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ABSTRACT

Proliferation of mobile smartphones has opened up possi-

bilities of using crowd-sourcing to gather data from and so

monitor large crowds. However, depending on the size of

the crowd, current solutions either put unpredictable stress

on the infrastructure and energy-constrained smartphones or

do not capture the crowd behavior accurately. In response,

we present CrowdWatch, a scalable, distributed and energy-

efficient crowd-sourcing framework. CrowdWatch achieves

its goal through off-loading some of the processing to the de-

vices and establishing a hierarchy of participants by exploit-

ing devices with multiple radios (i.e. WiFi (high-power) and

BlueTooth (low-power)). CrowdWatch can outperform tra-

ditional crowd-sourcing frameworks by reducing the stress

on the infrastructures to 10% of that of a traditional crowd-

sourcing solution, while only requiring each phone to use

their Wi-Fi radios 15% of the time in a dense environment.

1. INTRODUCTION

As people move through their everyday lives, they
encounter and navigate through crowds of all sizes and
compositions. While some of these crowds come from
planned events, others pop up in unexpected places,
and in many situations, the size and the behavior of the
crowd simply cannot be predicted. Consider the 2012
Summer Olympics in London. While there was some
expectation of the number of people attending a partic-
ular event, there was no way to predict how the people
would move, putting unpredictable stress on many of
the city’s resources. Although London is well-known
for its city-wide infrastructure-based cameras, the col-
lected information collected requires complex and ex-
pensive image processing [1] and so cannot be used to
react to real-time events. In response, the city deployed
a smartphone-based crowd-sourcing app that allowed
users to upload their location information via the cellu-
lar infrastructure to help determine how to manage the
crowds and the associated city resources [2].
Although in such a crowd-sourcing solution the data

is collected by the individuals, it ultimately needs to be
uploaded and processed on a centralized server or in a
cloud. However, the sheer size of a crowd and the de-

mands it puts on any infrastructure, whether it is cel-
lular or Wi-Fi, over-stresses the networking resources
needed to enable such a solution [3, 4]. Essentially, the
more people in the crowd, the more demands they put
on the network and the more unpredictable and unre-
sponsive the network service becomes. Unfortunately
for any services focused on crowds and crowd behav-
ior, this is exactly when information about the crowd
is needed but cannot be uploaded. Additionally, crowd
formation and movement is unpredictable, making it
difficult to provide sufficient infrastructure coverage in
every possible location [5]. Finally, some crowds may
form in an ad hoc manner and may not want to use the
existing infrastructure.
While all of the data is already collected on the de-

vices themselves, given the limited bandwidth to a server
or cloud, it is interesting to consider offloading some of
the processing to the devices as well. The resulting
system would truly embody the idea of crowd-sourcing
from within the crowd itself. To this end, we have de-
signed CrowdWatch, a collaborative smartphone-based
system that enables effective crowdmonitoring and feed-
back services by monitoring the people, their behavior
and the dynamics of the crowd from within the crowd.
Through the use of local coordination and processing
and probabilistic monitoring of the crowd, CrowdWatch
limit the energy cost of processing on a user’s phone, re-
ducing the demand on the bandwidth to the server and
allowing this limited resource to be more effectively used
for aggregated data. The main challenge for such a ser-
vice is the local monitoring of individuals, their behav-
ior and their social interactions with the people around
them in an effective and energy-efficient manner.
In this paper, we present the CrowdWatch architec-

ture, which enables scalable, distributed crowd moni-
toring and detection via users’ smartphones from the
“inside-out”. As such, CrowdWatch represents a radi-
cally different approach in contrast to external approaches
that monitor the crowd from the “outside-in”. Crowd-
Watch operates in an automated manner and requires
no specialized devices or infrastructure other than stan-
dard off-the-shelf smartphones and scales with the num-
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Figure 1: The Hierarchy of a Crowd

ber of phones in the crowd. As a result, CrowdWatch of-
fers users access to unprecedented information to guide
them in a crowd.
In the rest of this paper, we first discuss support for

large-scale crowd monitoring. In Section 3, we present
the hierarchical design of CrowdWatch. Our evaluation
of the CrowdWatch algorithms and their impact on en-
ergy consumption and backend load is presented in Sec-
tion 4. Finally, we conclude in Section 5 and discuss our
future directions.

2. CROWD MONITORING

Many applications could benefit from crowd detection
as well as monitoring of the behavior of a crowd. For ex-
ample, public safety applications with crowd-monitoring
could watch for overcrowding or fights as well as dissem-
inate information about which gates in ahow to enter
a stadium, where to get water, or where to get medical
attention [6].
While crowd-sourcing [7] and crowd computing [8,

9, 10] have been proposed to leverage the information
collected by individuals within a crowd, bandwidth and
access to servers/clouds over cellular or local Wi-Fi net-
works might be very unreliable and hence access to
servers might not be available. Additionally, these solu-
tions treat a user as a stand-alone entity. The user is re-
quired to use significant resources to connect to servers
to participate, even if the services, data or people they
are trying to find are entirely local.
While infrastructure-based CCTV camera solutions [11,

1, 5] for crowd monitoring and control require no re-
sources from the people in the crowd or from the wire-
less networking infrastructure and are in place in many
cities (e.g., London), these solutions cannot detect the
social interactions within a crowd and even lose cru-
cial information about an individual due to the limited
image/video resolution.
In response to these limitations, we next present the

design of the CrowdWatch Architecture and then eval-
uate its effectiveness in varying crowd conditions.

Figure 2: Watcher and Sampler contention man-
agement slots.

3. CROWDWATCH FRAMEWORK

While crowd detection and management can be suc-
cessful given all individual information all of the time,
collecting such information from energy constrained mo-
bile devices is not only overly-demanding of the device’s
resources, but likely unnecessary in such an environ-
ment. Instead, solutions need to be developed that
enable each device to collect sensor information, loca-
tion/proximity and surrounding context in an energy-
efficient manner.
CrowdWatch achieves distributed energy efficient crowd

monitoring by exploiting three key observations. First,
since people in crowds tend to cluster in groups, there is
the potential for effective sampling of data. Essentially,
it is not necessary for all users to collect data at all of
the times. Second, crowds are dynamic and change con-
stantly. Therefore, it is not necessary to have a perfect
snapshot of the crowd at all times. Third, most current
mobile devices have multiple radios, Wi-Fi (high power)
and BlueTooth (low power). Although the Wi-Fi radio
has a longer communication range, it has a higher idle
energy cost. Therefore, it is not desirable for all devices
to turn on their Wi-Fi radios all of the time. To enable
connectivity, CrowdWatch builds a hierarchy of devices,
leveraging the distant Wi-Fi connectivity for creating a
dynamic backbone in the crowd and the local Bluetooth
connectivity to support local sampling and data collec-
tion. In this section, we describe the CrowdWatch for
energy-efficient and scalable crowd monitoring.

3.1 Architecture

Given our goal and the challenges of the on-line in-
crowd monitoring, we have designed CrowdWatch as a
distributed, hierarchical cross-layer architecture, with a
small functional service residing on each smartphone.
To reduce redundant data collection and processing,

and so reduce energy consumption, CrowdWatch orga-
nizes the smartphones within a crowd to enable cooper-
ative, scalable, energy-efficient participatory sensing by
managing the expected participation of a given phone.
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To this end, a given node may be actively participating
as a watcher, a sampler or a sensor, or may be conserv-
ing energy in a sleep state (see Figure 1).
At the highest level of the hierarchy, CrowdWatch

first selects a small group of watchers that act to ag-
gregate local and information from other CrowdWatch
nodes in their Wi-Fi neighborhood, with the expecta-
tion that the collection of watchers covers the majority
of the crowd as needed. Since it is not always necessary
to collect sensor data from all devices in a crowd, each
watcher targets a number of representative sample areas
in its region by probabilistically selecting a set of sam-
pler nodes in its Wi-Fi neighborhood. Sampler’s then
collect sensing and activity information from the de-
vices in their BlueTooth neighborhood, which is a small
subset of the watcher’s Wi-Fi neighborhood, and pass
it back to the watcher. Watchers can then run proba-
bilistic inference algorithms on the collected data and
convey the results to other watchers and/or to the cloud
server for further analysis. All other nodes not actively
participating sleep to conserve their energy. While this
is a simple hierarchy, the challenges come from man-
aging the roles of the different nodes in a constantly
changing environment.

3.2 Hierarchical Monitoring

At the highest level, each watcher is responsible for
monitoring the area covered by its Wi-Fi radio, includ-
ing any sensed data from the nodes in its neighborhood
collected by samplers and sensing nodes. Samplers are
responsible for collecting sensing information from all
active sensing nodes in their BlueTooth neighborhood.
In general, this hierarchy is location based, aimed at
probabilistic coverage of an area.
To provide coverage of the crowd, the crowd is ini-

tially “seeded” with a set of watchers and additional
watchers selected pro-actively as need. The optimal se-
lection of watchers and samplers in CrowdWatch is very
challenging. If the same set of watchers and samplers
is used all of the time, those nodes would quickly run
out of energy. However, in the absence of a centralized
coordinator, load-balancing is very hard to achieve.
Watcher Selection: To enable efficient load balancing

with respect to energy usage, every node should have an
equal probability of being a watcher and this role should
eventually cycle through all nodes. Ideally, there should
be one watcher for everyWi-Fi neighborhood, therefore,
watcher selection is be done using the Wi-Fi radio. As
a preliminary approach, we assume that the nodes are
loosely time synchronized through some periodic use of
GPS or other central clock. During watcher selection,
all nodes are expected to keep their Wi-Fi interface on
without any duty-cycling. During a short time period,
nodes independently decide whether or not they want
to become a watcher based on knowledge of the number

of nodes or other watchers in their neighborhood and
how recently they have been a watcher.
CrowdWatch uses a common contention-based ap-

proach to selecting watchers where the contention win-
dow size determines when the nodes send a claim for
being the watcher in their neighborhood. As shown in
Fig 2, time is divided into slots. Each node randomly
picks a slot from its contention window to broadcast
its claim. To insure all nodes hear the claim, which
includes the initial time the claim was sent, the nodes
repeats the claim for wContention seconds. Initially,
nodes start with a windowSize equal to maxWindowSize.
Every time a node fails to win a contention phase (i.e.,
fails to become a watcher), it decreases its windowSize
by half, until it reaches minWindowSize. If a node wins
a contention phase and becomes a watcher, it resets its
windowSize to maxWindowSize.
Once watchers have been selected, the watchers broad-

cast Wi-Fi beacons to inform other nodes of their role
and identity. If the network is asynchronous, the broad-
cast message enable other nodes to synchronize their
clocks with the watcher, which supports tighter schedul-
ing of communication between the watchers and its sam-
plers. Over its time as a watcher, as defined by wLife-
Time, a node may see multiple cycles of sampler se-
lection and neighborhood active sensing. However, if
we are relying on the use of smartphones, maintain-
ing synchronization can consume significant amounts
of energy and in the end may even be foiled by the
limitations of the hardware to stay synchronized. To
overcome these problems, we are currently integrating
asynchronous solutions to watcher selection using asyn-
chronous neighbor detection [12] and lightweight group
management [13].
Sampler Selection: CrowdWatch’s probabilistic sens-

ing focuses on data collection at different parts of the
crowd at different times. To determine the samplers,
and so the sample regions, a watcher sends a beacon
over Wi-Fi to all nodes in its neighborhood that speci-
fies a probabilistic parameter for sampler selection, sam-
plerReq. Essentially, only a specific fraction of the nodes
(e.g., 10%) select themselves as samplers. To insure
no overlap of samplers in a given Bluetooth neighbor-
hood, the samplers perform a similar contention-based
selection process, resulting in one sampler per neigh-
borhood. Once the samplers have been selected, Wi-Fi
is not needed until the samplers need to send their col-
lected data back to the watcher.
The selection of samplers is completely random. This

probabilistic approach results in good coverage of the
crowd. As changes are detected in the crowd, the watch-
ers can dynamically adapt the number of samplers needed
in their neighborhood. In essences, CrowdWatch moni-
tors the crowd to learn how best to configure itself and
use its resources.
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Bluetooth Neighborhood Sensing: The first task of a
sampler is to discover all nodes in its Bluetooth neigh-
borhood. During this process, the presence of multiple
samplers in the same Bluetooth neighborhood is dealt
with using a tie-breaking mechanism. Based on the
results of discovery, a sampler selects a percentage of
neighbors to connect to over Bluetooth, defined by sen-
sorReq, and cycles through these neighbors one by one
and asks them for their sensing results. Once the sam-
pler is done collecting samples from its selected subset of
neighbors, it switches on its Wi-Fi interface and trans-
mits the data to the watcher during some predefined
period based on the watcher’s clock.
Data Collection: After watchers and samplers have

been selected, all sensing nodes enter the data collec-
tion phase. Sensing nodes send the data they collect
to the samplers, which aggregate and send the data to
the watcher. During data collection, watchers and sam-
plers send beacons at intervals of wReminder seconds to
remind the samplers and sensors respectively on when
the data can be forwarded. The beacons also function
to inform any new nodes that are joining that there are
existing watchers and samplers. Using this simple syn-
chronization, samplers and sensors do not need to turn
on their respective high-power and low-power radios un-
necessarily. This phase lasts for wCollectData, until
watchers and samplers have served for wLifeTime.

3.3 Crowd Discovery and Formation

In the absence of a crowd of people, the goal of Crowd-
Watch is to efficiently detect the existence of a forma-
tion of a crowd by monitoring the density of nodes in a
given neighborhood. A node can approximate the den-
sity of people in its neighborhood by employing efficient
neighbor discovery through available wireless channels.
Mobile phones have been used to estimate density

by scanning the environment for discoverable Bluetooth
devices [14, 15]. Ideally, all nodes monitor their neigh-
borhood all of the time. However, not only is such
an approach too expensive in terms of energy [16], it
is also unlikely to be necessary. In a sparse environ-
ment, it is possible to sample the neighborhood at a
much lower rate and look for increases in density or the
rate of discovery. Therefore, during crowd detection,
each CrowdWatch node runs an asynchronous discov-
ery protocol (e.g., Searchlight [17],U-Connect [18]) over
its Wi-Fi radio. Such protocols allow each node to per-
form neighbor detection without requiring the nodes to
be synchronized or run at the same duty cycle. In a
sparse network, discovery with high-duty cycle is waste-
ful. However, if all nodes operate at a very low-duty
cycle (e.g., 1%) then it may take too long to detect the
existence of a crowd. For example, if we use Search-
light [17], a slotted asynchronous deterministic proto-
col, and let all nodes operate at 1% duty cycle, in the

worst case, successful discovery between a pair of neigh-
bor nodes might takes as much 10000 seconds.
To tackle the problem of long discovery latencies due

to low duty cycles, CrowdWatch integrates both cooper-
ative and node-based mechanisms. Since CrowdWatch
is designed around the concept of samplers and watch-
ers, which are a subset of the nodes in an area, some
watchers are configured to perform neighbor discovery
with a higher duty cycle. Instead of having every node
discover with lower duty cycle, a few nodes may become
more pro-active and discover with a higher duty cycle.
This can dramatically cut down the worst-case discov-
ery latency between the samplers and watchers, allow-
ing much faster detection of a crowd if one exists. Upon
successful detection of a group/crowd, a watcher stops
duty-cycling for a while and disseminate the informa-
tion to other sampler nodes so that all nodes (samplers
and watchers) have up-to-date crowd information.

4. EVALUATION

In this section, we evaluate the overhead of the Crowd-
Watch framework, the energy improvements that it en-
ables as well as the accuracy of using CrowdWatch as
opposed to traditional crowd-sourcing solutions, which
have each of the nodes to upload their data to a cen-
tral server via its high-power radio. In our evaluations,
we focus on three metrics: radio on time, which cap-
tures energy efficiency, load, which captures the load
imposed on the cellular or Wi-Fi connections to the
servers or cloud, and accuracy, which captures the im-
pact of CrowdWatch’s probabilistic approach.

4.1 Methodology

We implemented CrowdWatch framework in an ex-
tension of the OMNeT Network Simulation Framework
that supports dual-radios for each node [19]. Since
Bluetooth is not yet supported in OMNeT, we emu-
lated Bluetooth using the Zigbee IEEE 802.15 WPAN
protocol, with the communication range adjusted ap-
propriately to 10m.
Each of the simulations were run for 1000 virtual min-

utes and were repeated 10 times. Additionally, since
our target is a mobile crowd, each of the simulated
nodes were programmed to move randomly 4m/s ev-
ery minute. The target area was set to be 50m x 50m.
The values of the parameters of CrowdWatch described
in the previous section is shown in Table 1. Unless spec-
ified, samplerReq and sensorReq are both 50%.

4.2 Evaluation of CrowdWatch

To capture the energy saving capabilities of Crowd-
Watch, we look at the amount of time each of the ra-
dios is on and consuming energy. As shown in Figure 3,
CrowdWatch nodes keep their low-power radio on for
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Figure 3: Avergage fraction of time a node keeps
both its high-power and low-power radio on.

Parameter Value (seconds)
wLifeTime 20

wContention 2
wReminder 1

wCollectData 5

Table 1: CrowdWatch parameters

around 17% of the time and their high-power radio on
for around 7% of the time. Additionally, note that the
standard deviation of how long different nodes turn on
either of its radio on is low (≈ 5% for low-power and 3%
for high-power radio). This shows the number of times
a node is elected as a sampler or watcher is more or less
equivalent to that of the other nodes, which captures
the fairness of our protocol. Finally, as the number of
nodes in the area is increased, the percentage of time
either of the radios is on decreases. This captures one of
the key design features of CrowdWatch: it is not neces-
sary to have perfect knowledge of the environment, just
an accurate understanding of it. Since only a fraction
of the nodes are needed as samplers and watchers, the
other can sleep and conserve energy.
Next, we simulate an application that runs on top of

CrowdWatch and computes the demographic distribu-
tion of the number of mobile nodes and we compare it
with a traditional crowd-sourcing application in which
each of the nodes is submitting the data to the server
and so will yield a more accurate result. Note that
this is the most difficult type of data to collect since all
nodes need to participate to avoid errors. For an ap-
plication that is sampling the air quality of a particular
area, having some nodes in the Bluetooth neighborhood
sleeping will not negatively impact accuracy.
With fewer nodes in the area, more nodes need to

be awake to send claims and so the data error rate is
smaller (see Figure 4). However, as the number of nodes
increases, more nodes can sleep and so CrowdWatch’s

Figure 4: The accuracy of CrowdWatch. The
pair indicates the sensorReq and samplerReq

.

Figure 5: Overhead of CrowdWatch.

view of the environment will be less accurate. Addi-
tionally, Figure 4 also shows how different percentage of
samplers and sensors affect the accuracy of the applica-
tions. When the percentage of sensors is increased, the
accuracy of the application also increases correspond-
ingly. At 50 nodes with 10% sensorReq, CrowdWatch
has an error rate of 24%. However, when we increase the
sensorReq to 50%, the error rate drops to 4%. At 100%
for both, this is similar to traditional crowd-sourcing in
which everybody is participating. The error in this case
is 2̃% since nodes are not initially synchronized.
Finally, Figure 5 shows the ratio of messages sent

to the cloud of CrowdWatch and traditional crowd-
sourcing which represents the stress that is put on the
infrastructure. At 10 nodes, CrowdWatch sends 7% of
the total messages of traditional crowd-sourcing while
at 50 nodes, the ratio drops by a factor of 4 to slightly
less than 2%. Of course, CrowdWatch performance will
vary with different values of wLifeTime, wContention
and wCollectData but the general trends will remain.
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5. CONCLUSION

Today’s crowd monitoring systems have not been able
to achieve their goals without losing crucial information
in the process or putting too much stress on the phones
and the infrastructures. In this paper, we present Crowd-
Watch, a mobile crowd-sourcing framework in which
a small functional service resides on each users’ off-
the-shelf smartphones and coordinates with the other
phones in its direct vicinity. The result is a scalable and
energy-efficient crowd-sourcing mechanism that enables
the tracking of crucial crowd monitoring information.
In the future, we plan to utilize feedback-loops to dy-

namically adjust CrowdWatch parameters (e.g. wLife-
Time, etc) depending on the density of the crowd. We
also plan to implement CrowdWatch in smartphones to
further determine its feasibility and performance. Fi-
nally, the CrowdWatch architecture is only a small part
of a crowd monitoring solution. We are currently in the
process of designing real-world applications that will use
the CrowdWatch architecture to let us go beyond safety
applications and study the dynamics of interpersonal in-
teractions and conversations at an unprecedented scale.
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