
GDB

find bugs

gdb tutorial: command reference
• We just used the following commands

– break : sets a breakpoint

– run : runs from beginning to first breakpoint

– start : runs to the start of main()

– s : executes the next line, even if inside a new function call

– n : execs next line but skips over function calls

– continue : resumes execution until next breakpoint is reached

– quit : exits gdb

• What other commands does gdb offer? (many…)

– finish : finishes executing code in current function (aka “step out”)

– delete n: deletes breakpoint number n

– print X: prints the value of the variable X

– l : (lower case l) Lists 10 lines of code around the current line

– print X=3 : change the value of X to 3 (print will execute any command

including function calls)

Valgrind

find tougher bugs

What does Valgrind do?

• Automatically detects bugs

– Memory management bugs

– Threading bugs (helgrind)

• Not working under current version of Valgrind

• Memory management bugs

– Compile your code with the -g option

– Run:
• valgrind --leak-check=yes myprog <myarg1> …

http://valgrind.org/

What can Memcheck Find?

• Detects memory management problems

– Checks all reads and writes to memory

– Intercepts all calls to malloc and free

• For example:

– Using uninitalized memory

– Reading/writing free’d memory

– Reading/writing off end of malloc’d blocks

– Leaks: lost pointers to malloc’d blocks

– A couple of other things, see:
• http://valgrind.org/docs/manual/manual-intro.html#manual-intro.overview

Valgrind output
• ==23321== Invalid write of size 4

• ==23321== at 0x804840F: f (leakoverflow.c:71)

• ==23321== by 0x804842C: main (leakoverflow.c:77)

• ==23321== Address 0x41A3050 is 0 bytes after a block of size 40 alloc'd

• ==23321== at 0x4022525: malloc (vg_replace_malloc.c:149)

• ==23321== by 0x8048405: f (leakoverflow.c:69)

• ==23321== by 0x804842C: main (leakoverflow.c:77)

• Everything is working perfectly!

• ==23321==

• ==23321== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 13 from 1)

• ==23321== malloc/free: in use at exit: 40 bytes in 1 blocks.

• ==23321== malloc/free: 1 allocs, 0 frees, 40 bytes allocated.

• ==23321== For counts of detected errors, rerun with: -v

• ==23321== searching for pointers to 1 not-freed blocks.

• ==23321== checked 47,932 bytes.

• ==23321==

• ==23321== LEAK SUMMARY:

• ==23321== definitely lost: 40 bytes in 1 blocks.

• ==23321== possibly lost: 0 bytes in 0 blocks.

• ==23321== still reachable: 0 bytes in 0 blocks.

• ==23321== suppressed: 0 bytes in 0 blocks.

• ==23321== Rerun with --leak-check=full to see details of leaked memory.

