
Threads, Synchronization, and

Timers

Processes & Threads
"Humans are actually quite good at doing two or three things at a time,
and seem to get offended if their computer cannot do as much." -A. Birrell

• What is a Process?
– A very separate entity.

• Think: The CIA vs. CS78

– Processes are separate programs in an OS
• (e.g. Firefox and Blitz)

• What is a Thread?
– A closely related entity.

• Think: someone to do your laundry for you while you are sitting in
class.

– Threads are part of the same process, run independently,
but share memory

• (e.g. A server thread to talk to each IM chat participant)

Thread Warnings

• Crazy stuff can happen

• Easily

• Even if you are smart

• Heisenbug!
– Defintion: A bug that disappears or alters its characteristics when it is

researched

– http://en.wikipedia.org/wiki/Heisenbug#Heisenbugs

Important Thread Concepts

• Code runs concurrently
– What does this mean?

• Execution order is unpredictable
– Consider two threads running concurrently

– What output is possible?

• Memory (variables) are shared
– Global variables

– Parameter variables that are passed at thread creation

void* thread1(void)

{

 printf(“A”)

 printf(“B”)

}

void* thread2(void)

{

 printf(“C”)

 printf(“D”)

} See unpredictable.c

Threads in C

• We will be using pthreads
– They’re pretty easy

– What does pthread_join(…) do?

• I will distribute sample code today

– Getting started will be quick
• See also: http://www.cs.dartmouth.edu/~pway/cs23/thread_tutorial.html

void* ThreadFunc(void* vargp)

{
 // do something fancy

}

int main()
{

 pthread_t t1;

 pthread_create(&t1, NULL, ThreadFunc, NULL);

 … //do something fancy-er

 pthread_join(t1,NULL);
}

Thread Synchronization

• Why synchronize threads?

– Antecdote: Bob needs to change the tires on the

car; Alice needs to get to her board meeting

• It’s probably best that Bob and Alice don’t do this at the

same time!

– The essense: Joe and Sue need access to a

shared resource

• We synchronize threads to control access to

shared resources

– Variables, classes, anything else…

Synchronization Problems
• Does the following code solve our Alice & Bob problem?

• Definition: race condition

– A flaw in a system whereby the output is unexpectedly and critically

dependent on the timing of other events

– Where is the race condition in the code above?

bool car_free = true

void* BobThread()

{

 if (car_free == true)

 {

 car_free = false

 ChangeTires()

 car_free = true

 }

}

//bool car_free = true

void* AliceThread()

{

 if (car_free == true)

 {

 car_free = false

 GoToMeeting()

 car_free = true

 }

}

Synchronization Tools

• How do we solve the Bob & Alice problem?

– We must prevent the race conditions

– We need mutually-exclusive access to car_free

– So,… we use a lock, also known as a mutex

• Locks

– Prevent race conditions by providing mutually exclusive

access to shared resources

mutex car_lock = 0

void* BobThread()

{

 lock(car_lock)

 ChangeTires()

 unlock(car_lock)

}

//mutex car_lock = 0

void* AliceThread()

{

 lock(car_lock)

 DriveCar()

 unlock(car_lock)

}

See alicebob.c

More Synchronization Problems

• Do locks guarantee that everything will be OK?

– Consider this code…

• Definition: deadlock

– A deadlock is a situation wherein two (or more) threads are waiting for

the other to finish, and thus neither ever does.

mutex car_lock = 0

mutex keys_lock = 0

void* BobThread()

{

 lock(keys_lock)

 lock(car_lock)

 ChangeTires()

 unlock(keys_lock)

 unlock(car_lock)

}

//mutex car_lock = 0

//mutex keys_lock = 0

void* AliceThread()

{

 lock(car_lock)

 lock(keys_lock)

 DriveCar()

 unlock(car_lock)

 unlock(keys_lock)

}

Deadlock Solutions

• Don’t do that?

• Be smart?

• Both?

– Well, that’d be a start

• Real solutions

– Do we take the blue pill or the red pill?

– For this class… we choose blissful ignorance

Timers
• In this course you will use a very simple timer

• How might you use this timer?

int timer_done = 0;

void* TimerThread(…)

{

 sleep(some_time)

 timer_done = 1

}

int main()

{

 pthread_create(TimerThread)

 while (1)

 {

 // do other things

 if (timer_done)

 break;

 }

}

More correctly:

C’est fini.

