GDB

find bugs

gdb tutorial: a basic gdb session’

[moriah:~] 104) gdb test - Parameter ‘test’ is the name of the program to debug

+ gdb outputs some uninteresting gdb metadata

(gdb) _ + gdb waits at a blank prompt. What now?

(gdb) break 7 « Set a breakpoint at line 4 of the code using break
Breakpoint 1 at 0x8048228: file test.c, line 7. -« gdb reports the address of the break

(gdb) run <arg 1> <arg 2> ... « test isn’'t running; run starts execution w/optional arguments
Starting program: /net/grad/erickee/test + gdb reports that things are going to happen!

Breakpoint 1, main () at test.c:7 « execution halts at the breakpoint on line 7 of test.c

7 testfcn(); + gdb prints the C code at line 7 (not yet executed)

(gdb) s + Use the s command to step into the function testfcn()
testfcn () at test.c:14 « execution halts at next line of code encountered by cpu

14 printf("Hello World\n"); « next line is at line 14 in test.c (this happens to be our code)
(gdb) n « Use n command to step over the printf(...) function

15 } « execution halts at next line of code

(gdb) continue + Use continue to run the program until next breakpoint
Continuing. Because there are no other breakpoints, the program ends
Program exited normally.

(gdb) q « Use g to quit gdb

* This information and more can be found on the course website by clicking on “Textbook and Resources” and then “gdb”

gdb tutorial: command reference

e We just used the following commands
— break : sets a breakpoint
— run : runs from beginning to first breakpoint
— start : runs to the start of main()
— S . executes the next line, even if inside a new function call
— n: execs next line but skips over function calls
— continue : resumes execution until next breakpoint is reached
— quit : exits gdb
 What other commands does gdb offer? (many...)
— finish : finishes executing code in current function (aka “step out”)
— delete n: deletes breakpoint number n
— print X: prints the value of the variable X
— | : (lower case |) Lists 10 lines of code around the current line

— print X=3 : change the value of X to 3 (print will execute any command
iIncluding function calls)

Valgrind

find tougher bugs

What does Valgrind do?

 Automatically detects bugs
— Memory management bugs
— Threading bugs (helgrind)

« Not working under current version of Valgrind

« Memory management bugs
— Compile your code with the -g option
— Run:

e valgrind --leak-check=yes myprog <myargl> ..

http://valgrind.org/

What can Memcheck Find?

e Detects memory management problems
— Checks all reads and writes to memory
— Intercepts all calls to malloc and free

* For example:
— Using uninitalized memory
— Reading/writing free’d memory
— Reading/writing off end of malloc’d blocks
— Leaks: lost pointers to malloc’d blocks
— A couple of other things, see:

 http://valgrind.org/docs/manual/manual-intro.html#manual-intro.overview

Valgrind output

==23321== Invalid write of size 4

==23321== at 0x804840F: f (leakoverflow.c:71)

==23321== by 0x804842C: main (leakoverflow.c:77)

==23321== Address 0x41A3050 is O bytes after a block of size 40 alloc"d
==23321== at 0x4022525: malloc (vg_replace _malloc.c:149)

==23321== by 0x8048405: T (leakoverflow.c:69)

==23321== by 0x804842C: main (leakoverflow.c:77)

Everything is working perfectly!

==23321==

==23321== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 13 from 1)
==23321== malloc/free: in use at exit: 40 bytes in 1 blocks.

==23321== malloc/free: 1 allocs, O frees, 40 bytes allocated.

==23321== For counts of detected errors, rerun with: -v

==23321== searching for pointers to 1 not-freed blocks.

==23321== checked 47,932 bytes.

==23321==

==23321== LEAK SUMMARY:

==23321== definitely lost: 40 bytes in 1 blocks.
==23321== possibly lost: O bytes in O blocks.
==23321== still reachable: 0 bytes In 0 blocks.
==23321== suppressed: 0 bytes in 0 blocks.

==23321== Rerun with --leak-check=full to see details of leaked memory.

