring the domain
as shown in Fig. 5. Due to the MAC scheme depicted before,
a five-color scheme is sufficient to perform smoothing in
parallel. Cells of the same color can then be updated simul-
taneously without affecting each other.

4.2 Restriction and prolongation

Other key ingredients of a multigrid method include the
matrices R and P that change grids. A restriction matrix, R,
transfers vectors from the fine grid to the coarse grid. The
return step to the fine grid is done by interpolation using a
prolongation matrix. In this section, we introduce restriction
and prolongation operators defined on a 2D MAC grid for
both scalar and vector variables, which naturally extend to
3D.

The prolongation and restriction of scalar variables that
store on the cell centers resemble the operations of node-
based variables on a Cartesian grid. In Fig. 6, we show how
four variables on the finer red grid, h, (marked with red tri-
angles) are restricted to one variable on the coarser grid, H,
(marked as a black cube) and interpolate back. For pressure,
P, we use 4-point center restriction

and piecewise constant prolongation

(6)PH
1
=

1

4
Ph
1
+

1

4
Ph
2
+

1

4
Ph
3
+

1

4
Ph
4
,

(7)Ph
1
= Ph

2
= Ph

3
= Ph

4
= PH

1
.

Table 1 Solver performance
comparisons (tol=1e−5)

Solver type Scale Iterations Data transfer (ms) Solver setup (ms) Solving (s)

SchurPC+ GMRES (AMGCL) 2562 16 46.3 126.0 5.8
5122 23 177.9 441.2 23.6
10242 29 781.5 1627.3 99.4
323 14 31.7 88.6 4.2
643 29 272.2 568.8 24.6
1283 31 2345.3 3916.9 168.4

Multigrid+ GMRES (Our solver) 2562 6 2.06 3.71 0.38
5122 6 11.2 6.98 1.23
10242 7 41.0 17.68 6.67
323 5 3.09 21.42 0.29
643 7 44.4 66.3 1.45
1283 8 668.1 140.4 11.8

A marker-and-cell method for large-scale flow-based topology optimization on GPU

1 3

Page 7 of 18 125

As for the vector variables stored on grid faces, a center
restriction operation requires using 6 neighboring points.
For the prolongation operators, we apply bilinear interpo-
lation of neighboring coarse grid unknowns in the stag-
gered grid. In Fig. 7, we show how the velocity’s horizon-
tal component, u, is restricted and interpolated. Operators
for variables stored on other directional faces can be easily
derived. Still, the red triangles represent variables at the
finer level, h, and the black cubes represent variables at the
coarser level, H. The corresponding discrete operators in
linear equation form are written as follows:

4.3 Storage‑free matrix vector multiplication

A main benefit of iterative solvers is to avoid computing and
storing the matrix A−1 explicitly. Here, we do not store the
matrix A and use a function, X → A� , instead. This “matrix
free” technique is implemented, as follows: first, matrix vec-
tor multiplication is reduced to vector vector dot product row
by row; next, each row is reduced to a set of non-zero coef-
ficients computed on the fly, and corresponding values are
collected from X . A tiny dot product is performed at the end.

We can go one step further given the nature of differential
operators and the spatial layout of unknowns in our discre-
tization. By observation, an element in X stored on either
face or cell only has non-zero coefficients on neighbors, as
shown in Fig. 8. If we cluster elements by their locations,
the values we need to collect from elements in one cluster
are highly overlapped, as shown in Fig. 9. This allows us to
utilize memory more efficiently and reduce the time cost.

We store the velocity and pressure unknowns in a
block memory layout. An example with a 3 × 3 block size
is described in Fig. 9. The block size should be chosen

(8)

uH
1
=

1

8
uh
1
+

1

4
uh
2
+

1

8
uh
3
+

1

8
uh
4
+

1

4
uh
5
+

1

8
uh
6
,

uh
1
=

3

4
uH
1
+

1

4
uH
3
,

uh
4
=

1

4
uH
1
+

3

4
uH
3
,

uh
3
=

3

4
uH
2
+

1

4
uH
4
,

uh
6
=

1

4
uH
2
+

3

4
uH
4
,

uh
2
=

3

8
uH
1
+

1

8
uH
3
+

3

8
uH
2
+

1

8
uH
4
,

uh
5
=

1

8
uH
1
+

3

8
uH
3
+

1

8
uH
2
+

3

8
uH
4
.

Fig. 5 Parallelization of box-relaxation method on MAC grid using
coloring

Fig. 6 Restriction and prologation of cell center DoFs

Fig. 7 Restriction (upper) and prolongation (lower) of vertical edge
center DoFs

 J. Liu et al.

1 3

125 Page 8 of 18

carefully such that the memory bandwidth is fully utilized
and a sufficient number of threads is assigned in a block
to handle the process. In this work, we use 8 × 8 block in
2D and 4 × 4 × 4 block in 3D. We also use cache/shared
memory to store these values such that following arithme-
tic operations can be accelerated.

5 Implementation

In this section, we describe how the multigrid solver is
deployed on a GPU. We first introduce data that need to
be stored on the GPU and their layout. Then, the functions
that operate on these data are explained along with specif-
ics of the implementation.

5.1 Data layout

The key components of multigrid are matrix vector multi-
plication, restriction, prolongation, and smoothing. Matrix
vector multiplication and smoothing are applied on the state
variables of the modified Stokes problem (e.g., the pressure
and velocity). Thus, they need to be stored on the GPU.

In our discretization, fluid velocity is stored on faces and
pressure is stored on cells. As we discussed in Sect. 4.3, we
store these variables in a block memory layout to improve its
spatial locality. The block size should be sufficiently large (a
multiple of 32) so that we can fully utilize the GPU memory
bandwidth. It also should not be too big (not bigger than
1024) so that we can fit a block of data in one thread block.
As a result, the block size we select is 8 × 8 for 2D and 4 × 4
× 4 for 3D. We follow the row-major order for the storage of
both data pieces in each block and blocks in a grid.

For implementation convenience, we assume the grid
has a size that is a multiple of 8 in 2D (or 4 for 3D) for
each dimension. This allows cell data to be stored in a block
memory layout with perfect alignment. However, for face
data, at least half of the boundary faces on a grid cannot fit
into complete blocks. To tackle this problem, we still use
blocks to store data, despite some unused entries, as shown
in Fig. 10. Though the utilization ratio of these blocks is low,
the number of these blocks is relatively small compared to
the total number of blocks (the former is always one order
of magnitude lower than the latter in terms of the grid size
in each dimension). Thus, the usage of the proposed block
memory layout causes only a marginal memory consump-
tion increase which still maintains an efficient bandwidth
utilization.

Besides the input, the output and part of the intermediate
results are also stored on GPU, which are all discretized on
grid cells, faces, and edges. We will discuss this storage in
the next subsection. We want to highlight that data related to

Fig. 8 An example of non-zero coefficients for face (left) and cell
(right) element. Dark blue and green represent any face/cell in X .
The light blue faces and light green cells represent the corresponding
neighbor face/cells with non-zero coefficients. (Color figure online)

Fig. 9 Data storage of the pressure unknowns (black dots) of a
3 × 3 block grid on GPU. Dark blue edges and green cells are the
unknowns associated with the block circled by the orange dotted box.

Light blue edges and green cells are the unknowns stored from other
blocks that need to be acquired in the shared memory during the
computation of the central 3 × 3 grid. (Color figure online)

A marker-and-cell method for large-scale flow-based topology optimization on GPU

1 3

Page 9 of 18 125

edges are stored using the block memory layout, again with
some entries unused, similar to data for faces.

For the multigrid we have the inputs, intermediate results,
and outputs for each layer. The memory consumption of a
single layer is linear to the number of cells of its (coarsened)
grid, which results in an overall linear memory consumption
with respect to the size of the original Stokes problem.

Restriction and prolongation are applied between dif-
ferent layers which do not require additional memory. The
smoothing process requires computing the inverse of local
matrix corresponding to each grid cell, and multiple small
matrix-vector multiplication operations. These small matri-
ces are stored and computed on the GPU. The memory con-
sumption for these matrices is also linear, and the linear
coefficient is exactly the DoFs of a box (i.e., 5 for 2D and
7 for 3D).

5.2 Discrete operators

In this section, we describe the functions needed for our
GPU implementation to meet the requirements of a mul-
tigrid solver that includes matrix-vector multiplication,
restriction, prolongation, and smoothing. We start from
the matrix-vector multiplication operation with their three
main parts of the pressure gradient, velocity divergence, and
velocity Laplacian. On a staggered grid, the pressure gradi-
ent is stored on faces and a face value is the weighted sum
of its neighbouring cells (with − 1 or +1 as the coefficients).
The velocity divergence is stored on cells. The value of a cell
is the weighted sum of its faces.

All boundary conditions may be translated to fix values
on a cell or a face. Another way to interpret this is: if the
value on a cell or a face needs to be fixed, then the value
itself should have no contribution to the gradient/divergence
since it will be overwritten. We use this idea to enforce
boundary conditions in our gradient and divergence opera-
tor; i.e., we simply set a value on a boundary is zero, and we
compensate the desired fixed value on the right hand side

of the Stokes equations which the boundary has contribu-
tions to.

It should be pointed out that instead of setting some coef-
ficients to be zero, we use a filter to set values on a boundary
to be zero before applying the gradient and divergence oper-
ators. This allows the implementation of these two operators
to be independent from boundary conditions.

For the velocity divergence, we follow the equation
Δ� = ∇(∇ ⋅ �) − ∇ × (∇ × �) . We reuse the divergence and
gradient operators above. For the curl operator, it is imple-
mented in a similar way as the other two operators on a
staggered grid. The output is stored on either nodes or cells
for 2D, and the value is the weighted sum of its neighbour-
ing faces (See Fig. 11 and (Crane 2018) for more details).
Please note that for non-boundary cells we use the simple
form of scalar Laplacian of decomposed velocity to replace
the vector Laplacian of velocity vector field, as shown in (3).

We choose this implementation since it can easily sup-
port different boundary conditions for stress. Just like what
we have done for the gradient and divergence operators, we
apply a filter on the intermediate results. The divergence
reflects the normal part, and the curl reflects the shear part.
If we set the divergence on a cell to be zero, then the nor-
mal stress in that cell is ignored, which mimics an open
boundary. If we set the curl on an edge to be zero, then
the shear stress around that edge is ignored, which mimics
a slip boundary condition. For our examples, we use open
boundaries and non-slip boundaries, so we apply filters on
cells only.

There are some intermediate results related to these
operators that need to be stored on GPU. They are the
velocity after filtering, divergence of the velocity, and curl
of the velocity, which are stored on faces, cells and edges,
respectively.

5.3 Other details

Matrix-vector multiplication, restriction and prolongation
have high spatial locality, thus it is natural to use one thread

Fig. 10 An example of block memory layout. Left: faces on the
x-axis. Right: vertices. The dashed line and hollow points indicate
wasted entries

Fig. 11 An example of operators. Left: gradient and divergence.
Right: curl. Blue colored features are inputs, while green colored fea-
tures are outputs. (Color figure online)

 J. Liu et al.

1 3

125 Page 10 of 18

block to deal with one block of data so that memory band-
width can be fully utilized.

There are two choices for handling the blocks including
gathering and shattering. Gathering uses one thread block
to compute the result of one block of data (e.g., the gradi-
ent from the pressure). In this case, we read all the needed
input data, compute the result, then write them back. The
same input data can be read multiple times, but the result
will be written only once.

The shattering approach does the opposite, where it
uses one block to deal with one block of input. After read-
ing one block of input data, it computes its contribution
to the result and accumulates them. Same input data can
be only read once, but the result will be written multiple
times.

We choose a gathering scheme. This is because writing
is slower than reading on a GPU, and accumulating requires
synchronization operations which are time consuming. Our
implementation of gathering is straightforward. For one
thread block, we conduct the following:

• read one block of data
• compute its contribution to the result
• repeat the prior two steps for all needed blocks
• write back the result

A check is performed prior to reading. If the position is
outside of the grid, instead of actually reading from the
memory, a zero value is assumed to mimic zero contribu-
tion. All threads in one thread block will not compute the
contribution until the entire block of data is loaded into
the shared memory. At one time, only one block of data is
loaded instead of loading all required blocks, such that more
threads can be executed at the same time.

Please note that there are no duplicates of velocity fields
on boundary edges between blocks, and thus no communi-
cation is required. For an 8 × 8 grid block, the associated
velocity field is 8 × 9 for u and 9 × 8 for v. However, only
the first 8 × 8 of u (or v) are stored in the same block, while
the last column of u, or row of v, are stored in other blocks.
Considering a single grid cell, the associated velocity to
store is u on the left face and v on the bottom face, and the
right face is associated with the cell to the right, while the
upper face is associated with the cell above. This pattern
avoids duplicate storage and communication. When com-
puting, for instance, divergence, cells at the rightmost and
uppermost boundaries may have to gather velocities from
different blocks, but that is a one-time read-only operation
and the portion of the boundary cells are small. One last
compromise is that we have to use additional blocks to store
the last layer’s velocity component of the entire grid, but still
that additional memory cost is marginal.

The gradient, divergence, curl, prolongation, and restric-
tion operators are all implemented as described above. For
smoothing, or multiple small matrix vector multiplication
operations, we use the provided functions in the cuBLAS
library.

6 Numerical examples

In this section, we present a number of examples in both
2D and 3D, ranging from well-studied cases to the design
of large-scale novel flow structures. For 2D cases, we start
from standard examples like double pipes proposed in
Borrvall and Petersson (2003) to verify the correctness of
our approach. We then present branching problems with
increasing resolution, number of outlets, and decreasing
volume fractions to compare and show the scalability of our
approach. Finally, we present a 4096 × 4096 asymmetric tree
structure with extreme resolution and 162 fluid outlets to
show the maximum data volume our implementation can
support with 48 GB GPU memory.

Our 3D experiments mostly follow the philosophy of
the 2D cases. The standard examples are mostly naturally
extended from 2D. In addition, we use commercial software,
COMSOL Multiphysics®, to optimize fluid flow structures
at low-to-moderate resolutions to make quantitative com-
parisons of computational time and flow resistance perfor-
mance of the optimized shapes. All numerical experiments
reported in this paper are performed on a single desktop
machine equipped with an Intel i9-9980XE CPU and a sin-
gle NVIDIA Quadro RTX 8000 graphics card.

We directly enforce velocity boundary conditions at both
inlets and outlets for all examples. Positions, sizes, and
velocities for inlets are specified in each description subplot.
In our experiments, the outlets always have the same width/
area and velocity. To ensure mass conservation, outlet veloc-
ities are thus related to inlet velocities by uo =

∑n

i
ui⋅li

no⋅lo
 , where

n is the number of inlets and ui and li are corresponding inlet
velocity and width; no and lo are the number of outlets and
width of an outlet. Note that in 3D examples, we exchange
the inlet/outlet width, l, with the inlet/outlet area, a.

During our numerical experiments, we usually find that
the design volume moves very slowly toward our desired
volume fraction or even stagnates at some point. To accel-
erate the convergence of the design density field, we also
adaptively scale up the actual volume constraint and its gra-
dient before using this information to generate the MMA
subproblem, which beneficially amplifies the effect of the
volume constraint. The scaling factor is tunable, but gener-
ally smaller for low resolution problems and larger for high
resolution problems. Thus, we see minimal changes in the

A marker-and-cell method for large-scale flow-based topology optimization on GPU

1 3

Page 11 of 18 125

topology and satisfaction of the volume constraint after 30
optimization iterations. We thus stop optimizing at the 40th
iteration as any design changes afterward are negligible.

6.1 Rugby ball (2D)

The design domain and boundary conditions for the “rugby
ball” design problem in two dimensions are shown in
Fig. 12a. For comparison, we propose two choices for the
maximum allowable fluid volume, V̄ = [0.6, 0.7] . Our bound-
ary conditions differ from that of Borrvall and Petersson
(2003) and Guest and Prévost (2006) at the upper and lower
walls of the design domain, where no tangential velocities
are specified. The results show trapezoidal shaped structures
at both walls which smooth the flow transition at the leading
and trailing edges. We initialize a homogeneous domain with
a uniform design density that is the same as the desired vol-
ume fraction. The discretization size is 256 × 256, including
65.5 × 103 design variables and 197.1 × 103 state variables.
The time consumed for the entire optimization workflow for
each case is ∼ 81 s with 40 optimization iterations, and the
average run time for solving the Stokes equations and the
adjoint equation at each iteration is about 0.7 s respectively.
A time breakdown for this optimization problem is shown
in Fig. 13. We find that the two solves already occupy most
of the time, even though this problem is of the smallest scale
among all of our experiments. For the experiments at a larger
scale, our time bottleneck always lies with the two solves.
Currently, we write all information to disk sequentially. The
I/O time may be further reduced by only writing the den-
sity field. The presented optimized rugby ball structures are
similar to those presented in the previous literature (Guest
and Prévost 2006; Challis and Guest 2009). The angle at the
front and back of each rugby ball matches the expected value
of 90 degrees (Pironneau 1974).

6.2 Pipe design (2D)

The double pipe design has also been introduced in previ-
ous work (Borrvall and Petersson 2003; Guest and Prévost
2006), where domains of different aspect ratio were used to
generate different channel patterns. We present here results
that illustrate how different pipe patterns can also be gener-
ated by changing the gap size between the upper and lower
inlets. The details of the boundary conditions, volume con-
straints, and optimized results are provided in Fig. 14. The
results show a great degree of similarity with designs from
the prior literature. We also show a new triple pipe design
obtained by adding an additional inlet and outlet channel
at the respective center of the left and right edges of the
domain. This time we control the volume fraction while
keeping the same boundary conditions, as shown in Fig. 15,
and find that additional fluid channel bridge connections
can be generated for larger fluid volumes. In this example,

Fig. 12 Optimization results for the 2D “rugby ball” design problem with different volume fractions. a Design domain and boundary conditions;
b volume fraction of fluid set as 0.6; c volume fraction of fluid set as 0.7

Fig. 13 Optimization time break down for Rugby ball (2D) design
problem

 J. Liu et al.

1 3

125 Page 12 of 18

the objective drops by 29% by increasing 5% of fluid vol-
ume. We believe this drastic decrease in energy dissipation
is partially due to the newly generated branches. For these
designs, we also use a discretized grid size of 256 × 256. The
required time for the entire optimization workflow for each
case is around 77 s with a total of 40 optimization iterations,
and the average run time for solving the Stokes equations at
each iteration is about 0.65 s. All figures show the original
optimized design density field without any post processing.

6.3 Branching channels (2D)

Design of a branching fluid channel network is inspired by
Dede et al. (2020), which showed the relation between the
number of outlet channels and discretized elements. For
a large number of outlets at high resolution, commercial
optimization tools usually suffer from an unbearable time
overhead due to the lack of an optimized, problem specific
solver. Researchers may select alternative non-gradient-
based methods for the dehomogenization and/or design
synthesis of large-scale flow distribution channel networks
(Dede et al. 2020). We show in Fig. 16 the scalability of our
solver in 2D with up to 64 outlets at 1024 × 1024 resolution.
The computational time for all three designs is summarized
in Table 2, and the results exhibit a near linear relation-
ship between the solver time and problem size. We also plot

normalized fluid velocity color maps and normalized pres-
sure contours in Fig. 16. For the velocity, we extract the
magnitude from the vector field by interpolating the vector
field at each grid cell center, and we then compute the norm.
From the plots, we qualitatively observe for each design that
the velocity distribution is the same through all outlets, as
expected, since we explicitly specify the velocity BC. How-
ever, we do not specify any BC for pressure, so the pressure
logically varies at each outlet.

Our solver can handle the design of an increased number
of outlets with intricate channel topology. In Fig. 17, we
show a design with 162 randomly distributed fluid outlets
using a 4096 × 4096 grid with over 50 million DoF. An
intricate, non-symmetric tree structure is automatically dis-
covered to distribute the fluid flow. The width of the out-
lets may be further reduced by half thanks to the extremely
high resolution. The outlet channel width was selected for
illustration and visualization purposes. The run time for the
Stokes solver at this resolution is about 58 s, and the total
optimization time is about 117 minutes for 40 optimization
iterations.

6.4 Pipe design (3D)

We next consider several design problems in three dimen-
sions. We start with a quadruple inlet/outlet pipe design

Fig. 14 Optimization results for the 2D double pipe problem with different inlet/outlet positions. The volume fraction of fluid for both designs is
set to 0.12

Fig. 15 Optimization results for the 2D triple pipe problem with different volume fractions. a Design domain and boundary conditions; b vol-
ume fraction of fluid set to 0.2; c volume fraction of fluid set to 0.25

A marker-and-cell method for large-scale flow-based topology optimization on GPU

1 3

Page 13 of 18 125

problem with volume constraints and boundary conditions,
as shown in Fig. 18, as a natural extension of the 2D pipe
design problems in Sect. 6.2. We present designs for two

types of outlet configurations. The first design has outlets in
alignment with the inlets, as shown in Fig. 18b. The second
design has outlets forming a smaller square with a relative

Fig. 16 Optimization results and normalized velocity/pressure distri-
butions for the 2D branching channel problem with different resolu-
tions, outlets, and volume fractions. a Design domain and boundary
conditions; b grid size = 256 × 256, 16 outlets, fluid volume fraction
= 0.17; c grid size = 512 × 512, 32 outlets, fluid volume fraction =

0.16; d grid size = 1024 × 1024, 64 outlets, volume fraction = 0.15.
The first row shows each density distribution; the second row shows
the normalized velocity magnitude color maps; the third row shows
the normalized pressure contours

Fig. 17 Optimization result for a large scale 2D branching channel design problem (grid size = 4096 × 4096) with 162 fluid outlets

 J. Liu et al.

1 3

125 Page 14 of 18

rotation of 45◦ , as shown in Fig. 18c. Both designs show a
channel merging-diverging pattern similar to the observed
results in 2D. We also test the effectiveness of fluid vol-
ume control by increasing the volume fraction from 0.15 as
in design (c) to 0.2. The optimized result shows the inlets
no longer merge to a single main stream, but only merge
with their neighbors forming a hollow center, as shown in
Fig. 18d, e. We use a 1283 grid to discretize the domain,
which has over 2 million design variables and 6 million state
variables. The computational time for the entire optimization
workflow for each case is about 26.8 min for 40 optimiza-
tion iterations, and the averaged run time for solving the
Stokes equations at each iteration is about 17.4 s. All figures
show the smoothed isosurface extracted from the optimized
density field.

6.5 Branch channels (3D)

Following the idea of branching channel network design
in 2D, we studied the design of a branching channel fluid
flow manifold in 3D. Similar tasks have been conducted
by Kreissl (2011) at a much lower resolution. Like the 2D
cases, we have four different designs with increasing grid
resolutions and number of outlets. The difference is that
we now have a constant fluid volume fraction constraint
for all cases, and the outlets are positioned randomly on
the five faces of the cubic design space not including the
inlet face. We also use COMSOL with Stokes flow physics
to perform similar fluid flow channel design optimization
with identical problem settings using its embedded direct
solver. The numerical results are compared from multiple
aspects including channel topology similarity, fluid flow
resistance performance, and computational time. Details
regarding the problem settings in COMSOL are summa-
rized in Table 3. All settings other than the discretization
and solver are fixed to be identical in our optimization
approach. The optimized structures are shown in Fig. 19,
with the first row being the results from COMSOL, and
the last two rows representing the optimized designs using
our approach and visualized from both inlet and outlet
perspectives. For the optimized COMSOL results, we
directly run a Stokes flow simulation after extracting the
fluid domain within the software and measure the fluid

Table 2 Computational time for the 2D branching channel designs in
Fig. 16

Design (# of outlets) b (16) c (32) d (64)

Resolution 2562 5122 10242

Stokes solver (s) 0.7 2.1 6.9
Total time (min) 1.3 3.8 13.8

Fig. 18 Optimization results for the 3D quadruple pipe problem with
different volume fractions and outlets. a Design domain and bound-
ary conditions; b outlets are aligned with inlets with fluid volume
fraction equal to 0.15; c outlets are aligned with the centers of the

edges of the inlets with fluid volume fraction equal to 0.15; d outlets
are aligned with centers of the edges of the inlets with fluid volume
fraction equal to 0.2; e a side view of the design in (d) to show the
hollow center

A marker-and-cell method for large-scale flow-based topology optimization on GPU

1 3

Page 15 of 18 125

flow resistance across the channel structure. For the results
from our implementation, we first extract a smoothed iso-
surface from the optimized density field for each design,
and export to a binary STL file, which is then read by
COMSOL for the same simulation. Observe in Fig. 19 that
our results closely resemble those obtained using the com-
mercial solver, with some intricate inner branching chan-
nel structures that are slightly different from the COMSOL
results. All results together with the computational time
are summarized in Table 4. From the data, we find that the

flow performance of our designs matches well with the
designs obtained using the commercial solver, especially
at higher resolutions. Our solver speed far surpasses the
commercial solver’s built-in performance, as expected. It
is worth noting that our solver’s performance may decay
slightly when the resolution is not an integer power of two,
like 483 , 963 , or 1603 , or the resolution in each dimension is
different, like 128 × 128 × 192 . This is because such grids
can not be coarsened all the way down, as our coarsening
strategy reduces the dimension by half at each multigrid

Fig. 19 Optimization results for a 3D branching channel problem
with different resolutions and outlets. First row: benchmark results
from COMSOL with identical settings. a grid size = 32 × 32 × 32, 3

outlets; b grid size = 48 × 48 × 48, 6 outlets; c grid size = 64 × 64 ×
64, 12 outlets; d grid size = 96 × 96 × 96, 24 outlets

Fig. 20 Optimization result
for a large-scale 3D branch-
ing channel problem (grid size
= 192 × 192 × 192) with 56
outlets

 J. Liu et al.

1 3

125 Page 16 of 18

level. The direct solver we used at the coarsest level is
sensitive to the change of problem size. We also conduct
a high-resolution branching design in 3D with 56 outlets,
as shown in Fig. 20. Here, we use a 1923 grid with over 28
million DoF. Even though the resolution is not an integer
power of two, our solver is still capable of solving the
Stokes equations in 54 s and finishing the optimization run
in 98 minutes over a total of 40 iterations.

7 Conclusions

In this paper, an efficient GPU-based computational
approach was proposed for the flow-based topology opti-
mization. A matrix-free GMRES solver preconditioned by
geometric multigrid was developed on top of a staggered
grid discretization and MAC scheme, which circumvented
the bottleneck of solving the state equations. Our imple-
mentation was designed and optimized for desktop com-
puter architectures enabled by a GPU. The problem size

our implementation can handle was restricted only by the
GPU memory. Through multiple 2D and 3D numerical
examples, we demonstrated the solver performance and
practical results, which for select cases were compared with
solutions obtained using existing commercial software and
open-source libraries. Our approach can handle similar tasks
dozens of times faster than current tools, and seamlessly
tackles larger size design cases.

An immediate next step is to add nonlinearity to the
system to handle flow at a higher Reynolds number. In the
future, we plan to further improve the memory allocation
and explore multi-GPU parallelization. Another prom-
ising direction is to replace the indefinite Stokes equa-
tions with a couple of positive definite systems, similar to
Aage et al. (2008). By doing so, we can boost the system
performance using fast solvers (e.g., conjugate gradient)
which require much less memory overhead. We are also
interested in introducing other physics (e.g., thermal and
structural consideration) to broaden the design space and
application scope.

Appendix 1: Sensitivity

In this section, we discuss the derivative of the objective,
J, with respect to the fluid design density variable, � . The
adjoint method is used to compute the sensitivity. First, we
simplify the notation by defining � = [�,P]T as a stacked
vector comprising all state variables. The linear system in
(4) can be written as A� = � . Since the system matrix, A ,
depends on � , so does the solution vector, � . The objective
is a function of the state and design variables. Let us define
the Lagrangian,

where � is the vector of Lagrange multipliers. As (A� − �)
is zero everywhere by construction, we may choose � freely
such that J = L , and derive the gradients as follows,

If we choose � so that �J
��

+ �TA = 0 , the last term becomes
zero, and we can avoid calculating ��

��
 . This condition is the

adjoint equation:

(9)L(�, �, �) = J(�, �) + �T (A� − �),

(10)

dJ

d�
=

dL

d�

=
�J

��
+

�J

��

��

��
+ �T

(

�A

��
� +A

��

��

)

=
�J

��
+ �T

�A

��
� +

(

�J

��
+ �TA

)

��

��
.

(11)A
T� = −

(

�J

��

)T

.

Table 3 Problem setup in COMSOL for optimization of a 3D branch-
ing channel network, Sect. 6.5

Physics Stokes flow
Domain 0.1 × 0.1 × 0.1 (m3)
Fluid density 1.204 (kg/m3)
Dynamic viscosity 1.813e−5 (Pa s)
Inlet pressure 1e3 (Pa)
Outlet velocity 1 (m/s)
Objective Flow resistance
Fluid volume fraction 0.15
Solver type Direct
Optimization iterations 40
Mesh type Tetrahedral
CPU Intel i9-9980XE

Table 4 Computational time and flow performance comparisons for
the 3D branching channel designs from Fig. 19

a Data from COMSOL
b Data from our approach

Design a b c d
(# of outlets) (3) (6) (12) (24)

Elementsa 32.9e3 94.7e3 268.2e3 767.6e3
Volumea(m3) 1.51e−4 1.52e−4 1.50e−4 1.50e−4
Total timea (min) 5.7 15.4 62.9 445.4
Flow resistancea 2.79 2.39 4.45 5.76
Elementsb

323 483 643 963

Volumeb (m3) 1.46e−4 1.40e−4 1.54e−4 1.57e−4
Total timeb (min) 0.67 2.62 3.08 25.34
Flow resistanceb 3.21 3.23 5.01 5.88

A marker-and-cell method for large-scale flow-based topology optimization on GPU

1 3

Page 17 of 18 125

Here, AT = A based on symmetry, and the state variable,
� , is pre-computed at each iteration. Equation (11) is solved
the same way as the Stokes equations using our multigrid
solver, after which � is substituted to (10) to get the sensitiv-
ity. The objective, J, and matrix, A , are linear functions of
�(�) , and their partial derivatives with respect to � can be
obtained using the chain rule by differentiating (2). Option-
ally, the adjoint can also be obtained by using automatic
differentiation (Griewank and Walther 2008) for the state
equations. Overall, this adjoint formulation is an efficient
way to evaluate the sensitivity, especially when the number
of design variables is large.

Once the sensitivity is computed, it is used to update
the fluid design density variable, � , of each grid cell. The
updated density value is restricted to a range between 0 and
1.

Acknowledgements This project is supported in part by Toyota
Research Institute of North America (TRINA), NSF MRI-1919647,
and NSF HCC-2106733.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results The source code is available on Github with open
access at https:// github. com/ jyl- pages/ Stokes_ TO

References

Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topol-
ogy optimization of large scale stokes flow problems. Struct
Multidisc Optim 35(2):175–180

Aage N, Andreassen E, Lazarov BS (2015) Topology optimization
using petsc: an easy-to-use, fully parallel, open source topology
optimization framework. Struct Multidisc Optim 51(3):565–572

Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel
computational morphogenesis for structural design. Nature
550(7674):84–86

Alexandersen J, Andreasen CS (2020) A review of topology optimisa-
tion for fluid-based problems. Fluids 5(1):29

Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimen-
sional topology optimisation of heat sinks cooled by natural con-
vection. Int J Heat Mass Transf 100:876–891

Allaire G (2015) A review of adjoint methods for sensitivity analysis,
uncertainty quantification and optimization in numerical codes.
Ingénieurs de l’Automobile 836:33–36

Andreasen CS, Sigmund O (2013) Topology optimization of fluid-
structure-interaction problems in poroelasticity. Comput Methods
Appl Mech Eng 258:55–62

Andreasen CS, Gersborg AR, Sigmund O (2009) Topology opti-
mization of microfluidic mixers. Int J Numer Methods Fluids
61(5):498–513

Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle
point problems. Acta Numerica 14:1–137

Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes
flow. Int J Numer Methods Fluids 41(1):77–107

Challis VJ, Guest JK (2009) Level set topology optimization of fluids
in stokes flow. Int J Numer Methods Eng 79(10):1284–1308

Challis VJ, Roberts AP, Grotowski JF (2014) High resolution topol-
ogy optimization using graphics processing units (GPUS). Struct
Multidisc Optim 49(2):315–325

Chen L (2016) Finite difference method for stokes equations: Mac
scheme

Crane K (2018) Discrete differential geometry: an applied introduction.
Notices of the AMS, Communication, pp 1153–1159

Deaton JD, Grandhi RV (2014) A survey of structural and multidis-
ciplinary continuum topology optimization: post 2000. Struct
Multidisc Optim 49(1):1–38

Dede EM (2009) Multiphysics topology optimization of heat transfer
and fluid flow systems. In: Proceedings of the COMSOL users
conference

Dede EM (2012) Optimization and design of a multipass branch-
ing microchannel heat sink for electronics cooling. J Electron
Packag 134(4)

Dede EM, Zhou Y, Nomura T (2020) Inverse design of microchan-
nel fluid flow networks using turing pattern dehomogenization.
Struct Multidisc Optim 62:2203–2210

Demidov D (2019) Amgcl: an efficient, flexible, and extensible
algebraic multigrid implementation. Lobachevskii J Math
40(5):535–546

Demidov D, Mu L, Wang B (2021) Accelerating linear solvers for
stokes problems with c++ metaprogramming. J Comput Sci
49:101285

Dilgen CB, Dilgen SB, Fuhrman DR, Sigmund O, Lazarov BS (2018)
Topology optimization of turbulent flows. Comput Methods
Appl Mech Eng 331:363–393

Du T, Wu K, Spielberg A, Matusik W, Zhu B, Sifakis E (2020)
Functional optimization of fluidic devices with differentiable
stokes flow. ACM Trans Graphics 39(6):1–15

Evgrafov A (2006) Topology optimization of slightly compressible
fluids. J Appl Math Mech 86(1):46–62

Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology opti-
mization of channel flow problems. Struct Multidisc Optim
30(3):181–192

Griewank A, Walther A (2008) Evaluating derivatives: principles and
techniques of algorithmic differentiation. SIAM, Philadelphia

Guest JK, Prévost JH (2006) Topology optimization of creeping fluid
flows using a Darcy-Stokes finite element. Int J Numer Methods
Eng 66(3):461–484

Herrero-Pérez D, Castejón PJM (2021) Multi-GPU acceleration
of large-scale density-based topology optimization. Adv Eng
Softw 157:103006

Jiang T (1970) A first order method of moving asymptotes for struc-
tural optimization. WIT Trans Built Environ 14

John V, Tobiska L (2000) Numerical performance of smoothers
in coupled multigrid methods for the parallel solution of the
incompressible navier-stokes equations. Int J Numer Methods
Fluids 33(4):453–473

Kondoh T, Matsumori T, Kawamoto A (2012) Drag minimization
and lift maximization in laminar flows via topology optimiza-
tion employing simple objective function expressions based on
body force integration. Struct Multidisc Optim 45(5):693–701

Kontoleontos E, Papoutsis-Kiachagias E, Zymaris A, Papadimitriou
D, Giannakoglou K (2013) Adjoint-based constrained topol-
ogy optimization for viscous flows, including heat transfer. Eng
Optim 45(8):941–961

Kreissl S (2011) Topology optimization of flow problems modeled
by the incompressible Navier-Stokes equations. PhD thesis,
University of Colorado at Boulder

Liu H, Mitchell N, Aanjaneya M, Sifakis E (2016) A scalable Schur-
complement fluids solver for heterogeneous compute platforms.
ACM Trans Graphics 35(6):1–12

https://github.com/jyl-pages/Stokes_TO

 J. Liu et al.

1 3

125 Page 18 of 18

Liu H, Hu Y, Zhu B, Matusik W, Sifakis E (2018) Narrow-band
topology optimization on a sparsely populated grid. ACM Trans
Graphics 37(6):1–14

Martínez-Frutos J, Herrero-Pérez D (2016) Large-scale robust topol-
ogy optimization using multi-GPU systems. Comput Methods
Appl Mech Eng 311:393–414

Maute K, Frangopol DM (2003) Reliability-based design of
mems mechanisms by topology optimization. Comput Struct
81(8–11):813–824

Olesen LH, Okkels F, Bruus H (2006) A high-level programming-
language implementation of topology optimization applied
to steady-state Navier-Stokes flow. Int J Numer Methods Eng
65(7):975–1001

Papoutsis-Kiachagias EM, Giannakoglou KC (2016) Continuous
adjoint methods for turbulent flows, applied to shape and topol-
ogy optimization: industrial applications. Arch Comput Methods
Eng 23(2):255–299

Pironneau O (1974) On optimum design in fluid mechanics. J Fluid
Mech 64(1):97–110

Rozvany GI (2009) A critical review of established methods of
structural topology optimization. Struct Multidisc Optim
37(3):217–237

Sá LF, Okubo CM, Silva EC (2021) Topology optimization of subsonic
compressible flows. Struct Multidisc Optim 64:1–22

Schmidt S, Schulz V (2011) A 2589 line topology optimization code
written for the graphics card. Comput Vis Sci 14(6):249–256

Sigmund O, Maute K (2013) Topology optimization approaches. Struct
Multidisc Optim 48(6):1031–1055

Vanka SP (1986) Block-implicit multigrid solution of Navier-Stokes
equations in primitive variables. J Comput Phys 65(1):138–158

Vicente W, Picelli R, Pavanello R, Xie Y (2015) Topology optimiza-
tion of frequency responses of fluid-structure interaction systems.
Finite Elem Anal Des 98:1–13

Wadbro E, Berggren M (2009) Megapixel topology optimization on a
graphics processing unit. SIAM Rev 51(4):707–721

Wittum G (1989) Multi-grid methods for Stokes and Navier-Stokes
equations. Numerische Mathematik 54(5):543–563

Wu J, Dick C, Westermann R (2015) A system for high-resolution
topology optimization. IEEE Trans Vis Comput Graphics
22(3):1195–1208

Yadav P, Suresh K (2014) Large scale finite element analysis via
assembly-free deflated conjugate gradient. J Comput Inf Sci Eng
14(4)

Yaji K, Ogino M, Chen C, Fujita K (2018) Large-scale topology
optimization incorporating local-in-time adjoint-based method
for unsteady thermal-fluid problem. Struct Multidisc Optim
58(2):817–822

Yoon GH (2010) Topology optimization for stationary fluid-structure
interaction problems using a new monolithic formulation. Int J
Numer Methods Eng 82(5):591–616

Zhou S, Li Q (2008) A variational level set method for the topology
optimization of steady-state Navier-Stokes flow. J Comput Phys
227(24):10178–10195

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A marker-and-cell method for large-scale flow-based topology optimization on GPU
	Abstract
	1 Introduction
	2 Related work
	3 Topology optimization
	3.1 Flow model
	3.2 Optimization formulation
	3.3 Post processing

	4 Multigrid solver
	4.1 Smoothing
	4.2 Restriction and prolongation
	4.3 Storage-free matrix vector multiplication

	5 Implementation
	5.1 Data layout
	5.2 Discrete operators
	5.3 Other details

	6 Numerical examples
	6.1 Rugby ball (2D)
	6.2 Pipe design (2D)
	6.3 Branching channels (2D)
	6.4 Pipe design (3D)
	6.5 Branch channels (3D)

	7 Conclusions
	Acknowledgements
	References

