Threads, Synchronization, and
Timers



Processes & Threads

"Humans are actually quite good at doing two or three things at a time,
and seem to get offended if their computer cannot do as much." -A. Birrell

 What is a Process?
— A very separate entity.
e Think: The CIA vs. CS78

— Processes are separate programs in an OS
* (e.g. Firefox and Blitz)

e Whatis a Thread?

— A closely related entity.

* Think: someone to do your laundry for you while you are sitting in
class.

— Threads are part of the same process, run independently,
but share memory
* (e.g. A server thread to talk to each IM chat participant)



Thread Warnings

Crazy stuff can happen
Easily
Even if you are smairt

Helsenbug!

— Defintion: A bug that disappears or alters its characteristics when it is
researched

— http://en.wikipedia.org/wiki/Heisenbug#Heisenbugs




Important Thread Concepts

e Code runs concurrently
— What does this mean?

e Execution order is unpredictable
— Consider two threads running concurrently

void* threadl (void)
{
printf (“A”)
printf (“B”)
}

void* thread2(void)

{
printf(*“C”)
printf(*“D”)
} See unpredictable.c

— What output is possible?

« Memory (variables) are shared

— Global variables

— Parameter variables that are passed at thread creation



Threads In C

 We will be using pthreads
— They’re pretty easy

void* ThreadFunc(void* vargp)

{
// do something fancy

}

int main()
{
pthread t t1;
pthread create(&tl, NULL, ThreadFunc, NULL);
.. //do something fancy-er
pthread join(tl,NULL);
+

— What does pthread_join(...) do?

| will distribute sample code today
— Getting started will be quick

See also: http://www.cs.dartmouth.edu/~pway/cs23/thread_tutorial.html



Thread Synchronization

 \Why synchronize threads?

— Antecdote: Bob needs to change the tires on the
car; Alice needs to get to her board meeting

e It's probably best that Bob and Alice don’t do this at the
same time!

— The essense: Joe and Sue need access to a
shared resource

* \WWe synchronize threads to control access to
shared resources

— Variables, classes, anything else...



Synchronization Problems

* Does the following code solve our Alice & Bob problem?

bool car free = true //bool car_free = true
void* BobThread () void* AliceThread()
{ 1
if (car free == true) iIT (car_free == true)
{ 1
car free = false car_free = false
ChangeTires () GoToMeeting()
car free = true car_free = true
} }
) ¥

e Definition: race condition

— A flaw in a system whereby the output is unexpectedly and critically
dependent on the timing of other events

— Where is the race condition in the code above?



Synchronization Tools

 How do we solve the Bob & Alice problem?
— We must prevent the race conditions
— We need mutually-exclusive access to car_free

— So0,... we use a lock, also known as a mutex

e Locks

— Prevent race conditions by providing mutually exclusive

access to shared resources

mutex car lock = 0

void* BobThread ()

{
lock (car lock)
ChangeTires ()
unlock (car lock)

}

See alicebob.c

//mutex car_lock = 0

void* AliceThread()
{

lock(car_lock)
DriveCar()
unlock(car_lock)

}



More Synchronization Problems

* Do locks guarantee that everything will be OK?
— Consider this code...

mutex car lock = 0 //mutex car_lock = 0O
mutex keys lock = 0 //mutex keys lock = 0
void* BobThread () void* AliceThread()
{ {
lock (keys lock) lock(car_lock)
lock (car lock) lock(keys_ lock)
ChangeTires () DriveCar()
unlock (keys lock) unlock(car_lock)
unlock (car lock) unlock(keys_ lock)
) +

e Definition: deadlock

— A deadlock is a situation wherein two (or more) threads are waiting for
the other to finish, and thus neither ever does.



Deadlock Solutions
Don’'t do that?

Be smart?

Both?
— Well, that'd be a start

Real solutions
— Do we take the blue pill or the red pill?
— For this class... we choose blissful ignorance



Timers

 |n this course you will use a very simple timer

int timer_done = 0;

void* TimerThread(..)
{
sleep(some_time)
timer_done = 1

}

int main()
{
pthread create(TimerThread)
while (1)
{
// do other things
iIf (timer_done)
break;
¥
s

 How might you use this timer?



More correctly:
C’est finl.



