
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 1

Impulse Fluid Simulation
Fan Feng, Jinyuan Liu, Shiying Xiong, Shuqi Yang, Yaorui Zhang, Bo Zhu

Abstract—We propose a new incompressible Navier–Stokes solver based on the impulse gauge transformation. The mathematical
model of our approach draws from the impulse–velocity formulation of Navier–Stokes equations, which evolves the fluid impulse as an
auxiliary variable of the system that can be projected to obtain the incompressible flow velocities at the end of each time step. We solve
the impulse-form equations numerically on a Cartesian grid. At the heart of our simulation algorithm is a novel model to treat the
impulse stretching and a harmonic boundary treatment to incorporate the surface tension effects accurately. We also build an impulse
PIC/FLIP solver to support free-surface fluid simulation. Our impulse solver can naturally produce rich vortical flow details without
artificial enhancements. We showcase this feature by using our solver to facilitate a wide range of fluid simulation tasks including
smoke, liquid, and surface-tension flow. In addition, we discuss a convenient mechanism in our framework to control the scale and
strength of the turbulent effects of fluid.

Index Terms—fluid simulation, vortical structures, gauge methods, physics-based animation.

F

1 INTRODUCTION

Solving transformed Navier–Stokes equations has been
an intriguing research topic for an extended period in fluid
mechanics, numerical mathematics, and computer graphics
(e.g., [1], [2]). The most salient example of these trans-
formations is the vorticity form of Navier–Stokes equa-
tions: By taking the curl of both sides of the momentum
conservation equation, we obtain the description of three-
dimensional, incompressible, viscous fluids by evolving its
vorticity field instead of its velocity in the fluid domain.
At the end of each time step, the velocity field is obtained
from the vorticity field by solving a Poisson equation for
each axis. Such vorticity–velocity formulation, facilitated
by its many Lagrangian numerical schemes (conventionally
named as “vortex methods”, see [2] for a thorough review),
has demonstrated its inherent advantages in expressing and
preserving vortical features in many computer graphics and
computational physics applications [3], [4], [5], [6].

In addition to vortex methods, many other Navier–
Stokes transformations have been explored in the history
of computational fluid dynamics (CFD), such as impulse
method [1], [7], velicity method [8], magnetization variable
[9], impetus term [10], and continuous projection form [11],
all of which decouple the system’s temporally evolving vari-
able from the fluid velocity. Such mathematical decoupling
will create additional freedom in the numerical procedure
to tackle the interaction between the fluid boundary and the
global incompressibility constraints. In the CFD literature,
this family of methods was referred as ”gauge methods,”
and the extra set of variables being evolved is called ”gauge
variables.” Pioneered by Roberts [12] and Oseledets [13]
and followed by many others (e.g., see [1], [8], [10], [14]),
gauge methods have been used widely in building high-
order Navier–Stokes solvers to tackle complex incompress-
ible fluid simulations in engineering. Mathematically, a

• Everyone is with the Department of Computer Science, Dartmouth Col-
lege, Hanover, NH, 03755.
E-mail: fan.feng.gr@dartmouth.edu

Manuscript received xx xx, 2021; revised xx xx, 2022.

gauge method solves the evolution of an auxiliary vari-
able (usually denoted as m) instead of the fluid velocity
u directly. Specifically, m’s divergence-free part gives u,
which can be calculated via a projection step u = m − ∇p
based on Helmholtz-Hodge decomposition, with p as an
auxiliary scalar variable. The input of the projection step in
a gauge method is the gauge variable, and the output is the
divergence-free velocity. In contrast, the input and output of
a projection step in a conventional way are both the velocity
field. This projection step indicates potentially the most
salient feature of a gauge method that the evolved gauge
variable and the projected fluid velocity are only loosely
coupled and can deviate from each other even drastically
over time.

Gauge methods can potentially benefit fluid animation
applications in two aspects. First, the weak coupling be-
tween the gauge and the physical quantities allows de-
signing an appropriately evolving gauge variable that can
produce and preserve the visually essential flow features.
Second, the similarities between a gauge formulation and
the original Navier–Stokes equations make it possible to
build a gauge solver by reusing the plethora of existing
high-performance simulation infrastructures. However, to
date, notwithstanding its wide applications in solving com-
plex fluid simulations in CFD, there was hardly any pre-
vious success in leveraging or modifying a gauge solver
to directly furnish support for fluid animation applica-
tions. We speculate two reasons for this silent failure: First,
most of the gauge formulations are not Lagrangian (e.g.,
[14]). We cannot obtain a Dm/Dt from the gauge ex-
pression conveniently, which hinders the usage of many
mature Lagrangian-nature numerical techniques such as the
semi-Lagrangian advection scheme [15] and the PIC/FLIP
method [16] that are vital to a graphics application’s ef-
fects and performance. Second, despite its high-order ac-
curacy, the numerical implementation of a gauge method
is typically overly complicated, especially when it comes to
its boundary treatments. Such implementation complexities
prevent the technique from being used widely in accommo-

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 2

dating light-weighted fluid simulation applications where
numerical accuracy is not the top consideration. Third, we
lack a clear mechanistic understanding of the relationship
between a mathematical gauge formulation and its potential
for delivering better fluid simulation effects. In short, the
CFD gauge methods are not fully ready for use to support a
broad scope of fluid animation applications.

This paper devises a versatile gauge incompressible flow
solver to facilitate fluid animation applications. We aim to
bring to the computer graphics audience’ attention a specific
category of gauge solvers — the impulse gauge solvers
— which was first derived by Cortez et al. [7], [17], [18]
to model the momentum transfer process between inviscid
incompressible flow and massless elastic membranes. Com-
pared with other mainstream gauge methods, the impulse
gauge method is featured by its particular affinities to the
conventional fluid solvers in computer graphics, such as
an advection-projection method or a vortex method. We
elucidate three of these similarities as follows. First, the
impulse gauge variable is Lagrangian. In Cortez’s original
work [17], the impulse variables were stored and evolved
on a set of discrete particles to calculate the evolution
of force-bearing filaments or membranes immersed in a
fluid environment. Second, the boundary treatments in an
impulse solver resemble the traditional way in an advection-
projection scheme. Third, the physical meaning of impulse
is inherently connected to vorticity, all such fields change in
time along the paths like a material element moving with
the fluid [19], which indicates the potential of an impulse
method better to preserve vortical flow features than the
standard methods. In retrospect, an impulse method was
typically classified in the same category as vortex methods
in many literature surveys (e.g., see [20]). One of the main
differences between an impulse solver and a vortex solver is
that an impulse solver requires to solve the Poisson equation
for once (the same as in a standard advection-projection
scheme) to obtain the divergence-free velocity field.

Considering these potential computational benefits, we
present a new incompressible fluid solver based on the
impulse gauge formulation of Navier–Stokes equations. Our
model is discretized on an Eulerian grid. The vast majority
of our solver’s modules are built based on the existing grid-
based fluid simulation techniques, including the marker-
and-cell (MAC) discretization, semi-Lagrangian advection,
finite difference, Poisson solver and projection, etc. With
these modulated high-performance algorithms available in
hand, we delivered two key innovations to adapt an impulse
fluid model into a classical Eulerian fluid simulation frame-
work. First, we devised an implicit algorithm to handle the
impulse stretching term. Second, we employ a harmonic
representation to handle the interaction between the free
boundary and the interior. With the additional harmonic
model integrated into our framework, we can capture the
various interfacial flow phenomena such as strong surface
tension and solid boundary effects. We show by a host of
numerical simulations that our impulse solver can facilitate
a rich set of fluid simulation tasks in computer graphics,
ranging from smoke, liquid, surface-tension flow to solid-
fluid coupling. We show that a naive implementation of our
impulse gauge solver can capture and evolve vortical flow
structures better than a conventional advection-projection

scheme enhanced by vorticity confinement. We further pro-
vide an artistic tuning parameter in our framework that can
control the scale and strength of the generated vorticity,
allowing the animation of turbulent effects with a wide
range of vorticity scales.

We summarize our technical contributions as follows:

• We develop the first Eulerian impulse-based gauge
method to support vortical flow simulations.

• We devise a novel numerical scheme to facilitate
the numerical treatment of stretching, which can be
extended to other types of fluid solvers.

• We extend the impulse method to an Eulerian-
Lagrangian framework with a harmonic treatment to
handle free-surface flow with surface tension.

2 RELATED WORKS

2.1 Impulse and other gauge methods
Cortez [7] first introduced an impulse-based method in
order to treat boundary forces, by defining and evolving
the impulse density equivalent to the velocity up to a
gradient of a scalar field. His work is limited to free space
by assuming uniform density and can not tackle disconti-
nuity near the interface. Cortez [21] analyzes a Lagrangian
numerical method based on impulse variables, by showing
that the impulse flow approximates the flow induced by
smoothed vortex sheets. Thus, the impulse variables can
represent dipoles and the impulse equations update the
dipole strengths appropriately, which are suitable to model
immersed boundary problems with surface force. Cortez
[18] uses a combined vortex/impulse method to study
flows induced by the motion of thin flexible boundaries
immersed in an incompressible fluid. The impulse elements
are attached to the boundaries and are used to model the
boundary-induced forces. The vortices are surrounding the
boundaries to account for the viscous diffusion. Among
these works, impulse density must be carried by Lagrangian
particles to have physical meaning, and the interfacial
discontinuity remains unsolved. In our method, we store
impulse variables on an Eulerian grid and design a series
of treatments for different types of boundaries commonly
seen in fluid simulation. The general gauge method was
introduced back in [13] by rewriting the Navier-Stokes equa-
tions into its Hamiltonian formula. The main purposes of
choosing different types of gauge variables include allowing
accurate treatment of boundary conditions [22], preserv-
ing invariants of the flow [8] and enhancing the solver’s
accuracy [23]. The most recent progress in this commu-
nity includes Robert Saye’s works [14], [24], [25] which
developed a series of gauge methods for multiphase fluid
flow problems with large interfacial discontinuity. Based
on the discontinuous Galerkin framework, different choices
of the gauge with appropriate boundary handling have
been proposed for various types of fluids. In this work,
we adapt some of Saye’s ideas on boundary treatments
for our impulse-based method, but we evolve a different
gauge variable. In the most recent work [26], they evolve a
transformed wave function as the gauge variable to preserve
vortical structures. This work is different from ours for the
physical meaning of the gauge variable and the numerical
treatment of each term.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 3

2.2 Vortex methods and stretching treatments
Vortex methods are special types of gauge methods by
devising vorticity as the gauge variable and rewriting the
fluid equations into their vorticity-velocity form [27], [28],
[29]. By advecting vorticity directly, these solvers naturally
preserve circulation within the fluid [2]. Vorticity methods
usually rely on Lagrangian elements to evolve the flow
features, for instance, particles [2], [3], [30], filaments [27],
[31], [32], and sheets [5], [29]. Vorticity can also be used
as a primary variable to improve the mesh-based Eulerian
simulation [33], which inspires [34] to use vorticity directly
in existing grid-based solvers. The drawbacks of vorticity
modeling lie in the difficulties of geometric management
and boundary treatments of certain types. Many recent
approaches are of a hybrid fashion, either by using grids
to improve pure Lagrangian methods [35], or by integrating
Lagrangian elements into existing grid-based solvers [28],
[36], [37]. A new term that arises from vorticity modeling is
stretching, which does not take place in 2D flow [38], but
plays an important role in 3D vortex methods by producing
local intensification and reorientation of the vorticity [3],
[34], [36]. In our work, we explore different implementations
of stretching and eventually find that implicit stretching
on cell centers produces robust and high-quality results. To
avoid the vorticity field becoming divergent and resulting in
instability of the simulation, we rely on the viscous diffusion
to maintain stability.

2.3 Other vorticity confined methods
Two mainstream approaches to preserve vorticity structures
in the graphics community include using high-order numer-
ical schemes to reduce dissipation and adding additional
artificial terms to replenish dissipated details. For the first
category, advection is usually the main source of diffusion,
and people have designed a series of high order advection
schemes, such as BFECC [39], MacCormack [40], BiMocq
[41], and energy-preserving integrators [42]. A special yet
effective technique to alleviate diffusion of grid-based ad-
vection is by incorporating Lagrangian particles. Zhu and
Bridson [43] adapt Fluid-Implicit-Particle (FLIP) method
[44] by interpolating the change of the flow from the grid
to reduce diffusion, which inspires the development of a
series of hybrid Lagrangian-Eulerian schemes to conserve
flow details [45], [46], [47], [48]. For the second category,
Fedkiw et al. [15] first adapt the vorticity confinement force
derived from the local flow field and add it to the control
equation as an artificial force. Kim et al. [49] use the wavelet
decomposition to find missing high-frequency components
and synthesize them back to the velocity field. Bridson et al.
[50] generate turbulent velocity fields based on Perlin noise.
Our simulator is orthogonal to these methods and we do
incorporate some techniques to reduce dissipation in our
experiments. Recently, Chern et al. [51] open another direc-
tion for vortical flow simulation by solving Schrödinger’s
equation, which exhibits visually appealing vortical details.

3 PHYSICAL MODEL

3.1 Incompressible Navier–Stokes equations
We consider the incompressible Navier–Stokes equations in
domain Ω with its boundary including free surface ∂Ωf and

TABLE 1: Notation Table
Notation Description
m ∈ Rd Impulse
u ∈ Rd Velocity
ϕ ∈ R Gauge variable for incompressibility
q ∈ R Gauge variable for free surface
φ Levelset for free surface

ν ∈ R Kinematic viscosity
G ∈ R Gravitational potential
γ ∈ R Surface tension
κ ∈ R Mean curvature of the free surface
ρ ∈ R fluid density
ρ′ ∈ R smoke soot density

solid wall ∂Ωb. We write the governing equations as
Du

Dt
= −∇

(
p

ρ
−G

)
+ ν∇2u,

∇ · u = 0,

(1)

where D/Dt = ∂/∂t+ u ·∇ is the material derivative, p is
the pressure, ρ is the fluid density (constant for incompress-
ible flow), G = g · x is the gravitational potential, and ν is
the kinematic viscosity.

On the free surface, the normal stress of the fluid bal-
ances the force of surface tension

p = γκ, x ∈ ∂Ωf , (2)

where γ is the surface tension coefficient and κ is the mean
curvature of the free surface. Here, we do not consider the
viscous stress on the free surface. On the solid boundary, the
flow satisfies non-penetrating boundary conditions, namely
the normal flow velocity is equal to the normal solid velocity
as

n · u = n · ub, x ∈ ∂Ωb, (3)

where ub is the velocity of the boundary wall, and n is the
surface normal. We do not consider the non-slip condition
here.

3.2 Gauge transformation

3.2.1 Impulse gauge variables

In this section, we show the transformation of Navier–
Stokes equations to its impulse gauge form according to [7].

We first transform the divergence-free velocity field u to
its impulse expression m as

m = u + ∇ϕ, (4)

where ϕ satisfies
∇2ϕ = ∇ ·m, x ∈ Ω

∂nϕ = 0, x ∈ ∂Ωb,

ϕ = 0, x ∈ ∂Ωf ,

(5)

with ∂n = n ·∇ as the normal gradient. The equation set
(5) can be analogized as the conventional projection step by
solving a Poisson equation (the first row) constrained by the
standard free-surface (the second row) and solid boundary
conditions (the third row), with m and u as the input and
output fields of the projection.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 4

Substituting (4) and (5) into (1), (2), and (3) yields the
impulse form of Navier–Stokes:

Dm

Dt
= − (∇u) ·m−∇q + ν∇2m, x ∈ Ω,

u = m−∇ϕ, x ∈ Ω

n ·m = n · ub, x ∈ ∂Ωb,

q =
γκ

ρ
− 1

2
|u|2 −G+ ν∇2ϕ, x ∈ ∂Ωf ,

(6)

where

q =
p

ρ
− Dϕ

Dt
− 1

2
|u|2 −G+ ν∇2ϕ. (7)

We refer the readers to the Appendix for a detailed deduc-
tion of (6). Similar to the standard Navier–Stokes equations,
the equation set (6) contains a momentum equation (the first
row), an incompressibility constraint (the second row), solid
(the third row) and free-surface (the fourth row) boundary
conditions. The free-surface boundary conditions are en-
forced via a gauge variable q, which we will explain more
in the next sub-subsection. The momentum equation in (6)
holds a Lagrangian form of m, whose evolution is governed
by the three terms on the right-hand side. These three terms
include the stretching of m, the gradient of q, and the
viscosity of m. Instead of directly solving fluid velocity
u, we evolve the impulse m, and then recover u from m
by (4). The benefit in this construction is that m is freed
from having to satisfy a global incompressibility constraint
in its dynamics evolution, holding several advantages for
designing flexible temporal evolution schemes.

3.2.2 The choice of q
We devise a second gauge variable q to transfer boundary
forces on the free surface such as surface tension into the
bulk domain. Mathematically, because q is a gauge variable,
its values can be defined arbitrarily (and the values of ϕ
and m need to change accordingly, of course), without
affecting the behavior of u. We show a numerical example
below to illustrate this gauge-velocity independence. On the
other hand, because the values of q, ϕ, and m are inter-
dependent with each other, we want to enforce additional
constraints in the system to guarantee a unique solution of
(6). There are many different ways to add such constraints.
We choose to enforce a harmonic q following the design
choice made in [14] to yield stable free-surface behaviors.
We solve ∇2q = 0 with a Neumann boundary condition on
Ωb. Other values for the right hand side is also acceptable
but a Poisson solve is a must since we want to transfer the
surface tension smoothly inside and still maintain a jump
in pressure with the air outside. We choose 0 for the right
hand side here out of convenience for calculation. Thus, we
obtain the constraint equation of q by combining (2) and (7)
as

∇2q = 0, x ∈ Ω,

∂nq = 0, x ∈ ∂Ωb

q − γκ

ρ
+

1

2
|u|2 +G = 0, x ∈ ∂Ωf .

(8)

We do not count the viscosity effect on the free surface.
It is worth noting that we only solve for a harmonic q

when there is a free surface (liquids) in the simulation. If

there is no free surface (smoke), we simply set q = 0 for
the entire domain, which reduces the computation cost of
solving the Poisson equation for q with nontrivial condi-
tions. This simplification was introduced and validated by
Cortez in his dissertation [17] (Chapter 2) when solving
the incompressible impulse flow without boundary. One
can also add surface tension into m directly and only
perform one Poisson solve to obtain the velocity, although
numerically it is not as stable as performing two separate
Poisson solves.

We conduct a simple numerical experiment using the
pseudo-spectral method [52] to show the gauge-velocity
independence by simulating a Taylor vortex flow with dif-
ferent choices of q. Figure 1 shows the simulation results
and the temporal evolution of the volume-averaged kinetic
energy of Taylor vortex flow for different q selections. We
can see that for different q, their flow fields exhibit the same
evolution with consistent statistical energy.

Fig. 1: The temporal evolution of the volume-averaged
kinetic energy of Taylor vortex flow with different choices
of q. The simulation was implemented using the pseudo-
spectral method in MatLab (see the supplementary source
code for details).

3.3 Incompressible impulse flows
Finally, we obtain the ready-to-solve impulse flow equations
by combining equations (5), (6), and (8) as

Dm

Dt
= − (∇u) ·m−∇q + ν∇2m,

∇2q = 0,

∇2ϕ = ∇ ·m,

u = m−∇ϕ,

x ∈ Ω. (9)

The equation set (9) specifies the impulse transformation
of Navier–Stokes with the impulse m and gauge vari-
ables ϕ and q. The first equation specifies the momentum
conservation. The second equation constraints a harmonic
gauge variable q. The third and fourth equations specify the
projection from m to u.

The solid boundary conditions are specified as
n ·m = n · ub,
∂nϕ = 0,

∂nq = 0,

x ∈ ∂Ωb, (10)

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 5

and the free surface boundary conditions are
ϕ = 0,

q − γκ

ρ
+

1

2
|u|2 +G = 0

x ∈ ∂Ωf .D (11)

To summarize, we derive the impulse equations (9), (10),
and (11) to facilitate the modeling of incompressible flow
with a free surface.

3.4 Buoyancy
We adopt the Boussinesq approximation [53] to simulate
fluid with the evolving smoke soot density. Variations in
fluid properties other than density are ignored, and density
only appears when it is multiplied by the gravitational con-
stant. In particular, buoyancy can be applied to m directly
as

Dm

Dt
= − (∇u) ·m−∇q + ν∇2m +

ρ′

ρ
g,

Dρ′

Dt
= 0,

(12)

where ρ′ is the effective smoke density and ρ a constant
background density. The other conditions for solving (12)
are the same as for (9), (10), and (11).

4 NUMERICAL ALGORITHM

We devise a numerical framework to solve the incompress-
ible impulse flow equations defined in (9), (10), (11), and
(12). Our solver uses a standard MAC grid for spatial
discretization, where both u and m are stored on grid face
centers and the gauge variables ϕ, q, smoke soot density
ρ′ or levelset value φ are stored on cell centers. A levelset
function is used to track the liquid interface.

We assume that the readers are already familiar with a
standard advection-projection fluid simulator such as [15],
[54]. Most of the numerical implementations of an impulse
solver can reuse parts in a standard advection-projection
solver, such as discretization, Semi-Lagrangian advection,
projection, and applying body forces. The simulation loop
in a single time step consists of reinitialization, advection,
stretching, viscosity, and projection. We will discuss each
step as follows. Because the impulse variable m is updated
in many of these steps, we highlight the naming convention
for m that the superscript of m we use here describes the
time discretization of impulse while the subscript indicates
the specific intermediate step of the time splitting of m.

4.1 Reinitialization
At the beginning of each time step, we choose to reinitialize
impulse mn by blending its values with a small portion
of the velocity un after a time interval. In particular, we set
mn
r = rmn+(1−r)un,with r as a global parameter close to

1. In most of our simulations, we use r = .97 for each time
step. r = 1 means no reinitialization, while r = 0 means
mn is completely reinitialized as un. The motivation for this
reinitialization step is to avoid the impulse variable accumu-
late over time and become too large, which causes numerical
instability during simulation. It is worth noting that this
reinitialization scheme only blurs the non-divergence-free

part of m, which guarantees to obtain the same projected
velocity after projection. Similar numerical treatments have
been employed in other forms of gauge methods (e.g., see
[14]), but we use reinitialization for each time step instead
of once every several steps. We demonstrated the numerical
effect of r in our smoke simulation in Section 6.2.

4.2 Advection

We need to advect impulse by velocity as Dm/Dt = 0,
when only considering the advection effect. Specifically, we
discretize the advection step as the following formula:

mn+1
r −mn

r

∆t
+ un ·∇mn

r = 0, (13)

from which we get

mn+1
r = mn

r −∆tun ·∇mn
r . (14)

Since our method is orthogonal to different advection
schemes, here we adopt the classic Semi-Lagrangian method
for smoke simulations and PIC/FLIP method for liquid
simulations to advect the impulse field and other auxiliary
quantities. For PIC/FLIP advection, we first interpolate
different quantities (mn

r , un) to particles and then evolve
each particle as xn+1 = xn + ∆tun, where x represents the
position of a particle. Then we use extrapolation to return
quantities back to the grid and the following operations
happen on the grid.

4.3 Stretching

Accompanied by advection, (∇u) ·m in (9) is the stretching
term for impulse, which accounts for the deformation of m
due to advection. Although the stretching term also appears
in the vortex method in three dimension, we need some
different treatments specifically to m. After extensive ex-
periments with different numerical stretching methods, we
find that implicit stretching computation on cells provides
the best numerical stability.

With time splitting and discretization in an implicit
manner, we have

mn+1
s = mn+1

r −∆t(∇un) ·mn+1
s . (15)

After arranging terms, we obtain

mn+1
s = [I + ∆t(∇un)T]−1mn+1

r . (16)

Because both velocity and impulse quantities are stored in a
staggered version, we can not process this step fully on the
center of grid faces. We need to first interpolate impulse
and velocity to cell centers respectively to align storage
positions of different components. We then compute ∇un
using the third-order central difference method discretized
on a Cartesian grid. For calculating the inverse transpose
of the local deformation gradient, [I + ∆t(∇un)T]−1, we
use a direct solve. When ∆t is small, the local deformation
gradient matrix is close to an identity matrix, thus avoiding
singularity. Lastly, instead of directly setting the impulse on
the face center to the newly calculated impulse, we calculate
the difference of m before and after stretching on the cell,
interpolating it back to the face and applying the delta
difference on the original impulse on the grid face.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 6

4.4 Viscosity
As a numerical solver of incompressible viscous flow, we
calculate the viscosity by using a stable numerical scheme.
Specifically, we use the implicit backward Euler time inte-
gration scheme [55] to discretize ν∇2m in (9) as

mn+1
v = mn+1

s + ν∆t∆hm
n+1
v . (17)

After gathering mn+1
v term to the left-hand side of (17), we

obtain
[I − ν∆t∆h]mn+1

v = mn+1
s , (18)

where ∆h is the second-order central difference scheme of
the Laplacian operator. By using the red-black Gauss-Seidel
iterative method to solve the linear system (18) until con-
vergence, we obtain the numerical solution of mn+1

v . Since
the kinematic viscosity ν used in our experiments are set to
be very small 1× 10−3–1× 10−6, the iterative solver usually
converges in 2-4 iterations. Notice that some other gauge
methods also add viscosity either explicitly or implicitly for
a stable solve.

4.5 Boundary and external force
We numerically solve the harmonic q for free-surface flow
simulation to transfer the boundary pressure jump (such
as surface tension) into the interior fluid region. The solver
relies on the same Poisson system as solving for ϕ (the
projection step), with differences only occurring on the
right-hand side. Therefore, we only assemble the matrix
once and it will be used for both the harmonic step and the
projection step. We solve (8) to obtain q. Jump conditions
that need to be added to the right-hand side include the
pressure jump caused by the local curvature, as well as G,
which is the gravitational potential G = g ·x. By solving the
Poisson equation for q with these two boundary conditions
enforced, the resulting m projected by q can correctly reflect
the gravity and surface tension effect.

For other external forces, such as buoyancy in Section
3.4, we add it directly to the impulse m. After the boundary
projection of gauge variable q for liquid and adding the
external force, we obtain the final impulse variable at the
end of each time step as mn+1.

4.6 Divergence-free projection
In the projection step, we project mn+1 to un+1 by remov-
ing its non-divergence-free part ∇ϕ. The numerical process
is exactly the same as that in a standard advection-reflection
solver. Specifically, we use a multigrid preconditioned con-
jugate gradient solver on GPU to accelerate the numerical
solving of the Poisson equation. Note that mn+1 does not
change and does not need to be divergence-free after the
projection. The projected vector field is assigned to un+1.

5 TIME INTEGRATION

Our solver simulates smoke and liquid with steps as speci-
fied in Algorithms 1 and 2. We summarize the overall time
splitting as follows:

• First, we reinitialize the impulse m by a weighted
blending with the velocity u on the grid. This is to
avoid the infinite growth of the impulse m.

Algorithm 1 Simulation of Smoke with Buoyancy

Input: un, mn, ρ′n, ∆t Output: un+1, mn+1, ρ′n+1

1: Reinitialization: mn
r = rmn + (1− r)un . Sec.4.1

2: mn+1
r ← SemiLagrangianAdvection(un, mn

r , ∆t) .
Sec.4.2

3: ρ′n+1 ← SemiLagrangianAdvection(un, ρ′n, ∆t)
4: Implicit stretching: mn+1

s = [I + ∆t(∇un)T]−1mn+1
r .

Sec.4.3
5: Implicit viscosity: mn+1

v = [I − ν∆t∆−1h]−1mn+1
s .

Sec.4.4
6: Apply buoyancy: mn+1 = ρ′n+1

ρ g∆t+ mn+1
v . Sec.4.5

7: Solving ϕ . Eq. (5)
8: Divergence projection: un+1 = mn+1 −∇ϕ . Sec.4.6

Algorithm 2 Simulation of Water with Surface Tension

Input: un, mn, φn, ∆t Output: un+1, mn+1, φn+1

1: Reinitialization: mn
r = rmn + (1− r)un . Sec.4.1

2: Grid m and u to particle . PIC/FLIP
3: Advection of the particles and the level-set φ
4: Particle m, u to grid . PIC/FLIP
5: Implicit stretching: mn+1

s = [I + ∆t(∇un)T]−1mn+1
r .

Sec.4.3
6: Implicit viscosity: mn+1

v = [I − ν∆t∆h]−1mn+1
s .

Sec.4.4
7: Solving q . Eq. (8)
8: Boundary projection: mn+1 = mn+1

v −∇q . Sec.4.5
9: Solving ϕ . Eq. (5)

10: Divergence projection: un+1 = mn+1 −∇ϕ . Sec.4.6

• Second, we perform an advection operation on m
and other auxiliary quantities with the velocity field.
We chose Semi-Lagrangian advection for smoke and
PIC/FLIP advection for liquid simulations.

• Next, a stretching operation is performed on m.
Details about stretching are shown in Section 4.3.

• For viscosity, we add ν∇2m to impulse m implicitly
with a red-black Gauss-Seidel solver.

• Only for fluid simulation, we add surface tension
and gravity potential to q as specified in (11) on
the boundary and pass solve the Poisson problem
∇2q = 0 and apply the correction to m in order to
smoothly pass in momentum from the boundary.

• Lastly, we use a standard pressure-projection method
on m to get the final velocity u that is divergence-
free. This is done by solving a Poisson equation
constrained by Neumann and Dirichlet boundary
conditions. Note that the impulse m itself is not
changed at this step.

6 RESULTS

First, we apply our method to several classical simulation
setups to examine the correctness of our method. We then
demonstrate our simulation results for smoke and liquid re-
spectively. Within a single uniform framework, we are able
to simulate various intriguing fluid phenomena including

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 7

Fig. 2: Left: Visualization of the magnitude of vorticity in
Taylor vortex simulation at t = 8. The result on the top is
produced by the Eulerian method and the one on the bottom
is by our method. Right: kinetic energy comparison between
these two methods.

Fig. 3: Visualization of the magnitude of vorticity of Karman
vortex street at t=20. Vortices of two different orientations
are formed interchangeably with the same time intervals in
between.

smoke collision, smoke-solid coupling, water surface oscil-
lation and etc. Last, we show our method’s ability to create
more artistic effects by adjusting the damping parameter for
stretching. Note that the Eulerian baseline we use for smoke
simulation is based on [15] and the PIC/FLIP baseline we
use for liquid simulation is based on [16].

6.1 Validations
We test our method on three simulation benchmarks as
follows, from which we validate the correctness of our
method.

In Figure 2, we compare our simulation result of Tay-
lor vortex with that of Eulerian method, both with Semi-
Lagrangian advection. We set up two vortices with an
initial distance 0.81 in a 256 × 256 grid with domain size
2π×2π. Our method not only successfully separates the two
vortices and preserves two clear vortices structures, but also
preserves kinetic energy better than the baseline method, as
illustrated by the graph.

The second benchmark is a 2D Karman Vortex Street
with the same setup as [56]. We place a circular obstacle on
the left side with diameter 0.3m in a 8m× 8m domain. The
incoming source speed is 1m/s with random disturbance
within ±0.01m/s. The grid resolution is 256 × 256 and the
time step size is 0.001. We calculate the Strouhal number
St =

fqD
u∞

equals 0.161, which measures the frequency of
the vortices formulation. This number falls into the range of
0.16–0.18 by previous researchers.

As shown in Figure 4, We first assign a disk in space with
a density slightly higher (ρ′ = 0.1) than the surrounding

Fig. 4: 2D Ink diffusion: An ink drop spreads out under-
water in 2D space. Numbers in the picture denote the grid
resolution of simulation height.

Fig. 5: Top row: The impulse field of a 2d plume example
at t=2, t=4, t=8, and t=12s; Bottom row: the corresponding
velocity field. Values are mapped to colors.

area as the initial space occupied by ink. Then, the cells with
higher density drop down and spread out due to slightly
higher gravitational potential than the surrounding areas.
With impulse transferring momentum across the entire field,
our simulation is able to preserve a more clear vortex
structure while the overall shape is similar to the result of
the Eulerian method with high resolution.

6.2 Smoke simulations

We first show a simple 2D plume example with visualiza-
tions of the impulse field to better demonstrate the evolution
of the impulse field and its relationship to the velocity field.
As shown in Figure 5, we simulated plume spurting in a
256 × 128 grid. The impulse vector field forms a bulging
pattern thus assisting the formulation and preservation of
vortices structures in the velocity field.

As shown in Figure 7, we set a smoke source at the
bottom left corner of a 256 × 128 × 128 grid. The smoke
with initial velocity spurts out from the pipe and forms
a plume blob. We compare our method with the standard
semi-Lagrangian advection and projection with vorticity
confinement method [15], the McCormack advection [40]
with vorticity confinement method, and a vortex method
(IVOCK [34]) in a 3D plume example. We first compare
the visual effects regarding the vortical details. The vorticity
confinement method can preserve large-scale vorticies. The
simulation produced by the McCormack advection pro-
duces smaller-scale vortical features yet at the same time
manifests some unnatural, high-frequency noise. The vortex
method can preserve small and medium sized vortices at
the beginning but produces some small-scale noises in the
later frames. Our impulse method can preserve vortices at
different scales. Next, we compare the performance between

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 8

Fig. 6: Impinging Jets: two jets of smoke collide with each other, forming a colorful bulging volume decorated by vortices
in different scales due to intense momentum interactions in between.

Fig. 7: Plume: These scenes show how smoke bursts out
from a pipe with small diameter by forming a mushroom-
like trajectory due to the intense momentum exchange with
the surrounding air. First row: standard semi-Lagrangian
advection and projection with vorticity confinement. Sec-
ond row: McCormack advection and projection with vor-
ticity confinement. Third row: IVOCK with grid resolution
384x192x192. Last row: our method. We select frame 65 and
165 for all methods.

our approach and the vortex method. The average time
costs of the first ten frames for our method on advec-
tion (including reinitialization), stretching, viscosity, and
projection are 617ms (16%), 702 ms (18%), 625ms (16%),
1983ms (50%) respectively. The average time costs for the
vortex method with the same resolution on advection,
stretching, and vorticity-to-velocity projection (in IVOCK
the projection step includes four Poisson solves: three for
vorticity increments and one for velocity) are 1330ms (13%),

Fig. 8: The plume example with different r values: 0.0, 0.5,
0.9, 0.97 (from left to right, top to bottom)

Fig. 9: Dry ice: this scene shows how smoke collides onto a
ball at a tilted angle under gravity. Turbulence was gener-
ated immediately and formed a chaotic thick smoke layer.
When colliding with the ball, a thin layer of smoke starts
to crawl around the surface. Left column: simulation by
Eulerian method with vorticity confinement. Right column:
simulation by our method.

397ms (3.8%), and 8719ms (83.7%) respectively. Our solver
is implemented in double precision with a GPU Poisson
solver while the IVOCK vortex method is in float precision
and its Poisson solver is on CPU. Both experiments were
run on a AMD Ryzen7 3800x-8core-processor with 64 GB
memory and NVIDIA GEFORCE RTX 2070 GPU. In contrast
to the vortex method, whose vorticity-to-velocity projection

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 9

Fig. 10: Smoke on octopus: two jets of smoke collide with
the octopus model.

constitutes the major time cost of each simulation step, our
impulse solver spent about 50% of the total computation
time (equally) on the steps of advection, stretching, and
viscosity.

Using the same setup as the plume example, we also
conducted a parameter study of the reinitialization coeffi-
cient r. As shown in Figure 8, when r is closer to 0, the
plume behavior resembles more the result of the traditional
Eulerian method, where not many vortices are preserved;
when r is closer to 1, the result resembles more the look of
plume smoke produced by Eulerian method with vorticity
confinement.

As shown in Figure 6, we set up two streaks of smoke in
blue and red color spurt from pipes and collide with each
other within a grid with dimension 256× 256× 256. In this
process, impulse transmits the momentum from one streak
of smoke to the other and the other way around. Eventually
they form the dynamic mix of two colors with bulging form.

We demonstrate flow with a solid boundary in Figure 9.
Within a 256×256×256 grid, we set up a smoke source with
a constant velocity in the upper left corner. The effective
density of the source is ρ′ = 0.1, which makes the smoke
slowly drop down and flow away. Turbulence developed
at a fast speed before hitting the ball, then generated a
layer of smoke with a clear vortex structure wrapping up
the ball with a continuous supplement of the smoke. Com-
pared with the results of the Eulerian method with vorticity
confinement, our method generates more realistic-looking
smoke structures. We also performed an experiment with a
more complex solid boundary (as shown in Figure 10) to
demonstrate the flow around complex solid boundary. We
can observe complex vortical structures developing around
the octopus boundary.

For all smoke simulations, we use reinitialization coeffi-
cient r = 0.97 and kinematic viscosity coefficient ν = 1e−6.
We use cfl = 0.6 for the plume and dry ice example and
cfl = 0.5 for the impinging smoke example.

6.3 Water simulations

We show three examples water simulations with surface
tension. In all these examples, we use the PIC/FLIP method
for advection, a level-set to track the free surface, and solve
q to handle the pressure jump caused by surface tension. We
set cfl = 0.5 for all the examples.

As shown in Figure 11, we set up a water tank and let
one droplet fall into the tank within a 128× 128× 128 grid.
Driven by gravitational pull, the external droplet introduces
large momentum to the bulk water on the bottom. Thus,
a large hole formed as our method is able to transport
momentum deep down into the water body.

Fig. 11: Water tank: A droplet with a high initial speed
falls into the tank, causing intensive surface fluctuation and
momentum exchange underneath the water. The surface
tension is 200mN/m. From left to right the simulation is
at frames 15, 33 respectively.

Fig. 12: Top row: Stream passing over a sphere obstacle.
Grid resolution: 128× 80× 48. Bottom row: Stream passing
over multiple obstacles. Grid resolution: 160×120×60. The
surface tension of both these two examples is 500mN/m.

As shown in Figure 12, we show two examples of the
flowing stream. Same for both examples, we place left, front,
back, and bottom walls, and an incoming source on the left
wall. For the first example, one sphere obstacle is placed in
the middle region of the stream, whereas multiple obstacles
with different geometries are placed in the second example.
Here, our method is able to generate the detailed turbulence
on water surface and vortices behind the obstacles.

For the stream with a sphere obstacle example, the
typical time spent on re-initialization, advection, particle-
to-grid, grid-to-particle, stretching, viscosity, boundary pro-
jection and divergence projection steps are 2 ms, 208 ms,
1247 ms, 137 ms, 160 ms, 158 ms, 102 ms and 119 ms
respectively for each time step on a 20-core serverwith
Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, Tesla V100
GPU and 256 GB RDIMM DDR4 memory. Our method adds
23% overhead than the baseline PIC/FLIP method in this
case. This experiment is performed with the same hardware
setup as mentioned for the smoke example.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 10

Fig. 13: Simulations of turbulent flow with small vortical structures controlled by the stretching parameter. Column 1:
Impinging jets with α = 0.21; Column 2: Simulation of dry ice α = 0.21; Column 3: Jets with an octopus obstacle with
α = 0.25; Column 4: A ball hitting on a droplet with α = 0.3 (cross-section view, impulse visualized as segments).

6.4 Stretching parameters

Since the stretching term can sometimes lead to instabil-
ity in the simulation with a large CFL number, we also
experiment with a damped stretching as mn+1

s = [I +
α∆t(∇un)T]−1mn+1

r , where α is the stretching damping
coefficient. We show in this section that by using a small
stretching coefficient α, we can obtain visually interesting
vortical effects with different strengths and sizes. For smoke
simulations, the damped stretching can instantaneously
produce numerous small vortices structures that highlight
the turbulence of the fluid. For liquid simulations, we also
observe small vortices formed inside the liquid. We hypoth-
esize that by weakening the stretching effect, the advection
effect is relatively large thus small vortices are separated
from larger vortices.

As shown in Figure 13 (column 1), we use the same
settings as the example of impinging jets in Figure 6, with
a smaller stretching coefficient α = 0.21. As shown in
Figure 13 (column 2), we use the same settings as in the dry
ice example in Figure 9, with a smaller stretching coefficient
α = 0.21. Both in the impinging jets and dry ice examples,
the results of using small α have similar properties as that
using α = 1, while small α can generate and preserve
abundant small-scale vortical structures and the results with
α = 1 demonstrate vortices preserves a bigger volume. A
shown in Figure 13 (column 3), the orange and blue smoke
shoot from air interchangeably with gradually increasing
initial velocities. We placed a model of an octopus on the
floor to showcase the beautiful interaction of smoke with
geometry in an organic form. Numerous small-scale vortices
near the smoke-air layer were created due to the momentum
transformation with the octopus and surrounding mixture
of air and smoke. As shown in Figure 13 (column 4), the
yellow ball pushes the surface of the droplet and bounces
back; the lengths of the segments inside the droplet indicate
the magnitude of the velocity of each particle, and blue
color demonstrates the strength of the impulse carried by
the PIC/FLIP particles.Here, the impulse of the strike can
be transformed towards the inside of the droplet and forms
small vortexes in the three spatial directions, instead of
bouncing around at the fluid-air interface. Also, as indicated
by the length of the internal segments, our method preserves
momentum for an extended period of time.

7 DISCUSSION

By observing a host of simulations with our impulse
method, we conclude the following characteristics from the
simulations that our solver can produce. First, our impulse
method can produce physically accurate simulations as
demonstrated in a series of validation tests (see Figure 2
for Taylor vortex evolution, Figure 3 for frequency measure-
ment of the Karman vortex street, Figure 4 for ink drop com-
parison with Euler method). Second, our method embraces
better fluid dynamics and makes the transfer of momentum
easier inside the fluid. In the impinging jet (Figure 6) and
dry ice (Figure 9) examples, the simulations exhibit thin
and coherent flow structures when interacting with the solid
boundaries, which was not feasible for standard advection-
projection methods. By decoupling the impulse variable
from the fluid pressure, the impulse will not accumulate the
compulsory correction at each step, and hence can evolve in
a more unrestricted fashion over time (see Figure 5 for the
visualization of impulse-velocity in 2D). Third, our method
preserves vorticity structures on the long run as shown in
our plume (Figure 7), dry ice (Figure 9), and impinging jet
(Figure 6) examples. In addition, our approach also provide
a tunable parameter to control the strength of stretching,
which further allows artistic flexibility in creating turbulent
flow details with different scales of vortices.

Compared with its original Lagrangian form developed
in [17], our version incorporated modern gauge techniques
(e.g., the harmonic q) to enable the simulation of interfacial
flow phenomena. In addition, our numerical solver is built
on an Eulerian discretization, which inherently connects to
many existing large-scale, grid-based simulation methods.
We also demonstrate the efficacy of our impulse model
in the hybrid Eulerian-Lagrangian (PIC/FLIP) simulation
framework. Compared to other gauge methods such as
[14], our impulse-based form enjoys its Lagrangian na-
ture, making it convenient to devise Lagrangian advection
schemes (e.g., we developed all our liquid simulations using
PIC/FLIP method). Compared to Clebsch gauge method,
our method naturally deals with the viscosity term.

8 CONCLUSION AND FUTURE WORK

We propose an impulse-based fluid simulation framework
by reformulating the Navier–Stokes equation into a velocity-
impulse format. By introducing the impulse variable to the

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 11

evolution of the fluid, fluid dynamics can be improved
and vorticity details can be preserved for longer. We show
our method as highly adaptive to simulate various kinds
of fluid phenomena (smoke, free-surface flow and hybrid
particle/grid, etc). Our solver is so simple that decorating it
with higher-order advection/projection schemes is simply
straightforward. Moreover, this newly involved impulse
variable offers more flexibility at handling complex bound-
ary conditions that are previously hard to capture. This
benefit is also one of our major concerns when choosing
the appropriate gauge variable ,for instance, how to directly
apply a local force or impulse at the surface of the fluid.
Based on our observation, representing this disturbance by
pressure jump is not a proper way. This indirect form of
transforming momentum will be smoothed out quickly near
the interface and hardly can be transformed inward. Apply-
ing the disturbance to the fluid velocity directly will break
the incompressibility constraint, which is also infeasible. In
our work, we can manipulate the impulse directly whose di-
vergence has no constraint. We find that momentum can be
transformed into and sustained inside the fluid in the form
of vorticity. We validate the effectiveness of our method by
simulating a series of complex fluid phenomena and com-
paring it with the baseline methods. Our showcases varying
from smoke, ink, dry ice to free surface fluid with strong and
weak surface tension demonstrate the generalizability of our
method. Our method does have some limitations compared
with the traditional advection-projection method. First, by
introducing a new state variable, an additional projection
step might be necessary to reflect the effect of some spe-
cific boundary conditions. Second, a new stretching step
that does not exist in the Eulerian method appears by
reformulating the Navier-Stokes equations. This operation
needs careful treatment and can easily become unstable if
the system is under diffused or the CFL number is not
set appropriately. This may be caused by calculating the
stretching term on the Cartesian grid and having velocity
defined on the cell faces. It is not very accurate to interpolate
the impulse variable to the cell centers, and interpolate the
delta impulse field back to the cell faces. In the future, we
hope to use a surface-only approach by using surface mesh
or particles to evolve the fluid, with boundary conditions
being directly enforced on the surface.

REFERENCES

[1] D. M. Summers and A. J. Chorin, “Numerical vorticity creation
based on impulse conservation,” vol. 93, no. 5, pp. 1881–1885,
1996.

[2] G.-H. Cottet, P. D. Koumoutsakos et al., Vortex methods: theory and
practice. Cambridge university press Cambridge, 2000, vol. 8.

[3] S. Park and M. Kim, “Vortex fluid for gaseous phenomena,” in
SCA, 2005.

[4] S. Weißmann and U. Pinkall, “Filament-based smoke with vor-
tex shedding and variational reconnection,” ACM Transactions on
Graphics, vol. 29, pp. 115:1–115:12, 2010.

[5] M. J. Stock, W. J. Dahm, and G. Tryggvason, “Impact of a vortex
ring on a density interface using a regularized inviscid vortex
sheet method,” Journal of Computational Physics, vol. 227, no. 21,
pp. 9021–9043, 2008.

[6] X. Zhang, R. Bridson, and C. Greif, “Restoring the missing vor-
ticity in advection-projection fluid solvers,” ACM Transactions on
Graphics, vol. 34, pp. 1 – 8, 2015.

[7] “An impulse-based approximation of fluid motion due to bound-
ary forces,” Journal of Computational Physics, vol. 123, no. 2, pp.
341–353, 1996.

[8] T. F. Buttke, “Velicity methods: Lagrangian numerical methods
which preserve the hamiltonian structure of incompressible fluid
flow,” in Vortex flows and related numerical methods. Springer, 1993,
pp. 39–57.

[9] “Turbulence calculations in magnetization variables,” Applied Nu-
merical Mathematics, vol. 12, no. 1, pp. 47 – 54, 1993, sPECIAL
ISSUE.

[10] J. H. Maddocks and R. L. Pego, “An unconstrained hamiltonian
formulation for incompressible fluid flow,” Communications in
Mathematical Physics, no. 1, pp. 207–217.

[11] “A class of fully second order accurate projection methods for
solving the incompressible navier–stokes equations,” Journal of
Computational Physics, vol. 200, no. 1, pp. 325 – 346, 2004.

[12] P. H. Roberts, “A hamiltonian theory for weakly interacting vor-
tices,” Mathematika, vol. 19, no. 2, p. 169–179, 1972.

[13]
[14] R. Saye, “Interfacial gauge methods for incompressible fluid dy-

namics,” Science Advances, vol. 2, p. e1501869, 2016.
[15] R. Fedkiw, J. Stam, and H. Jensen, “Visual simulation of smoke,”

ACM SIGGRAPH Papers, 2001.
[16] Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM Trans-

actions on Graphics, vol. 24, pp. 965–972, 2005.
[17] R. Cortez, “Impulse-based particle methods for fluid flow,” Ph.D.

dissertation, University of California, Berkeley, 1995.
[18] ——, “A vortex/impulse method for immersed boundary motion

in high reynolds number flows,” Journal of Computational Physics,
vol. 160, pp. 385–400, 2000.

[19] G. A. Kuz’min, “Ideal incompressible hydrodynamics in terms of
the vortex momentum density,” Physics Letters A, vol. 96, no. 2,
pp. 88–90, 1983.

[20] G. Winckelmans, “Vortex methods,” Encyclopedia of computational
mechanics, 2004.

[21] R. Cortez, “On the accuracy of impulse methods for fluid flow,”
SIAM Journal on Scientific Computing, vol. 19, no. 4, pp. 1290–1302,
1998.

[22] “A representation of bounded viscous flow based on hodge de-
composition of wall impulse,” Journal of Computational Physics, vol.
158, no. 1, pp. 28 – 50, 2000.

[23] “Finite difference schemes for incompressible flows in the veloc-
ity–impulse density formulation,” Journal of Computational Physics,
vol. 130, no. 1, pp. 67 – 76, 1997.

[24] “Implicit mesh discontinuous galerkin methods and interfa-
cial gauge methods for high-order accurate interface dynam-
ics, with applications to surface tension dynamics, rigid body
fluid–structure interaction, and free surface flow: Part i,” Journal
of Computational Physics, vol. 344, pp. 647 – 682, 2017.

[25] “Implicit mesh discontinuous galerkin methods and interfa-
cial gauge methods for high-order accurate interface dynam-
ics, with applications to surface tension dynamics, rigid body
fluid–structure interaction, and free surface flow: Part ii,” Journal
of Computational Physics, vol. 344, pp. 683 – 723, 2017.

[26] S. Yang, S. Xiong, Y. Zhang, F. Feng, J. Liu, and B. Zhu, “Clebsch
gauge fluid,” vol. 40, no. 4, 2021.

[27] S. Weißmann and U. Pinkall, “Filament-based smoke with vor-
tex shedding and variational reconnection,” ACM Transactions on
Graphics, vol. 29, p. 115, 2010.

[28] T. Pfaff, N. Thuerey, and M. Gross, “Lagrangian vortex sheets for
animating fluids,” ACM Transactions on Graphics, vol. 31, no. 4, pp.
1–8, 2012.

[29] T. Brochu, T. Keeler, and R. Bridson, “Linear-time smoke anima-
tion with vortex sheet meshes,” in SCA, 2012, pp. 87–95.

[30] A. Leonard, “Vortex methods for flow simulation,” Journal of
Computational Physics, vol. 37, no. 3, pp. 289–335, 1980.

[31] A. Angelidis and F. Neyret, “Simulation of smoke based on vortex
filament primitives,” in SCA, 2005, pp. 87–96.

[32] P. Moin, A. Leonard, and J. Kim, “Evolution of a curved vortex
filament into a vortex ring,” Physics of Fluids, vol. 29, pp. 955–963,
1986.

[33] S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun, “Sta-
ble, circulation-preserving, simplicial fluids,” ACM Transactions on
Graphics, vol. 26, no. 1, 2007.

[34] X. Zhang, R. Bridson, and C. Greif, “Restoring the missing vor-
ticity in advection-projection fluid solvers,” ACM Transactions on
Graphics, vol. 34, no. 4, pp. 1–8, 2015.

[35] P. Koumoutsakos, G.-H. Cottet, and D. Rossinelli, “Flow simu-
lations using particles-bridging computer graphics and cfd,” in
ACM SIGGRAPH Papers. ACM, 2008, pp. 1–73.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, X 202X 12

[36] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle method
for smoke, water and explosions,” in ACM SIGGRAPH Papers,
2005, pp. 910–914.

[37] D. Kim, O.-Y. Song, and H. Ko, “Stretching and wiggling liquids,”
ACM SIGGRAPH Asia Papers, 2009.

[38] M. N. Gamito, P. F. Lopes, and M. R. Gomes, “Two-dimensional
simulation of gaseous phenomena using vortex particles,” in Com-
puter Animation and Simulation. Springer, 1995, pp. 3–15.

[39] B. Kim, Y. Liu, I. Llamas, and J. Rossignac, “Flowfixer: Using bfecc
for fluid simulation,” in NPH, 2005.

[40] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac, “An un-
conditionally stable maccormack method,” Journal of Scientific
Computing, vol. 35, pp. 350–371, 2008.

[41] Z. Qu, X. Zhang, M. Gao, C. Jiang, and B. Chen, “Efficient and
conservative fluids using bidirectional mapping,” ACM Transac-
tions on Graphics, vol. 38, no. 4, 2019.

[42] P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun, “Energy-
preserving integrators for fluid animation,” ACM Transactions on
Graphics, vol. 28, no. 3, pp. 1–8, 2009.

[43] Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM Trans-
actions on Graphics, vol. 24, no. 3, pp. 965–972, 2005.

[44] J. U. Brackbill and H. M. Ruppel, “Flip: A method for adaptively
zoned, particle-in-cell calculations of fluid flows in two dimen-
sions,” Journal of Computational Physics, vol. 65, no. 2, pp. 314–343,
1986.

[45] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin,
“The affine particle-in-cell method,” ACM Transactions on Graphics,
vol. 34, pp. 1 – 10, 2015.

[46] C. Fu, Q. Guo, T. F. Gast, C. Jiang, and J. Teran, “A polynomial
particle-in-cell method,” ACM Transactions on Graphics, vol. 36, pp.
1 – 12, 2017.

[47] S. Gagniere, D. Hyde, A. Marquez-Razon, C. Jiang, Z. Ge, X. Han,
Q. Guo, and J. Teran, “A hybrid lagrangian/eulerian collocated
advection and projection method for fluid simulation,” ArXiv, vol.
abs/2003.12227, 2020.

[48] L. Boyd and R. Bridson, “Multiflip for energetic two-phase fluid
simulation,” ACM Transactions on Graphics, vol. 31, no. 2, pp. 1–12,
2012.

[49] T. Kim, N. Thürey, D. James, and M. Gross, “Wavelet turbulence
for fluid simulation,” ACM Transactions on Graphics, vol. 27, no. 3,
pp. 1–6, 2008.

[50] R. Bridson, J. Houriham, and M. Nordenstam, “Curl-noise for
procedural fluid flow,” ACM Transactions on Graphics, vol. 26, no. 3,
2007.

[51] A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann,
“Schrödinger’s smoke,” ACM Transactions on Graphics, vol. 35,
p. 77, 2016.

[52] R. S. Rogallo, Numerical experiments in homogeneous turbulence.
National Aeronautics and Space Administration, 1981, vol. 81315.

[53] M. Padilla, A. Chern, F. Knöppel, U. Pinkall, and P. Schröder, “On
bubble rings and ink chandeliers,” ACM Transactions on Graphics,
vol. 38, no. 4, 2019.

[54] J. Stam, “Stable fluids,” in ACM SIGGRAPH Papers, 1999.
[55] R. Bridson, Fluid simulation for computer graphics. CRC press, 2015.
[56] M.-C. Lai and C. S. Peskin, “An immersed boundary method with

formal second-order accuracy and reduced numerical viscosity,”
Journal of computational Physics, vol. 160, no. 2, pp. 705–719, 2000.

Fan Feng Fan Feng is a first-year Ph.D can-
didate advised by Prof. Bo Zhu in the VCL
Lab at Dartmouth College. She received B.S
in computer science and B.A in Mathematics
from University of North Carolina at Chapel Hill.
Her research interests include computer graph-
ics, physics-based fluid simulation, topology op-
timization, and Scientific Machine Learning.

Jinyuan Liu Jinyuan Liu received the BEng de-
gree in astronautical engineering in 2015 from
Beihang University, Beijing, China and the M.S
degree in aeronautics & astronautics in 2017
from Stanford university. He is currently a PhD
in computer science at Dartmouth College, ad-
vised by Prof. Bo Zhu. His research is focused
on physically-based modeling and multi-physics
simulation, including fluid, deformable bodies,
solid-fluid interaction and topology optimization.

Shiying Xiong Shiying Xiong is a Post-Doctoral
researcher working with Prof. Bo Zhu in the VCL
Lab at Dartmouth College. Before starting his
Postdoc, he obtained a Ph.D. in the College
of Engineering, Peking University in June 2019
and advised by Prof. Yue Yang. His research
interests include Hamiltonian Fluid Mechanics,
Vortex Dynamics, Computational Physics, and
Scientific Machine Learning.

Shuqi Yang Shuqi Yang studied for her Master’s
degree at Dartmouth College and for her Bach-
elor’s degree at Dalian University of Technology.
Her research interests mainly focus on physical
simulation and machine learning.

Yaorui Zhang Yaorui Zhang received her MS in
Computer Science in June 2021 from Dartmouth
College, and a B.E. in Digital Media in 2019 from
Zhejiang University, China. Her research is fo-
cused on simulating and controlling soft dynamic
systems, as well as creating interactive design
interfaces.

Bo Zhu Bo Zhu is an assistant professor of
Computer Science at Dartmouth College. Prior
to joining Dartmouth, he obtained his Ph.D. from
Stanford and conducted his postdoctoral re-
search at MIT CSAIL. His research interests in-
clude computer graphics, computational physics,
computational fluid dynamics, and scientific ma-
chine learning. He mainly focuses on building
computational approaches to simulate complex
fluid systems.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3149466

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

