© 2012 Marty Hall

Official Android
Coding Style Conventions

Originals of Slides and Source Code for Examples:
http://www.coreservlets.com/android-tutorial/

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

© 2012 Marty Hall

movre
SERVLETS and

JAVASERVER PAGES
i [210 comon
core
SERVLETS and

JAVASERVER PAGES

MARTY HALL

osun

JIARTY HALL - LARRY BROWN

For live Android training, please see courses
at http://courses.coreservlets.com/.

Taught by the author of Core Serviets and JSP, More

W Servlets and JSP, and this Android tutorial. Available at

public venues, or customized versions can be held
on-site at your organization.

=l - Courses developed and taught by Marty Hall
— JSF 2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 6 or 7 programming, custom mix of topics
— Ajax courses can concentrate on 1 library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo, etc.) or survey several

» Courses developed and taught by coreservlets.com experts (edited by Marty)
— Spring, Hibernate/JPA, EJB3, GWT, Hadoop, SOAP-based and RESTful Web Services

Contact hall@coreserviets.com for details

Topics in This Section

Why follow conventions?

Valuable conventions

— Ones that are widely considered good practice for any
Java project (based on general Java industry consensus)

Tolerable conventions

— Ones that do no harm, but are of questionable value
(in Marty’s highly subjective opinion)

Dubious conventions

— Ones that we would have been better off without
(in Marty’s highly subjective opinion)

© 2012 Marty Hall

Overview

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Official Android Code
Conventions

* Required for
— Code contributed to Android project

Used in
— All official tutorials and (supposedly) all source code

Suggested for

— Code submitted to the app store

— Any Android project

Details

— http://source.android.com/source/code-style.html

Eclipse preferences file

— Downloadable from coreservlets.com from this section of the
Android Tutorial.
» Sets spacing, brace style, and use of @Override

Pros and Cons of Following
Conventions

* Pros
— Consistent with official tutorials and Android source
— More familiar to Android developers who join your team

« Cons
— Inconsistent with Java code you wrote before
— Less familiar to other Java developers
— Simply bothers you.
+ Java developers often have strong personal preferences
* My recommendations
— Most conventions are best practices anyhow
* Definitely follow those

— Most others are neither worse nor better than alternatives
* Probably follow those

— A few are (arguably) bad or at least wrong in some situations
« Ignore those if the situation warrants it

© 2012 Marty Hall

Conventions that are
Good Standard Practice

(For any Java project)

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

Indentation: blocks that are nested
more should be indented more

* Yes * No
blah; blah;
blah; blah;
for(...) { for(...) {
blah; blah;
blah; blah;
for(...) { for(...) {
blah; blah;
blah; blah;

Indentation: blocks that are nested the
same should be indented the same

* Yes * No
blah; blah;
blah; blah;
for(...) { for(...) {
blah; blah;
blah; blah;
for(...) { for(...) {
blah; blah;
blah; blah;
} }
} }

Break Things into Small Pieces

* Write short methods
— No official limit, but try to keep methods short and
focused. Think often about how to refactor your code to
break it into smaller and more reusable pieces.
* This is good advice in any language.
* This also shows why overly strict rules on the length of

comments can be counter productive by encouraging
developers to write long methods to avoid writing docs.

- Keep lines short
— They have a strict rule of 100 characters except for
imports or comments that contain URLs or commands

that cannot be broken up.
* Not sure 100 is the magic number, but short lines are good
practice anyhow.

Follow Normal Capitalization
Rules

Classes start with uppercase letter
public class SomeClass { ... }

Constants use all caps
public static final double GOLDEN_RATIO =

(1 + Math.sqrt(5.0))/2;
Everything else starts with lowercase letter
— Instance variables, local variables, parameters to
methods, package names
Extra rule

— Use words for acronyms, not all uppercase
+ getUrl, not getURL

— This is good advice in Web apps also

Use JavaDoc

Use JavaDoc from the beginning

— Don’t wait until the code is finished. Short comments are
fine, but use some. Explain purpose and non-obvious
behavior. Don’t explain standard Java constructs.

Document every class
/** Represents a collection of Blahs. Used to ... **/
public class Foo { ... }

Document anything public

— Methods

— Constructors

— Instance variables (but very rare to have public ones)

Review Oracle JavaDoc guidelines

* http://www.oracle.com/technetwork/javal/javase/documentation/index-137868.html

Use @Override

« Use @Override when you override methods
from parent class

— Won’t be caught until run time
public void oncreate(Bundle savedinstanceState) {

}
— Will be caught at compile time

@Override
public void oncreate(Bundle savedinstanceState) {

}
* Guidelines are silent regarding interfaces

— But, in Java 6 or later, I prefer to also use @Override
when implementing methods from interface

Use Other Standard Annotations
when Warranted (but Rarely)

* @Deprecated

— If you use a deprecated method, add this annotation to
your method. Also add @deprecated JavaDoc tag
explaining why it was necessary to use deprecated code.

» Of course, try hard to avoid use of deprecated methods

* @SuppressWarnings

— Generic collections are prohibited from doing extra work
at run time, so casting to generic type can cause warning
that Java can’t verify the types. Sometimes unavoidable

* @SuppressWarnings("unchecked")
» Other similar situations when making generic types

— Android guidelines require a TODO comment in these
cases, saying why you cannot avoid the situation

Limit the Scope of Variables

* Use narrowest scope possible

— Variables should be declared in the innermost block that
encloses all uses of the variable.
» E.g,, if variable is only used inside if statement, declare it inside
if statement.
— Yes
if (...){
double d = someCalculation(...);
doSomethingWith(d);
}else {
/I No use of d
}
— No
double d = 0;
if(...){...}else{...}

Initialize Local Variables when
Declared

* Initialize (almost) all local variables
— Yes
String s = "Hello";
— No
String s;

s = "Hello";
— Exception: try/catch blocks

int n;

try {
n = Integer.parselnt(someString);

} catch(NumberFormatException nfe) {
n=10;

}

Put Braces on Conditionals

- Always use braces for if statements

— Even if there is only one thing to do
* Yes

if (...){
doSomething();

}
* No
if (...)
doSomething();

* Guidelines give small exception
— If there is only one thing to do and it is all on one line
 Tolerated (grudgingly?)
if (...) doSomething();

Use TODO Comments for
Temporary Code

 Use “// TODO: ... ” for code that needs to be
changed later
— Situations
» Temporary fix
* OK but not great

* Works for small sizes, but bad performance in future when
data sets get bigger.

— Examples:
/l TODO: Switch to a Map when you have more entries
// TODO: Remove after UrlTable2 has been checked in
- Eclipse note

— Eclipse puts TODO in bold and puts check mark in left
margin of code

Avoid Finalizers

* Do not use finalize()

— Idea

« finalize() gets called when an object is garbage collected,
S0 you can do cleanup work then (such as closing socket
connections)

— Problem
* No guarantee when (or even if) finalizer will be called

— Quidelines
* Don’t use them.
« Good news

— Finalizers have long ago fallen out of favor, and many
Java developers don’t even know what they are.

© 2012 Marty Hall

Conventions that
Don’t Hurt

(No harm in following them, but
their value is questionable)

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Put Open Braces with Preceding
Code

* Put { with previous line, not on its own line

— Yes
public void foo() {
if (...) {
doSomething() ;
}
}
— No
public void foo()
{
if (...)
{
doSomething () ;

}

Indent 4 Spaces for Blocks

- Indent 4 spaces when starting a block

— Yes
public void foo () {
if (...) {
doSomething() ;
}
}
— No
public void foo () {
if (...) {
doSomething() ;
}
}

Indent 8 Spaces for Lines

* Indent 8 spaces when splitting a line
— Yes
String s =
somethingVeryLong(...) ;
— No
String s =
somethingVeryLong(...) ;

Fully Qualify Imports

* List each class name; don’t use *

— Yes
* import android.widget.Button;
* import android.widget.CheckBox;
* import android.widget.EditText;

— No
* import android.widget.*;

- Exception
— Can use * for java or javax packages

* Permitted
— import java.util.”;

Order Import Statements

First

— Android packages
* import android.foo.Bar;
Second

— Third party packages
* import com.coreservlets.utils.RandomUltils;

Third

— Standard java or javax packages
* import java.util.”;

Within each group

— Alphabetical (uppercase Z before lowercase a)
Separating groups

— Blank line between each major grouping

Start JavaDoc Comments with
3rd Person Verb

 Examples

— Yes
* Represents a ...
* Responds to mouse clicks with ...
* Deletes ...
— No
* This class ...
* This method ...

 Android’s own docs are inconsistent

— Many (most?) classes start with “This class” or similar.
* E.g., View, Activity, LinearLayout

© 2012 Marty Hall

Questionable

Conventions

(You would have been
better off without them)

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Start Instance Variables with
“m” (normal) or “s” (static)

* Use “m” for non-public, non static fields

— “m” for “member variable” or “data member”
* Yes
— private String mFirstName;
— private boolean mlsMarried;
* No
— private String firstName;
— private boolean isMarried;

« Use “s” for static (non-final) fields
* Yes
— private static double sBiggestRadius;
* No
— private static double biggestRadius;
* Marty’s opinion
— Results 1n less readable names with no real benefit

Impact of Naming Convention
on Constructors

Standard Style

public class Person {
public String firstName, lastName;

public Person(String firstName,
String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

Android Style

public class Person {
public String mFirstName, mLastName;

public Person(String firstName,
String lastName) {
mFirstName = firstName;
mLastName = lastName;

}

Never Ignore Exceptions

* Avoid empty catch blocks

— Yes
try {

} catch(SomeException se) {
doSomethingReal();

Y
— No

try {

} catch(SomeException se) { }

— Marty’s opinion

» Usually, but not always, a good rule

Why Ignoring Exceptions Rule
is Too Strict

- Can make shorter code with same safety

— Android style
int n;
try {
n = Integer.parselnt(...);
} catch(NumberFormatException nfe) {
n=10;
}
— Shorter style if you could ignore exceptions
intn=10;
try {
n = Integer.parselnt(...);
} catch(NumberFormatException nfe) { }

Why Ignoring Exceptions Rule
is Too Strict (Continued)

- Sometimes there is nothing to be done
try {
Thread.sleep(...);
} catch(InterruptedException ie) {
/[What could you do here?

Y
doSomethingAfterThePause();

Don’t Catch Generic Exception

- List each Exception type
— Yes
try {

} catch(ExceptionType1 et1) {
} cé.t'ch(ExceptionTypeZ et2) {
}

— No
try {

} ca;t.c-:h(Exception e){

}

Why Generic Exception Rule is
(Arguably) Too Strict

 Listing each type is almost always best
— So exceptions you didn’t expect don’t get caught there
— So real failure-handling is not obscured

« Sometimes combining is concise and safe
— E.g., if someString could be null, you could have either

NumberFormatException or NullPointerException. But,
in both cases, you just want to use original value for n.

intn=10;
try {

n = Integer.parselnt(someString);
} catch(Exception e) { }

© 2012 Marty Hall

Wrap-Up

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

Summary

 Strictly follow conventions that reflect widely
accepted best practices

— Also, familiarize yourself with best practices.

 All developers who have worked with Java more than two years
full time should read Josh Bloch’s Effective Java (2" Edition).

— Even experts will learn something new and valuable
* For other conventions, if you don’t strongly
object, follow the conventions anyhow
— Even if you don’t see any real value
 If convention really bothers you, ignore it

— Assuming it is not in category of generally accepted best
practices. Personal taste plays role in many of them.

© 2012 Marty Hall

Questions?

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

