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Fig. 1. Various fluid phenomena simulated using our vortex segment method. (Far Left) Leapfrogging vortices. (Middle Left) Turbulent smoke flowing past a
rotating bunny. (Middle Right) Reconnected vortex tubes from two intersecting ones. (Far Right) Cigarette smoke.

We propose a novel Lagrangian geometric representation using segment
clouds to simulate incompressible fluid exhibiting strong anisotropic vortical
features. The central component of our approach is a cloud of discrete seg-
ments enhanced by a set of local segment reseeding operations to facilitate
both the geometrical evolution and the topological updates of vortical flow.
We build a vortex dynamics solver with the support for dynamic solid bound-
aries based on discrete segment primitives. We demonstrate the efficacy of
our approach by simulating a broad range of challenging flow phenomena,
such as reconnection of non-closed vortex tubes and vortex shedding behind
a rotating object.
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1 INTRODUCTION
What is the most effective discrete geometry representation for vor-
tex dynamics? Researchers in computer graphics and computational
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physics have sought to answer this question for decades. Various
types of discrete data structures and numerical solvers have been
proposed toward building robust and accurate computational tools
to simulate fluid flow that exhibits strongly anisotropic features and
dynamic topological changes (e.g., see [Brochu et al. 2012; Padilla
et al. 2019; Weißmann and Pinkall 2010]). A particular example of
these visually appealing flow phenomena is vortex tube dynam-
ics [Chern et al. 2017, 2016; Xiong and Yang 2019a]. With strong
vorticities concentrating around a narrow region of codimension-2
geometries, the evolution of a vortex tube exhibits a wide scope of
flow behaviors, such as stretching [Beardsell et al. 2016a], splitting
[Kleckner et al. 2016; Scheeler et al. 2014], reconnection [Kida and
Takaoka 1994], and breakdown [Leibovich 1978].

Discrete particles and simplicial meshes are the two most widely
recognized geometric representations to simulate vortex dynamics,
which can be translated to the categories of vortex particle meth-
ods [Cottet and Koumoutsakos 2000] and vortex filament methods
[Weißmann and Pinkall 2010]. Without dismissing their wide suc-
cess and broad impact in visual and scientific fluid simulation, these
two approaches might have potential weaknesses. Particle methods
are difficult to express local orientation, which makes it challenging
to track flows that are particularly thin and anisotropic (typically re-
quiring a prohibitively large number of particles) [Ando et al. 2012].
Mesh methods might either suffer from tedious mesh repair opera-
tions, or a prominent increase in the number of elements needed
to resolve the increasing complexity of the flow. Hybrid methods
such as particle-mesh [van Rees et al. 2012], PIC/FLIP [Ferstl et al.
2016; Zhu and Bridson 2005] and PPPM [Zhang and Bridson 2014],
along with many other numerical infrastructures developed in com-
putational physics [Hu et al. 2019], can help alleviate problems with
either tracking accuracy or computational efficiency. However, none
of these approaches provides a unified and simplified numerical so-
lution to track and evolve temporally vortex structures exhibiting
strong anisotropic behaviors.
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Fig. 2. Comparison of the splitting and reconnection of intersecting vortex tubes with the vortex segment method and the vortex particle method. Top/bottom
4 pictures show frames with vortex segment/particle method at 1, 100, 200 and 300, respectively.

Back in 1990, Chorin described in his pioneering work [Chorin
1990] that “a physical vortex is approximated by a cloud of tubular
vortices.” The vortex segment method he proposed in this work,
in which vorticity is carried on a set of segments and evolved by
calculating their interactions, was the predecessor of the modern
vortex particle method (e.g., [Cottet and Koumoutsakos 2000]). Fol-
lowing this work, Chorin [1993] switched the data representation
from discrete segments to a segment mesh, to reduce the redundant
vertex storage and hence improve the computation efficiency, which
laid the foundation of the modern vortex filament method [Weiß-
mann and Pinkall 2010]. These two pieces of classical work yield an
insightful mathematical model that “an incompressible flow can be
approximated by a ‘polymeric’ model, which consists of an ensemble
of stretched, folded, and pinched vortex tubes” [Chorin 1990], which
serves as the motivation for our numerical paradigm design.

Motivated by Chorin’s work, we devise a structure-enriched and
connectivity-free Lagrangian method to model vortical flow fea-
tured by its anisotropic geometry and dynamics. Specifically, we
build a generalized particle representation based on segment clouds
with each particle consisting of two-point samples. From a compu-
tational perspective, discrete segments, or a generalized Lagrangian
representation with each particle carrying two-point samples pos-
sess a series of inherent computational advantages when modeling
anisotropic vortical flows. Numerical merits include ease of mod-
eling local, vortical stretching [Zhang and Bridson 2014], enforc-
ing adaptivity [Fernandez et al. 1996], and to handling topological
changes robustly [Weißmann and Pinkall 2009].
To accommodate the various types of anisotropic geometrical

and topological evolution on a segment cloud, we build a set of
discrete reseeding operations enhanced by each segment’s orienta-
tion. These reseeding operations consist of merging, splitting, and
deleting, which are combined to mimic the conventional particle re-
seeding procedure. All of these operations leverage the anisotropic

and oriented features of the segment primitives. Moreover, these op-
erations are local, parallelizable, and connectivity-free, facilitating
a high-performance code implementation to leverage the modern
parallel computer architectural intricacies. As demonstrated in our
examples, the proposed method accommodates the parallel com-
putation of large-scale vortex phenomena on modern computing
hardware, which boosts the capability of the method in solving
strongly anisotropic and topologically complicated flows.

On top of the segment cloud discretization, we build a discrete vor-
tex dynamics solver with the support for dynamic solid boundaries
based on discrete segment primitives , to enable the simulation of
various challenging flow phenomena that are difficult for the previ-
ous Lagrangian methods such as reconnection of non-closed vortex
tubes and vortex shedding behind a rotating object. We summarize
our technical contributions as follows:

• an isotropic Lagrangian geometric representation built on
discrete segment clouds to model a broad range of anisotropic
flow phenomena;

• a parallelizable segment processing algorithm to facilitate
complicated topological changes of vortical flow;

• a vortex dynamics solver based on segment clouds to simulate
complex vortical flow phenomena.

2 RELATED WORK
Vortex particle method. Although early works adopted point vor-

tices to numerically simulate the dynamical evolution of 2-D inviscid
flow in an unbounded domain [Rosenhead 1931; Takami 1964], the
modern vortex method is marked by the vortex blob method pro-
posed by Chorin [1973], which removes the singularity in the kernel
function by replacing the point vortex with certain vortex cores.
The vortex blobs might be of various shapes, such as an isotropic
sphere or a small vortex sheet [Pfaff et al. 2012a]. Various options
exist for the vorticity distribution in vortex blob methods, such as
the Gaussian distribution [Park and Kim 2005], the Rankine vortex
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Fig. 3. The splitting and reconnection of quasi-parallel vortex tubes. Left to right columns: frames 1, 100, 300, and 400. The pictures are visualized by vortex
segments clouds (top 4 pictures) and tracer particles (bottom 4 pictures).

model [Loiseleux et al. 1998], and the Krasny model [Krasny 1988],
etc. There are possible limitations of using the vortex blob method
to solve large-scale complex vortical flow. For long-term compu-
tational accuracy, a vortex blob method requires that each vortex
element overlap its neighboring blobs, which consumes a massive
number of vortex elements for computational stability [Hald 1979;
Hald and Del Prete 1978]. Besides, the shape of every single blob is
different from the common filamentous or tubular structures in the
flow field, making it challenging for vortex methods to form coher-
ent structures under a turbulent setting [She et al. 1990]. Finally, a
vortex blob method updates the vorticity stretching term with the
original, transposed [Choquin and Huberson 1990], or symmetrical
[Cottet and Koumoutsakos 2000] form by taking the derivative of
the kernel function. The correctness of a numerical stretching relies
on the distribution of vortex elements together with the choice of a
proper kernel function to ensure numerical precision and adaptabil-
ity [Angelidis 2017]. In the absence of ambiguity, we refer to the
vortex particles/points below as vortex blobs.

Vortex filament method. Vortex filaments are important for 3D
turbulence dynamics [Xiong and Yang 2017, 2019b], providing one
of the most efficient numerical methods to reproduce the complex-
ity of smoke with sparse discrete primitives [Eberhardt et al. 2017;
Weißmann et al. 2014]. The numerical simulation of vortex filaments
can be traced back to Hasimoto’s study on the local induction ap-
proximation (LIA) of some isolated vortex filaments, which validates
that a single vortex filament in LIA fits well with the experimental
results of the propagation of isolated waves on a twisted structure
[Aref and Flinchem 1985; Hasimoto 1972; Hopfinger et al. 1982]. For
the first time, Angelidis and Neyret [2005] simulated the flow field
with a large number of closed vortex filaments. From a Hamiltonian
perspective, Weißmann and Pinkall [2009] proposed a physically
conservative model that compensates for the discretization errors
inherent to the polygonal vortex filament model. Barnat and Pol-
lard [2012] developed a new set of reconnection criteria to simulate

smoke with a filament graph. Then, Padilla et al. [2019] simulated
elaborate physical phenomena with the thickness of vortex fila-
ments taken into account, such as the dynamic evolution of an
ink drop. A potential limitation of vortex filament methods is the
need for tedious mesh repair operations to handle their topological
changes, such as splitting and merging [Bernard 2009; Chorin 1990,
1993; Marzouk and Ghoniem 2007]. These operations also make it
challenging to establish large-scale parallel processing algorithms.
The vortex sheet method, also based on mesh connectivities, is
specialized to capture codimension-1 vortex structures evolving in
three-dimension space [Brochu et al. 2012; Pfaff et al. 2012b].

Boundary treatment. It is challenging to set a well-posed bound-
ary condition for the vorticity dynamical equations to not only
conform to the kinematic relationship between vorticity and ve-
locity fields but also present the physical mechanism of vorticity
generated on the boundary layer [Wu et al. 2015]. Lighthill [1963]
assumed boundary vorticity can be obtained by counteracting the
velocities induced by the vortex sheet that covers the boundary and
other vortex structures to satisfy the boundary velocity conditions.
Chorin [1973] proposed a vortex-generating method that satisfies
the non-slip boundary condition by generating vortex elements near
the wall boundary. Though it has an explicit physical meaning and
is simple to use, the computational accuracy is relatively low. This
method was improved by Vines et al. [2013] and Zhang et al. [2014]
by further considering the interaction among the generated vortex
elements. Hung and Kinney [1988] proposed a boundary vorticity
flux control method that requires solving the boundary pressure
gradient precisely, which is not applicable to the Lagrangian vortex
method. This method shares similarities with the integral represen-
tation method [Wu 1976] and the panel method [Erickson 1990].
Some boundary treatments used in wave propagation simulations,
including the equivalent sources method and the fundamental solu-
tions method [Mehra et al. 2013; Schreck et al. 2019], also inspired
our boundary treatment.
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Fig. 4. Comparison of the simulation of cigarette smoke using vortex seg-
ment and particle methods.

Acceleration. The computational complexity of the Lagrangian
vortex method is 𝑂 (𝑁 2

𝑣 ) with the total number of vortex elements
𝑁𝑣 . There are several classic acceleration approaches. Examples com-
monly used include the octree [Barill et al. 2018; Hu et al. 2020], fast
multipole method (FMM) [Angelidis 2017; Greengard and Rokhlin
1987; Koumoutsakos 1993; Pepin 1990], and Particle-Particle Particle-
Mesh (PPPM) [Almgren et al. 1994; Zhang and Bridson 2014]. Specif-
ically, an octree structure separates the vortex particles into in-
dividual particle groups by subdividing the background grid in a
hierarchical way. These particle groups further aggregate into super
vortex particles for fast computation, at the expense of losing numer-
ical accuracy if abundant near-field particles are merged. FMM is an
elaborately designed method that ensures that the time complexity
reduces from 𝑂 (𝑁 2

𝑣 ) to 𝑂 (𝑁𝑣) while fundamentally maintaining
the computational accuracy. However, it is difficult to design an
efficient parallel algorithm due to the implementation of abundant
calculus operations. Compared with FMM, the implementation of
PPPM is simple and its time complexity is 𝑂 (𝑁𝑣 log𝑁𝑣). Though
it decreases the computational cost, it loses partial precision at the
same time. Moreover, the precision won’t be improved by increasing
the range of local rectification when the range exceeds a certain
threshold value.

3 PHYSICAL MODEL
Considering the incompressible fluid in a domain Ω, the fluid dy-
namics can be described by

𝐷𝒖

𝐷𝑡
= − 1

𝜌
∇𝑝 + 𝒇 ,

∇ · 𝒖 = 0,
(1)

with proper initial and boundary conditions. Here 𝒖 (𝒙, 𝑡) is the
velocity field, 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + 𝒖 · ∇ is the material derivative, 𝑡
denotes the time, 𝑝 is the pressure, 𝜌 is the density, and 𝒇 is the
body force. If we assume 𝜌 is a constant, taking the curl of (1) yields
the governing equation of vorticity 𝝎 = ∇ × 𝒖 as

𝐷𝝎

𝐷𝑡
= (𝝎 · ∇)𝒖 + ∇ × 𝒇 . (2)

We discretize the vorticity field on a set of discrete vortex elements

𝝎 (𝒙, 𝑡) =
𝑁𝑣∑
𝑗=1

𝚪 𝑗 (𝑡) 𝑓𝛿 [𝒙 − 𝒙 𝑗 (𝑡)] . (3)

Here 𝑁𝑣 is the total number of vortex elements, 𝚪 𝑗 and 𝒙 𝑗 are the
vorticity strength and the central position of the 𝑗 th vortex element.
We use 𝑓𝛿 as a distribution function that satisfies

∫
Ω 𝑓𝛿 (𝒙)d𝒙 = 1,

Fig. 5. The induced velocity magnitude of a vortex tube with sine-shape on
the central vertical plane. The image on the left is the vortex tube diagram,
where the red line denotes the position for calculating the induced velocity;
the image on the right shows the induced velocity numerical results using
different methods.

describing the distribution of the vorticity around 𝒙 𝑗 . 𝑓𝛿 is designed
as an isotropic mollification function in a conventional vortex parti-
cle method. Without loss of geometric generalities, the primitives
of the vortex elements can be points (the classical vortex particle
method), segments, triangles, etc.
Substituting (3) into the Biot–Savart (BS) law, the velocity field

for vortex element convection can be obtained as

𝒖 (𝒙, 𝑡) = 𝒖∞ +
∑𝑁𝑣

𝑗=1 𝚪 𝑗 (𝑡) × 𝑭𝛿 (𝒙, 𝒙 𝑗 , 𝑡)
2(𝑁𝑑 − 1)𝜋 , (4)

with

𝑭𝛿 (𝒙, 𝒙 𝑗 , 𝑡) =
∫
Ω

(𝒙 − 𝒙 ′) 𝑓𝛿 [𝒙 ′ − 𝒙 𝑗 (𝑡)]
|𝒙 − 𝒙 ′ |𝑁𝑑

dΩ′, (5)

where 𝒖∞ is the background velocity, 𝑁𝑑 is the dimension of the
computational domain Ω, and dΩ′ is the volume element at 𝒙 ′.

4 DISCRETE VORTEX SEGMENTS

4.1 Geometric Representation
We discretize the vorticity field with a cloud of vortex segments. The
information carried on each vortex segment includes the positions
of the two endpoints 𝒙±

𝑗
, 𝑗 = 1, 2, · · · , 𝑁𝑣 and the vorticity strength

magnitude Γ𝑗 . The segment’s midpoint can be calculated as 𝒙 𝑗 =
(𝒙+
𝑗
+𝒙−

𝑗
)/2. The vorticity strength vector on each vortex segment is

calculated as 𝚪 𝑗 = Γ𝑗 (𝒙+𝑗 −𝒙−
𝑗
)/|(𝒙+

𝑗
−𝒙−

𝑗
) |. In addition, each vortex

segment has a virtual radius R for numerical regularization. In two-
dimensional space, a vortex segment will degenerate to a vortex
point 𝒙 𝑗 , in which case the vortex segment method will amount to
a vortex particle method.

We remark that a more precisely induced velocity around a vortex
tube can be obtained with a cloud of vortex segments compared with
vortex particles. We demonstrate this fact by a simple numerical test.
Figure 5 plots the induced velocity magnitude of a sinusoid-shaped
vortex tube on the central vertical plane. We observed that five
vortex segments achieved the same precision as two hundred vortex
particles when approximating the surrounding induced velocity
field. Usingmore particles to discretize the vortex tubewill result in a
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Fig. 6. Left set of pictures: comparisons of the evolution of segment-based vortex tubes and particle-based vortex tubes. From the first to third column:
the particle to segment ratio is 1, 2, and 3 respectively. First row: the initial state; second row: state at frame 300. Right picture: an error comparison of
segment-based vortex tubes and particle-based vortex tubes.

Fig. 7. Splitting and merging of vortex elements

more precise approximation. On the other side, usingmore segments
does not enhance the precision, indicating the expressiveness of
segments even with very few discretization elements.
Figure 6 shows a comparison of the evolution of the segment-

based and particle-based vortex tubes. We place 1000 sets of particles
or segments side by side in the common axis to balance the inter-
active forces among vortex elements. This operation makes the
middlemost set independent of boundary during the calculation,
and the simulation can be taken as part of an infinite vortex tube.
The particle tube gets more and more chaotic with the evolution;
even with an increasing number of particles, the system becomes
stable within a certain evolution time but gets messy sooner or
later with the evolution processing. The segment-based vortex tube,
however, is stable during the whole evolution.

4.2 The BS law on Segment Clouds
In three-dimension space, the position of the 𝑗 th vortex element
is represented by the segment 𝐶 𝑗 . We have 𝑓𝛿 as a delta function
supported on 𝐶 𝑗 . Substituting 𝑓𝛿 into (5) and (4), we obtain the
induced velocity of the 𝑗 th vortex element with regard to a spatial
point 𝒙 as:

𝒖𝐵𝑆𝑗 (𝒙) =
Γ𝑗

4𝜋

(
𝒙+
𝑗
− 𝒙

∥𝒙+
𝑗
− 𝒙 ∥ + R −

𝒙−
𝑗
− 𝒙

∥𝒙−
𝑗
− 𝒙 ∥ + R

)
· (𝒙+𝑗 − 𝒙−𝑗 )

(𝒙−
𝑗
− 𝒙) × (𝒙+

𝑗
− 𝒙)

∥(𝒙−
𝑗
− 𝒙) × (𝒙+

𝑗
− 𝒙)∥2 + R2 ,

(6)

where R is a small positive number for regularization. We refer
the readers to Appendix A for a more detailed deduction of (6).

This formula is presented as the form of an analytical expression
in [Weißmann and Pinkall 2010], while the discrete form is given
in [Padilla et al. 2019]. For 2D cases, 𝑓𝛿 (𝒙) becomes a conventional
Dirac delta function 𝛿 (𝒙), and the induced velocity becomes

𝒖𝐵𝑆𝑗 (𝒙) =
Γ𝑗

2𝜋
𝒆𝑧 × (𝒙 − 𝒙 𝑗 )
∥𝒙 − 𝒙 𝑗 ∥2 + R2 , (7)

where 𝒆𝑧 is the normal direction of the 2D plane. We take the sum-
mation of induced velocities of all the vortex elements and the
background velocity 𝒖∞ to calculate the velocity at 𝒙 as

𝒖 (𝒙) =
𝑁𝑣∑
𝑗=1

𝒖𝐵𝑆𝑗 (𝒙) + 𝒖∞ . (8)

4.3 Lagrangian Advection and Vortex Stretching
According to the Kelvin’s circulation theorem, the vorticity strength
of a vortex filament element is conservative during the action of
stretching and convection:

dΓ𝑗
d𝑡

=

∫
𝐷 𝑗

(
D𝝎
D𝑡

− 𝝎 · ∇𝒖
)
· d𝑺 = 0, (9)

where 𝐷 𝑗 is the cross-section of the vortex segment in the direction
of the vorticity. Thus, neither advection nor stretching changes the
vorticity strength of the vortex filament. Therefore, naively updat-
ing the position of the endpoints of each vortex segment without
considering the radius change of the vortex segment

d𝒙±
𝑗

d𝑡
= 𝒖 (𝒙±𝑗 ) (10)

can update the vortex element with both advection and stretching.
Without considering reseeding, the position and the length of a
vortex segment will change during its evolution, but its shape will
remain straight.

There is no vorticity stretching in two-dimensional space. Hence,
the 2D vortex convection can be simplified as

d𝒙 𝑗
d𝑡

= 𝒖 (𝒙 𝑗 ). (11)
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Fig. 8. Turbulence above a static sphere and a rotating bunny. the top-left four pictures: the static sphere frames at 100, 200, 240, and 400, respectively; the
bottom-left four pictures: the rotating bunny frames at 83, 93, 163, and 184, respectively; the right picture: the rotating bunny frame at 271.

Similar ideas of processing vortex stretching using an explicit
segment representation can also be found in the previous work of
[Zhang and Bridson 2014], where virtual segments were created on
a background grid in every time step to measure the local stretching
effects. Compared with this hybrid representation, our segment
cloud method fully leverages the vorticity expressiveness of dis-
crete segments and naturally evolves the system’s motion in a pure
Lagrangian way.

4.4 Topological Changes with Segments
One of the most salient features of our segment cloud method is
its capability of processing local topological changes with simple
and parallel segment operations. Motivated by [Chorin 1990] on
removing hairpin segments and the various particle reseeding and
local re-meshing techniques in computer graphics (e.g., [Ferstl et al.
2016; Wang et al. 2020]), we devise three local segment reseeding
operations including segment splitting, merging, and deletion. We
showcase that the combination of these three operations can facil-
itate our simulation system to automatically handle complicated
topological changes of vortical fluid such as vortex tube reconnec-
tion. At the same time, these segment operations enable our system
to always maintain a reasonable number of the segment during the
simulation.

Segment splitting. We employ a segment splitting operator (see
the left of Figure 7) as splitting a segment into two as they both
keep stretching. By setting a max length threshold for a segment,
we split it into two new segments with ends when the segment with

ends (𝒙−
𝑗
, 𝒙+
𝑗
) is greater than the threshold:

[𝒙−𝑗 , (𝒙
+
𝑗 + 𝒙−𝑗 )/2] and [(𝒙+𝑗 + 𝒙−𝑗 )/2, 𝒙

+
𝑗 ] . (12)

Segment merging. We devise a segment merging operation (see
the right of Figure 7) to avoid two parallel segments getting too close.
We check two criteria before merging a pair of segments. First, we
check if the central positions of the two segments are close enough
(i.e. the absolute value |𝒙𝑖 − 𝒙 𝑗 | < 𝜆 with 𝜆 as a threshold). Second,
we check if the vorticity directions of the two segments are almost
opposing each other. In particular, we check if the angle between
the two vorticity vectors (specified by the vorticity magnitude and
the segment endpoints) is almost 𝜋 (i.e. 𝒙𝑖 · 𝒙 𝑗/|𝒙𝑖 | |𝒙 𝑗 | < cos𝜃 with
𝜃 as a given threshold). We will merge two segments if they are both
close and their vorticities are pointing to roughly opposite directions.
The center, length, and vorticity of the merged segment are updated
by the average of the quantities stored on the two original segments
as 

𝒙𝑖 𝑗 =
𝒙𝑖 + 𝒙 𝑗

2

𝐿𝑖 𝑗 =
|𝒙+
𝑖
− 𝒙−

𝑖
| + |𝒙+

𝑗
− 𝒙−

𝑗
|

2

𝚪𝑖 𝑗 =
2[Γ𝑖 (𝒙+𝑖 − 𝒙−

𝑖
) + Γ𝑗 (𝒙+𝑗 − 𝒙−

𝑗
)]

|𝒙+
𝑖
− 𝒙−

𝑖
| + |𝒙+

𝑗
− 𝒙−

𝑗
| .

(13)

Segment deletion. We delete a segment if its vorticity falls below
a threshold.

Accommodated by these operations, the realization of disconnec-
tion and reconnection of vortex tubes can happen automatically
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Fig. 9. The schematic diagram of boundary treatment.

while stabilizing the computational algorithm. We demonstrate the
efficacy of the combination of these two basic segment operations
by simulating the various vortex tube reconnection examples (see
Figures 2 and 3) that are infeasible for a pure particle method or
potentially complicated for a mesh-based method to process their
topological changes.

5 BOUNDARY TREATMENT
Tackling a dynamic solid boundary is challenging for a Lagrangian
vortex method. We present a least-squares method motivated by
[Chorin 1973] to handle different velocity boundary conditions
supporting both static and moving solids. Here we take the 2D
situation as an example. As shown in Figure 9, we assume that the
black line is the computation boundary 𝜕Ω, and the blue points are
the vortex elements in the flow field Ω. We sample 𝑁𝑏 positions
𝒃𝑖 , 𝑖 = 1, 2, · · · , 𝑁𝑏 , (grey points on the black line) uniformly on the
boundary. We generate another 𝑁𝑔 vortex elements (orange points)

𝒈𝛼 , 𝛼 = 1, 2, · · · , 𝑁𝑔 (14)

around the boundary within Ω (the pale-green area).
For the Dirichlet boundary condition

𝒖 (𝒙) |𝜕Ω = 𝒖𝑏 (𝒙), (15)

along with vortex elements induced velocity within the flow field as
𝒖𝑑 (𝒙). We calculate the vortex strength Γ𝛼 , 𝛼 = 1, 2, · · · , 𝑁𝑔 , of the
generated vortex elements by approximating their induced velocity
regarding the boundary point 𝒃𝑖 as 𝒖𝑏 (𝒃𝑖 ) −𝒖𝑑 (𝒃𝑖 ) −𝒖∞. Therefore,
we need to solve the following equation

𝑲𝚪 = 𝑼 , (16)

with 
𝑲 = [𝑲𝑖𝛼 ], 𝑲𝑖𝛼 = 𝒖𝐵𝑆𝛼 (𝒃𝑖 ),
𝚪 = [Γ𝛼 ], 𝛼 = 1, 2, · · · , 𝑁𝑔 ,
𝑼 = [𝒖𝑏 (𝒃𝑖 ) − 𝒖𝑑 (𝒃𝑖 ) − 𝒖∞], 𝑖 = 1, 2, · · · , 𝑁𝑏 ,

(17)

where 𝒖𝐵𝑆𝛼 (𝒃𝑖 ) is the induced velocity of 𝒃𝑖 by the vortex element
with the unit vorticity strength at the position 𝒈𝛼 . Using the least-
squares method, (16) can be solved as

𝚪 =

[
𝑲𝑇𝑲 + 𝜖𝐾 𝑰 (𝑁𝑔 )

]−1
𝑲𝑇 𝑼 , (18)

where 𝜖𝐾 is a positive regularization factor, and 𝑰 (𝑁𝑔 ) is the identity
matrix of size 𝑁𝑔 . Generally, for the calculation stability, we set
𝑁𝑏 ≪ 𝑁𝑔 , where 𝑲𝑇𝑲 is full rank.
For the static boundary, there is no need to update 𝑲 , which

makes the computational complexity for updating boundary vortex

elements as 𝑂 (𝑁𝑔𝑁 2
𝑏
+ 𝑁𝑏𝑁𝑣) ≈ 𝑂 (𝑁𝑣) with a relatively smaller

𝑁𝑏 and 𝑁𝑔 .
For the moving boundary, we need to update 𝑲 for every evolu-

tionary time step. However, if the boundary is in rigid body motion,[
𝑲𝑇𝑲 + 𝜖𝐾 𝑰 (𝑁𝑔 )

]−1 in (18) remains constant, which enables the
computational complexity to remain relatively low when updating
(18) with vortex elements generated near the computational bound-
ary. We take the motion of a rigid body in the flow as an example
to illustrate the process of updating (18) presented in Appendix B
in detail.
Two cases addressing 2-D boundaries are demonstrated in Ap-

pendix C, showing that 2-D boundary treatment is very precise. The
boundary treatment is similar with 2-D situations when dealing
with 3D flows, except that we need to set the positions of the two
vortex element ends 𝒈±𝛼 , 𝛼 = 1, 2, · · · , 𝑁𝑔 , near the boundary, as
well as the need to calculate the vortex element induced velocity by
(6) rather than (7) in 2D flows.

6 TEMPORAL EVOLUTION
We initialize each segment’s position randomly and its vorticity
strength based on a given vorticity distribution. We use the fourth-
order Runge–Kutta method for the time integration of the vortex
segments.

We carry out the temporal evolution of the vortex segment cloud
using the following steps:

(1) Calculation of induced velocity using (8);
(2) Advection of vortex segments using (10) for 3D flows and

(11) for 2D flows;
(3) Splitting of vortex segments using (12) for 3D flows;
(4) Merging of vortex segments using (13) for 3D flows;
(5) Generating vortex segments using (14) and computing vor-

ticity strength using (18) for boundary flows;
(6) We delete segments if their vorticity falls below a threshold.

7 NUMERICAL RESULTS
We evaluate the efficacy of our method by several fluid simulation
examples, including leapfrogging vortices, vortex tube reconnection,
cigarette smoke, and turbulence behind a solid obstacle. We also
compare our method with the vortex particle and the vortex filament
methods. Detailed experimental settings can be found in the next
paragraph. We refer the readers to our supplementary video for all
the animations.

Experimental settings. Here we provide the detailed parameter
settings we used in our numerical experiments. The default segment
length and vortex strength are set to be 0.5 and 0.25, respectively.
The split threshold was set to be 2. The distance threshold for seg-
ment merging is set to be 𝜆 = 1 and the angle threshold is set to
be 𝜃 = 5𝜋/6. The effects of these parameters were evaluated with a
different setting as in Figure 10.

Leapfrogging vortices. As shown in Figure 14, two vortex rings are
initialized using the same in-plane vorticity strength and different
radii. The interaction between the two rings delivers a leapfrogging
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Fig. 10. Number of vortex elements used to simulate the reconnection of
quasi-parallel vortex tubes

Fig. 11. Splitting and reconnection of quasi-parallel vortex filaments.

motion along the common axis. The bigger ring with smaller self-
induced velocity shrinks and accelerates due to their mutual inter-
action and the smaller ring with larger self-induced velocity widens
and decelerates. The rear decrescent ring then passes through the
leading enlarged ring. We show that we can capture the leaping
dynamics of the vortex rings in a long-term stable fashion without
maintaining the segment connectivities as in a conventional vortex
filament method.

Vortex tube reconnection. Figures 2 and 3 show the splitting and
reconnection of two intersecting and quasi-parallel vortex tubes
forming another two separated U-shaped tubes [Beardsell et al.
2016b; van Rees et al. 2012]. This simulation captures the main topo-
logical changes and the pinched-off vortex filaments using a mesh-
free Lagrangian method, which was not feasible for any previous
particle-based methods. In particular, as shown in Figure 2, we com-
pared our results with the ones obtained by a conventional vortex
particle method, which failed to capture such highly anisotropic and
topologically complicated phenomena. This comparison showcased
our method’s unique ability in modeling the topological transitions
and evolution of complicated vortex flow.
In addition, we compared our method with the conventional

vortex filament method [Weißmann and Pinkall 2010]. First, as in
Figure 11, we show that a single thread of filaments can capture the
dominant motion of vortices yet cannot reproduce small-scale flow
details such as the intermediate vortex filaments bridging the two
reconnected tubes. Meanwhile, we also compared our method with
the vortex filament method with multiple filaments. The simulations
in Figure 12 and Figure 3 produces similar vortex evolution, except
that some nonphysical deformation occurs near the boundary of

Fig. 12. Splitting and reconnection of quasi-parallel vortex tubes with vortex
filament methods showing frames 1, 100, 300, and 400.

the vortex tubes (as the blue circle depicts) produced by the vortex
filament method because the vortex filaments are not designed
as closed rings. This comparison further weakens the role of the
segment connectivities in vortex fluid simulation.

Cigarette smoke. The simulations of rising cigarette smoke in
Figure 4 show a comparison between vortex segments and vortex
particles. In each time step, a small number of vortex elements
in both examples rise from the bottom with an average velocity
forming a smoke effect as the vortex elements rising with strength
gradually decay to zero. The number of the simulation particles in
the computation domain converges to around 400. The small-scale
vortical flow details are well-preserved in the simulation produced
by the segment method. In contrast, the simulation using the particle
method shows less turbulent features due to the insufficient amount
of particles being used.

Vortices interacting with solids. Figure 8 demonstrates the upward
rising smoke passing a static sphere and a rotating bunny swinging
from side to side forming a waving wake flow. Comparisons with
the vortex particle method are shown in Figure 13. We can see
that our vortex segment method can capture the boundary vortical
details effectively and transport these vortices with the advected
segments in the flow field. Under a turbulent setting, both the vortex
segmentmethod and the vortex particlemethod can produce visually
appealing flow motions.

7.1 Performance
Thanks to the particle nature of the segment cloud method, the
implementation is inherently parallelizable. The algorithm is imple-
mentedwith CUDA and all our examples were run on a GeForce RTX
2080 Ti GPU. Table 1 shows the timing statistics of our examples.
We remark that exquisite flow phenomena with rich small-scale
structures are demonstrated using our segment cloud method even
with only a few segments. With the same number of vortex ele-
ments initialized for the three methods , we report the computation
cost for particle, segment, and mesh methods with a rough ratio
of 1 : 3 : 12. The proportions of each sub-step in an iteration of
different methods are listed in Table 2. The computation cost of the
BS law used in the segment method can be reduced by adopting
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Fig. 13. Comparisons of the simulation of turbulent smoke behind a static
sphere and a rotating bunny using vortex segment and particle methods.
Segment method: 1, 3; particle method: 2, 4

Table 1. Approximate number of vortex elements and computational time of
one iteration (one time step contains 𝑘 iterations for a 𝑘 th order integrator)
in a relatively stable state.

Figures Description Segment No. Time (ms)
Figure 14 Leapfrogging vortices 200 4
Figure 3 Parallel reconnection 30000 200
Figure 2 Intersecting reconnection 30000 200
Figure 4 Cigarette smoke 400 6
Figure 8 Sphere shedding 9000 40
Figure 8 Bunny shedding 9000 40

Table 2. The proportion of each sub-step in an iteration of different methods,
where the computation cost of calculating the induced vorticity between two
vortex particles with BS law is selected as a time unit. Topology operations
include splitting, merging, and deleting.

Methods BS law Stretching Topology
Segment 8.4 0 3.9
Particle 1 3.2 0
Filament 4.2 0 45.1

the one used in the particle method, however, part of the calcu-
lation accuracy may be lost at the same time. Besides, the main
computation cost for the filament mesh method comes from its non-
parallelizable nature for mesh processing. We emphasize that the
number of vortex elements can not be guaranteed to stay the same
using various methods during the evolution because of the different
data structure implementations for points, segments, and filament
meshes. In addition, an optional acceleration algorithm is detailed
in Appendix D to enable large-scale vortex segment simulation.

8 DISCUSSION
Limitations. The main limitation of the vortex segment method

is that we did not consider the varying thickness of each vortex
segment, which limits its capability of simulating vortex tubes with
varying thicknesses such as the intricate chandeliers formed by ink
dropping into fluid [Padilla et al. 2019]. Also, our current discrete
model assumes a vortex element is a straight segment, leaving the
induced velocity generated by the localized induction approximation

Fig. 14. Leapfrogging vortices with vortex segments showing frames 100
(top left), 200 (bottom left), and 300 (right).

of the curved vortex filaments out of consideration. In addition,
compared with the traditional filament method, non-physical vortex
evolution may occur with the non-divergence-free vorticity field
caused by the open-ended segments. Compared with the particle
method, a significant increase in computation cost can happen with
a more complicated BS law being adopted.

Future work. One of the interesting future directions to explore is
to incorporate surface tension into our current framework to simu-
late free-surface flow such as liquid tubes. We find that it is feasible
to update the velocity field with both surface tension and vortex
structures by discretizing the flow field into a series of impulse and
vorticity elements. Similar to the BS law, the solenoidal velocity
induced by impulse elements can also be obtained by a summation
formula (see Equation (9) in [Cortez 1996]).

9 CONCLUSIONS
We propose a vortex segment cloud method that combines the flexi-
bility of the traditional vortex particle method and the stability and
accuracy of the vortex filament method with discretizing vorticity
field as a series of vortex segments of certain lengths to simulate
incompressible flows. We develop a full set of parallelizable vortex
dynamics solvers with the support of dynamic solid boundaries to
endorse the simulation of various challenging flow phenomena and
further simulate a series of complex flows, such as the reconnec-
tion of vortex tubes, turbulent smokes, and vortex sheddings with
boundaries. Our method shares unique advantages in the simulation
of anisotropic flows with coherent structures that are ubiquitous in
the real world.
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A DERIVATION OF THE DISCRETE BS LAW OF A
SINGLE VORTEX SEGMENT

Assuming the length of 𝑗 th vortex segment as 𝐿𝑗 ; unit tangential
direction as 𝒕 𝑗 ; position as 𝐶 𝑗 . For the vortex segments, 𝑓𝛿 is a delta
function supported on 𝐶 𝑗 . Substituting 𝑓𝛿 into (5) and (4), we get
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Fig. 15. von Kármán vortex street forming behind a 2-D disc. Up to bottom:
frames at 100, 150, and 600..

the induced velocity of the single vortex segment as

𝒖𝐵𝑆𝑗 =
Γ𝑗

4𝜋

∫
𝐶 𝑗

𝒕 𝑗 × (𝒙 − 𝒙 ′)
|𝒙 − 𝒙 ′ |3

d𝒍 ′. (19)

We parameterize the line segment 𝐿𝑗

𝐶 𝑗 = {𝒙 𝑗 + 𝑥 𝒕 𝑗 |𝑥 ∈ [−𝐿𝑗/2, 𝐿𝑗/2]} (20)

and assume
𝒙 = 𝒙 𝑗 + 𝑥𝑡 𝒕 𝑗 + 𝑥𝑛𝒏 𝑗 , (21)

where 𝑥𝑡 = | (𝒙 − 𝒙 𝑗 ) · 𝒕 𝑗 | and 𝑥𝑛 = |𝒙 − 𝒙 𝑗 − 𝒕 𝑗 (𝒙 − 𝒙 𝑗 ) · 𝒕 𝑗 |
are the tangential and normal components of 𝒙 − 𝒙 𝑗 respectively.
Substituting (20) and (21) into (19) yields

𝒖𝐵𝑆𝑗

=
Γ𝑗

4𝜋

∫ 𝐿𝑗 /2

−𝐿𝑗 /2

𝒕 𝑗 × [𝒙 𝑗 + 𝑥𝑡 𝒕 𝑗 + 𝑥𝑛𝒏 𝑗 − (𝒙 𝑗 + 𝑥 𝒕 𝑗 )]
|𝒙 𝑗 + 𝑥𝑡 𝒕 𝑗 + 𝑥𝑛𝒏 𝑗 − (𝒙 𝑗 + 𝑥 𝒕 𝑗 ) |3

d𝑥

=
Γ𝑗 (𝒕 𝑗 × 𝒏 𝑗 )𝑥𝑛

4𝜋

∫ 𝐿𝑗 /2

−𝐿𝑗 /2

1
[(𝑥𝑡 − 𝑥)2 + 𝑥2𝑛]1.5

d𝑥

=
Γ𝑗 (𝒕 𝑗 × 𝒏 𝑗 )

4𝜋𝑥𝑛

{
𝐿𝑗/2 + 𝑥𝑡

[(𝐿𝑗/2 + 𝑥𝑡 )2 + 𝑥2𝑛]0.5
−

𝑥𝑡 − 𝐿𝑗/2
[(𝑥𝑡 − 𝐿𝑗/2)2 + 𝑥2𝑛]0.5

}
,

(22)
which is equivalent to (6) without considering R.

B UPDATE VORTICITY STRENGTH OF GENERATED
VORTEX ELEMENTS FOR MOVING BOUNDARY

We take the motion of a rigid body in the flow as an example to
detailedly illustrate the updating of (18) during the evolution. The
motion of a rigid body in 𝑁𝑑 -dimensional space is described as a
trajectory [𝑹 (𝑡), 𝒙𝑐 (𝑡)] in the group of Euclidean motions. Here
𝑹 (𝑡) with 𝑹 (0) = 𝑰 (𝑁𝑑 ) is a orthogonal 𝑁𝑑 × 𝑁𝑑 -matrix that de-
scribes the orientation of the body and 𝒙𝑐 (𝑡) is the position of the
body’s “center”. Therefore the position of 𝑁𝑏 boundary points and

Fig. 16. A paddle mixes smoke in a 2-D box showing frames 50 (up left), 300
(up right), 450 (bottom left), and 700 (bottom right).

𝑁𝑔 generated vortex particles can be updated as{𝒃𝑖 (𝑡) = 𝒙𝑐 (𝑡) + 𝑹 (𝑡) [𝒃𝑖 (0) − 𝒙𝑐 (0)],
𝒈𝛼 (𝑡) = 𝒙𝑐 (𝑡) + 𝑹 (𝑡) [𝒈𝛼 (0) − 𝒙𝑐 (0)],

(23)

as well as the velocity at 𝒃𝑖 (𝑡)

𝒖𝑏 [𝒃𝑖 (𝑡)] =
d𝒙𝑐 (𝑡)
d𝑡

+ d𝑹 (𝑡)
d𝑡

[𝒃𝑖 (0) − 𝒙𝑐 (0)] . (24)

Substituting (23) into the BS law (7) yields the update of 𝑲𝑖𝛼 as

𝑲𝑖𝛼 (𝑡) = 𝑹 (𝑡)𝑲𝑖𝛼 (0) . (25)

It is notable that though 𝑲 and 𝑼 in (17) need to be updated for
each time step during the calculation of (18),

[
𝑲𝑇𝑲 + 𝜖𝐾 𝑰 (𝑁𝑔 )

]−1
with a relatively high computational complexity in (18) remains
unchanged.

C TESTING EXAMPLES FOR BOUNDARY TREATMENT
Kármán Vortex Street. Figure 15 demonstrates an example of a

2-D flow with a constant in-flow velocity passing through a static
disk, which is a repeating pattern of swirling vortices, caused by a
process known as vortex shedding. For each time step, we repeat-
edly initialize 50 vortex elements around the static disk, as well as
calculate the vorticity strength of generated vortex elements using
(18). The velocity of the flow field is the summation of the induced
velocity of generated vortex elements and the in-flow velocity. The
vortex elements that flow out of the computational domain will
not be involved in the numerical calculation anymore. With all
these settings, the simulation of Kármán vortex street fits well with
the classical experimental and computational results [Kuzmina and
Marchevsky 2021; Roushan and Wu 2005]. Thus our boundary con-
dition treatment is effective for scenarios that are sensitive to the
influence of the boundary geometry.

A paddle mixing smoke in a 2-D box. Figure 16 shows a rotating
and translating paddle shuttling back and forth through a cloud
of smoke, disturbing the static smoke to a turbulent state. For this
simulation, we repeatedly initialize 150 vortex elements around the
moving paddle. We set a certain lifetime for vortex elements in our
simulation. Specifically, the vorticity strength of the vortex element
decays at a rate of 2% over each time step to 20% of its initial strength
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and will be deleted at 280 time-step after its birth. Generally, vortex
elements with a longer lifetime make the flow appear less viscous.
We comment that in the vortex method simulation in a 2-D closed
box since the number of vortex elements cannot be reduced by the
merging of line segments, setting the lifetime of vortex elements is
necessary to maintain the simulation stability.

D ACCELERATION
We detail the acceleration algorithm for large-scale vortex segment
simulations as follows. Equations (6) and (7) show that the induced
velocity of 𝑗 th vortex element to the position 𝒙 is inversely propor-
tional to the ∥𝒙𝑛 −𝒙 ∥𝑛𝑑−1 with the dimension 𝑛𝑑 , possessing which
property, we could employ lower calculating accuracy on vortex
element that is away from 𝒙 .

We proposed an accelerating method based on multi-nested grids
that combines all the merits of the classical methods mentioned in
Section 2. As shown in Figure 17, the computational zone is divided
into 𝑁𝐺 sets of grids with different grid step sizes as 2𝑘−1𝑑𝐺 , 𝑘 =

1, 2, · · · , 𝑁𝐺 , where 𝑑𝐺 is the smallest grid step size. The summation
of the vortex strength vector in any specific grid is stored in the
center of each grid cell, and we call these grids superparticles. We
calculate the induced velocity of inquiring position by using the
super particle that corresponds with its grid-scale based on distance.

Fig. 17. The schematic diagram of nested grids. The orange dot denotes
inquiring position for calculating its induced velocity, the blue dots denote
the central positions of vortex elements.

Specifically, for number 𝑘th grid set, we define its influence radius
as R𝑘 , 𝑘 = 1, · · · , 𝑁𝐺 with R𝑁𝐺

> R𝑁𝐺−1 > · · · > R1, as well as
spherical-like zone inside the computation space Ω as

Ω𝑘 (𝒙) = {𝒚 |∥𝒄𝑘 (𝒙) − 𝒄𝑘 (𝒚)∥ < R𝑘 , 𝒚 ∈ Ω}, (26)

where 𝒄𝑘 (𝒙) is the central position of the grid cell in which 𝒙 lo-
cated in the 𝑘th grid set. Also, we denote Ω𝑁𝐺+1 = Ω as the whole
computational region.
We calculate the induced velocity at 𝒙 using the method men-

tioned in section 4.2 when vortex element is in Ω1, and using the
super particle in 𝑘th grid set when vortex element is in the Ω𝑘+1\Ω𝑘
(the set difference of Ω𝑘+1 and Ω𝑘 ), 𝑘 = 1, 2, · · · , 𝑁𝑔 .

The computing scale of this acceleration method is determined
by the number of layers the grid is divided as well as the distance
R𝑘 from the center position of various grids. In our simulation,
we divide the computational region with scale 𝐿𝑁𝑑 as four sets of

grids: 2(7−𝑘)𝑁𝑑𝑘 = 1, 2, 3, 4 with grid steps as 𝑑𝑘 = 𝐿/27−𝑘 together
with influence radiuses as R1 = 𝑑1,R2 = 3𝑑2,R3 = 3𝑑3,R4 = 3𝑑4.
With the above configuration, as shown in figure 18, the computing
efficiency can be up to 𝑂 (𝑁𝑣).

Fig. 18. Performance of the simulation with and without acceleration. The
computing time increases approximately linearly/quadratically with the
number of vortex elements increasing over time with/without acceleration.

Fig. 19. Taylor vortex at 𝑡 = 0, 4, 8. The flow fields are visualized by 10242
tracer particles with their colors rendered by vorticity. First row: without
acceleration; second row: with acceleration.

Notably, this acceleration has little impact on accuracy. Figure 19
shows the evolution of 2-D Taylor vortex with and without accelera-
tion respectively, where its initial condition is composed of two vor-
texes with a distance of 0.8 apart from each other. The vorticity distri-
bution of each vortex is𝜔 (𝒙) = (1/0.15−𝑟/0.027) exp(0.5−𝑟/0.18),
where 𝑟 is the distance from 𝒙 to the vortex centre [McKenzie 2007;
Qu et al. 2019]. For the numerical simulation, 1282 vortex elements
are distributed symmetrically within a square region with sides of
4. As shown in figure 19, the numerical results of the Taylor vortex
fit well with the direct numerical simulation [McKenzie 2007], and
barely loses any flow details with acceleration.
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