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Abstract

Effectively assessing and monitoring mental health is critical to the detection and

treatment of mental illness. Mobile technologies, specifically mobile sensing using

smartphones, have potential to provide abundant real time information about a per-

son’s behaviors, lifestyle, and symptoms. In this thesis, we present two studies using

smartphone sensing to assess mental wellbeing. The StudentLife study uses the Stu-

dentLife sensing system to collect passive sensing data, EMA (ecological momentary

assessment), and a number of well-known pre-post behavioral and mental health sur-

veys from 48 Dartmouth students during the spring term in 2013. We identify a

Dartmouth term lifecycle in the data that shows how students’ stress, sleep, and

daily activity patterns change as the term progresses. We find a number of signifi-

cant correlations between the automatic objective sensor data from smartphones and

mental health and educational outcomes of the student body. We discuss a follow-up

study in which we propose a set of “symptom features” that proxy the DSM-5 (Di-

agnostic and Statistical Manual of Mental Disorders) defined depression symptoms

specifically designed for college students. We identify a number of important new

associations between symptom features and student self reported PHQ-8 (Personal

Health Questionnaire Depression Scale) and PHQ-4 depression scores. We show that

symptom features derived from phone and wearable sensors can predict whether or
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not a student is depressed on a week by week basis with 81.5% recall and 69.1% preci-

sion. In the second part of the thesis, we discuss our contribution to assessing serious

mental health using mobile phone sensing. We discuss CrossCheck, a randomized con-

trol trial that aims to use smartphones to assess schizophrenia patients’ symptoms

and ultimately predict schizophrenia relapses using passive sensing from smartphones.

Our results indicate that there are statistically significant associations between auto-

matically tracked behavioral features related to sleep, mobility, conversations, smart-

phone usage and self-reported indicators of mental health in schizophrenia. We build

a symptom prediction system to track participants’ symptoms in weekly basis and

reach out to participants who are determined by the system as at risk. Finally, we

evaluate relapse prediction models that predict whether or not a participant is going

to relapse based on smartphone passive sensing data and self-report EMA.
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Chapter 1

Introduction

1.1 Overview

Effectively assessing and monitoring mental health is critical to the detection and

treatment of mental illness. Early detection of mental illness warning signs could

facilitate time-sensitive interventions. However, traditional clinical practices are in-

efficient in detecting early warning signs. Standard methods are based on face to

face interaction and assessment by clinicians, conducted at set times and locations.

Such assessments are limited to the information the patients report back about their

behaviors and symptoms. As a result, such data are often influenced by biases in

self-report thus may not accurately capture patients’ day-to-day functioning. Mo-

bile technologies, specifically mobile sensing using smartphones, have the potential

to overcome drawbacks with traditional mental health assessment and provide more

abundant real time information about patients’ behaviors, lifestyle, and symptoms.

About 77% of Americans in 2018 own smartphones according to Pew Research1.

1http://www.pewinternet.org/fact-sheet/mobile/

1



1.1 Overview

Smartphones are equipped with many sensors that are capable of detecting people’s

behaviors, and are nearly constantly carried by their owners, which provide unpar-

alleled access to people’s daily lives. Smartphones can also be used to query people

about their psychological states (e.g., stress, emotion, mood) by notifying users to

answer survey questions. Researchers have already begun to use smartphones as be-

havioral data collection tools and investigated using smartphone sensing to monitor

mental health outcomes. The MONARCA project [150, 149, 96, 162] first report on

findings from mobile sensing and bipolar disorder. The authors [150] discuss corre-

lations between the activity levels over different periods of the day and psychiatric

evaluation scores associated with the mania-depression spectrum. Early work on mo-

bile mental health for schizophrenia patients by Ben-Zeev et al. [27, 30, 29, 28, 32]

studies the feasibility and acceptability of using mobile devices for intervention and

self-management among individuals with schizophrenia. In [33] the authors find that

participants feel comfortable using mobile phones with passive sensing apps. Par-

ticipants also report that they are interested in receiving feedback and suggestions

regarding their health. In [78], the authors present a study of 79 college-age partici-

pant from October 2015 to May 2016 in which they find a number of mobility features

(e.g., home stay duration, normalized entropy) correlate with PHQ-9 (patient health

questionnaire-9) [174, 122, 121], a widely used depression screening survey. Canzian

et al [49] develop an expanded set of mobility features [164, 163] and find that location

data correlates with PHQ-9. The authors show that the maximum distance traveled

between two places strongly correlates with the PHQ score.

There are a number of questions that need to be addressed before running a

smartphone sensing study for mental health [95]. Which device and sensing applica-
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tion should we use? How long should the study run? How often should we sample

the sensors? How do we obtain behavioral variables from the smartphone data?

What are the mental health outcomes? This thesis makes contributions that address

these questions. Specifically, we present two studies, StudentLife [196, 197, 200] and

CrossCheck [195, 199], in which we discuss our smartphone sensing systems, study de-

sign, backend data analytics systems, behavioral features derived from passive sensing

data, and mental health outcome predictions. In what follows, we review smartphone

sensing systems, behavioral modeling methods, and mental health outcomes.

1.1.1 Smartphone Sensing Systems

A smartphone sensing system usually consists of a sensing app running on the phone

and a backend service running in the cloud. The sensing app collects data by sampling

from a series of sensors, apps, and phone logs and uploads the data to the backend ser-

vice. The backend service consists a number of behind-the-scenes features to facilitate

data collection. For example, the backend service stores the uploaded sensing data in

a database and provide tools to manage participants and monitor study adherence.

In what follows, we review the sensing app and the backend service.

The Smartphone Sensing App

A smartphone is a device that combines sensing, computing, and communication.

Phone manufactures have equipped smartphones with a number of sensors that are

capable to perceive its user’s activities and surroundings. For example, accelerometers

are used to infer a user’s physical activities (e.g., stationary, walking, running, in a

vehicle), GPS is used to record a user’s mobility (e.g., places visited, distance traveled,
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mobility routines), microphones are used to infer social interaction, light sensors are

used to measure the ambient light environment, and smartphone operating systems

record lock/unlock events that are used to measure phone use. The sensing app

leverages all the sensors on the phone to collect various sensing data from smartphones

and apply machine learning models to infer users’ behaviors. Specifically, a sensing

app collects a user’s physical activity, social interaction, mobility, sleep, phone use,

and self-report EMAs.

Activity detection. There is a large amount of work on activity recognition using

smartphones and wearable sensors [22, 59, 107, 106, 183, 39]. Specifically, prior work

[127, 131] develop physical activity classifiers for smartphones to infer stationary,

walking, running, driving and cycling based on features extracted from accelerometer

streams. The activity classifier extracts features from the preprocessed accelerometer

stream, then applies a decision tree to infer the activity using the features. The

activity classifier achieves overall 94% of accuracy [131]. In [183, 39], researchers

use wearable sensors to detect eating behaviors. Researchers assess sensor-, device-

and workload-specific heterogeneities (e.g., heterogeneities across devices and their

configurations) for activity recognition in [177]. Smartphone operating systems now

provide built-in activity recognition APIs (e.g., Android Activity Recognition2 and

iOS Core Motion3) that infer users’ physical activities as well as step counts.

Conversation detection. Smartphones are able to infer whether or not there is

a conversation around a user aka social interaction. Prior work [155, 127] develop

privacy-sensitive audio and conversation classifiers. The classifiers process audio

recorded using the phone’s microphone on the fly to extract and record features,

2https://developers.google.com/location-context/activity-recognition/
3https://developer.apple.com/documentation/coremotion
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and use a two-state hidden Markov model (HMM) to infer speech segments. The

speech segments are then grouped into distinct conversations. In order to protect

privacy, only the conversation inferences are recorded.

Mobility detection. The GPS sensor on the smartphoens identifies locations, which

can infer the significant places (e.g., home, work, traveling) in a user’s daily routine

[17]. We can also use GPS traces to compute distance traveled and dwell time at

different types of locations (e.g., home, gym, work places, study places). To obtain

more fine-grained mobility information, we can also use WiFi scan logs to identify a

user’s indoor locations [194, 157].

Sleep detection. Our previous work [53, 127] implements a sleep classifier that un-

obtrusively infers sleep duration without any special interaction with the phone. The

sleep classifier extracts four types of features: light features, phone usage features

including the phone lock state, activity features (e.g., stationary), and sound features

from the microphone. Our sleep model combines these features to form a more accu-

rate sleep model and predictor. We train the model using the method described in

[53] with an accuracy of +/- 32 mins to the ground truth.

Phone use detection. Smartphone operating systems record lock/unlock events,

app usage, and call/SMS logs. User interaction with the phone is potentially in-

dicative of general daily functioning. Many studies explore the relationship between

smartphone use and mental health outcomes [66, 75, 76]. In a prior study [172],

researchers collect a wide range of phone usage data from smartphones and iden-

tify a number of usage features (e.g., the number of apps used per day, the ratio of

SMSs to calls, the number of event-initiated sessions) that are relevant to problematic

smartphone use.
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MobileEMA. In-situ EMA (ecological momentary assessment) [171] on smartphones

is used in studies to capture additional human behavior beyond what the surveys and

automatic sensing provide. The user is prompted by a short survey scheduled at some

point during their day. We can use MobileEMA to collect a large range of self-reports,

such as stress, anxiety, depression (e.g., PHQ-4 [123]), schizophrenia symptoms [31],

and general behaviors [196].

The sensing app runs in the background and does not need users’ input except

periodic MobileEMA. The collected data are first stored in the phone and uploaded

to the backend service when possible.

The Backend Service

The back-end service usually consists of a participant manager, a portal server, a data

storage server, and a data processing service. The participant manager manages study

participants’ subject IDs, which are used by the sensing app to authenticate with the

portal server. The portal server receives the data from the sensing app. The portal

server stores the sensor data uploaded from participant’s phones in the data storage,

which is typically a database (e.g., MySQL, MongoDB). The data processing service

relies on the data storage server to provide services like data collection monitoring,

data transformations (for further analysis), and prediction services (e.g., predicting

mental health outcomes).

1.1.2 Behavioral Modeling

The smartphone sensing data capture a user’s behavior at the moment. For example,

a physically activity inference describes the user’s activity at the time the data is
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collected. A GPS coordinate describes where a user is at that moment. We need

behavioral modeling methods to aggregate and summarize large volumes of sensing

data to describe the user’s behaviors at a higher level. As a result, the modeling

methods generate a number of behavioral features that are the input to our analysis.

In what follows, we describe two methods to model behaviors from smartphone sensing

data.

Compute daily behavioral features. One intuitive method to model behaviors is

to compute daily summaries for each of the sensing data. For example, we compute

the non-sedentary duration in a day from the activity data to describe how physically

active a user is; we can compute the number of conversations and the duration of

all conversations in a day to describe sociability; we compute distance traveled from

the location data to describe mobility. We can also partition a day into epochs (e.g.,

night: 12 am - 6 am, morning: 6am - 12 pm, afternoon: 12 pm - 6 pm, and evening:

6 pm - 12 am) and compute the behavior summaries in each of the epochs. These

epochs relate to morning, afternoon, evening, and night. Partitioning a day into

epochs gives insight about the structure of the daily behaviors (e.g., more active at

night but sedentary in the day), which may be informative to mental health states.

Combining different types of sensor data. The combination of different types

of sensor data can produce more context-specific behaviors. For example, the Stu-

dentLife study [196, 197] described in Chapter 2 shows we can combine location,

activity, and audio data to infer partying, studying, and how focused a student is

when studying. Domain knowledge may help in combining different types of sensor

data in meaningful ways. In Chapter 3, we discuss designing behavioral features that

capture depression symptoms defined in DSM-5 (Diagnostic and Statistical Manual
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of Mental Disorders, 5th Edition) [18].

Mining behavioral patterns. Another method to model human behaviors from

smartphone data is to compute features that capture people’s lifestyle. For example,

researchers [21] propose a generalizable solution to model and reason about behav-

ioral routines. Routines can describe people’s sleeping, daily mobility, and socializing

patterns. Saeb et al [164, 163] find mobility patterns (e.g., circadian rhythm of move-

ment, normalized entropy) correlate with depressive symptom severity. Canzian et

al [49] present a number of mobility trace features (e.g., the radius of gyration, the

routine index) that predict the trajectory of depression. Abdullah et al [10, 9] in-

vestigate assessing circadian rhythms from sensors and self-reports to help improving

cognitive and physical performance.

1.1.3 Mental Health Measures and Analysis Methods

Mobile mental health studies aim to predict certain measures using the smartphone

data. However, the mental health measures and sample methods varies between

studies. There are mainly three types of ground truth: one-time, periodic, and mental

health outcome events. In what follows, we discuss our ground truth and analysis

methods.

One-time ground truth. There are a number of survey instruments to assess

mental health. For example, PHQ-9 [174, 122, 121] is a widely used instrument to

screen for depression severity; the Generalized Anxiety Disorder 7 (GAD-7) [175] is

a questionnaire for measuring generalized anxiety disorder; and the brief psychiatric

rating scale (BPRS) [151] is a rating scale used by clinicians to measure psychiatric

symptoms such as depression, hallucinations, and unusual behaviors. The survey
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instruments are usually administered at the beginning and/or the end of a study.

We are interested in two types of analysis. First, we would like to understand the

relationship between sensing data and ground truth. Second, we would like to predict

the ground truth using the sensing data. To understand the relations between sensing

data and mental health ground truth, we can apply various standard statistical tests.

For example, we can apply correlation analysis and regression analysis if the ground

truth is ordinal (i.e., the order of choices,) or interval (i.e., difference between values

is meaningful). We can apply t-test and ANOVA if the ground truth is nominal

(i.e., categorical values). There are usually a large number of behavioral features

derived from sensing data, therefore, we run many separate hypothesis tests. If we

use the standard alpha level of 5%, we would expect to find many false discoveries

(i.e., the multiple testing problem). For example, if we run 1000 random tests with

the standard alpha level of 5%, we would get around 50 significant results, most of

which are false discoveries. We could apply various controlling procedures to address

the multiple testing problem (e.g., the Bonferroni correction [70], the false discovery

rate (FDR) [207]). For example, FDR-controlling procedures are designed to control

the expected proportion of false ”discoveries” [207].

To predict mental health ground truth using sensing data, we apply various ma-

chine learning models. We first partition the dataset into two parts: a training set

and a test set. We use the training set to train machine learning models and evaluate

the models using the test set. If the ground truth is ordinal or interval, we train

regression models, such as linear regression [83], support vector regression [61], and

gradient boosting regression tree [84]. If the ground truth is nominal, we train clas-

sification models, such as logistic regression [193, 158], support vector machines [61],
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and random forest [44, 104]. We use cross-validation methods [146, 117] to evaluate

predictive models. Cross-validation may have a number of rounds. A round of cross-

validation partitions a sample of data into subsets, trains the model on one subset

(i.e., the training set), and validates the model on the other subset (i.e., the testing

set).

Periodic ground truth. Other studies aim to track how mental health states

change over time. Researchers might administer EMAs periodically (e.g., once a

week) to assess participants’ mental health. The EMA questions are usually short

and quick to respond to. For depression studies, researchers might administer PHQ-

4 [123], which consists of 4 short questions. For schizophrenia studies described in

Chapter 4, we administer a 10-item EMA to participants every Monday, Wednesday,

and Friday. The EMA questions ask participants to self-report their symptom severity

(e,g., hearing voices, depression) and overall mental health wellbeing (e.g., feeling

hopeful).

Since participants respond to EMAs many times in the study, the data from the

same participant are correlated. Therefore, we cannot apply traditional statistical

models to understand the relationship between sensing data and ground truth. In-

stead, we apply models that properly address the within-individual dependencies,

such as generalized linear mixed models (GLMM) [128, 139] and generalized estimat-

ing equations (GEE) [46]. For predicting periodic mental health ground truth, we

need to carefully design the cross-validation method to avoid including correlated data

in the training set and the test set. For example, we could apply leave-one-subject-out

cross-validation [146, 117] to evaluate prediction performance. If leave-one-subject-

out cross-validation is not practical, we could partition the data in a way that there
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are significant time gaps between the training data and test data, i.e., any examples

in the test data should not be close in time to any examples in the training data.

Mental health outcome events. Other studies aim to predict certain mental health

outcomes, for example, hospitalization and relapse (i.e., a recurrence of a mental

illness condition). These mental health outcomes usually do not occur frequently,

which are very challenging for the analysis. We can frame outcome events detection

as an anomaly detection problem, in which we assume mental health outcome events

may lead to significant changes in a person’s behavior. We can also treat the event

detection problem as a binary classification problem, in which we partition the sensing

data to fixed-length time windows, and predict whether or not the event happens in a

time window. In this case, we can apply analysis methods that are similar to analyzing

periodic ground truth. However, we need to apply data augmentation methods (e.g.,

resampling) to address imbalanced data issues.

1.2 Problem Statement

After discussing smartphone sensing and mobile mental health studies in general, we

now present the specific problems we address in this thesis. We explore the following

three major problems in assessing mental health using smartphones: 1) building a

core sensing system for mobile mental health studies; 2) using the sensing system to

reveal college students’ mental health, academic performance, and behavioral trends

in an academic term (see Chapter 2-3); and 3) applying sensing technology in a

more challenging population (people with serious mental illness (SMI)) by tracking

schizophrenia patients’ symptoms, providing in-time interventions, and predicting

relapses (See Chapter 4 - 6). A detailed problem statement is as follows.
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1.2.1 Assessing Mental Health and Academic Performance

in College Students

Many questions arise when we think about the academic performance and mental

well-being of college students. Why do some students do better than others? Under

similar conditions, why do some individuals excel while others fail? Why do students

burnout, drop classes, even drop out of college? What is the impact of stress, mood,

workload, sociability, sleep and mental well-being on educational performance? Con-

sider students at Dartmouth College, an Ivy League college in a small New England

college town. Students typically take three classes over a 10-week term and live on

campus. Dartmouth classes are generally demanding where student assessment is

primarily based on class assignments, projects, midterms and final exams. Students

live, work and socialize on a small self-contained campus representing a tightly-knit

community. The pace of the 10 week Dartmouth term is fast in comparison to a

15 week semester. The atmosphere among the students on campus seems to visibly

change from a relaxed start of term, to an intense midterm and end of term. Typi-

cally classes at Dartmouth are small (e.g., 25-50 students), but introductory classes

are larger (e.g., 100-170), making it difficult for a faculty to follow the engagement

or performance of students on an individual level. Unless students contact a stu-

dent dean or faculty about problems in their lives, the impact of such challenges on

performance remains hidden.

To shine a light on student life we develop the StudentLife [196] smartphone

app and sensing system to automatically infer human behavior in an energy-efficient

manner. We also use EMA to probe students’ states (e.g., stress, mood) across the

term. We administer a number of well-known pre-post health and behavioral surveys
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at the start and end of term. Our goals are the following: 1) build a robust core sensing

system to continuously and unobtrusively collect behavioral data from smartphones;

2) test the core sensing sensing system in a study consist of college students; and

3) model students’ behaviors using smartphone data and determine the connections

between the smartphone data and mental health and academic performance.

1.2.2 Tracking Depression in College Students

Clinical depression or major depressive disorder (MDD) is one of the most common

and debilitating health challenges of our time. In 2015, an estimated 6.7% of all U.S.

adults had at least one major depressive episode in the past year [166]. Major de-

pressive disorder accounts for a staggeringly high proportion of illness-related burden

worldwide [148, 191], and is the second leading cause of years lost to disability in the

U.S. [147]. College age young adults 18 to 25 are more likely to have major depressive

episodes than any other age groups. In 2015, an estimated 10.3% of young adults

had a major depressive episode over the past year with 6.5% reporting the episode

resulted in severe impairment [166]. The college years introduce major stressors for

young adults that may exacerbate students’ propensity for psychopathology, including

increased academic pressures, social challenges, unfamiliar living and physical envi-

ronments, financial pressures, and cultural differences that affect self-worth [97, 112].

Furthermore, students must negotiate loss of familiar support systems and social

networks (e.g., high school friends). Consequently, many young adults can feel over-

whelmed, struggle to find their place, and become more susceptible to depression or

other mood disorders. Surveys at colleges across the U.S. found that 53% of respon-

dents experienced depression at some point after entering college with 9% reporting
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suicidal ideation [85]. A recent study of Facebook profiles showed that 25% of stu-

dents displayed depressive symptoms [144]. In addition, a 2016 study by the American

College Health Association found that 38.2% of students at 2- and 4-year institutions

reported feeling “so depressed that it was difficult to function” in the past year [14].

At Dartmouth College, a 2016 survey shows that depression and anxiety are the most

common health problems, exceeding national averages in the adult population; 19%

of Dartmouth students report being diagnosed with depression, and 24% say that de-

pressive symptoms had harmed their academic performance [65]. Importantly, up to

84% of college students who screen positively for depression never seek mental health

services [73]. Many students become aware (i.e., insight to illness) of their depression

only after experiencing significant functional deterioration [112]. Many colleges offer

mental-health services and counseling, but the stigma associated with mental illness

is a major barrier to care-seeking [34, 60]. Evidence also suggests that higher educa-

tion institutions’ current approaches are not addressing depression adequately [112].

Depression rates continue to increase [85]. There is a need to understand what is

happening on our campus with these increasing depression rates. One thing is clear:

the demand for mental services on US campuses is increasing with many institutions

not capable of dealing with the rising needs of students. Clinicians, mental health

counsellors, teachers, and administrators on our campuses do not understand why

this inflection toward higher rising risk has occurred.

Identifying early warning signs of depression (i.e., “red flags”) could mitigate

or prevent major depression disorder’s negative consequences [47, 112]. However,

if students do not pay attention to their clinical condition or do not seek care when

needed, depression can lead to devastating outcomes, including self-injurious behavior
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and suicide [85, 86]. There is a growing realization in academia and industry that

everyday mobile phones and wearables (e.g., fitbits, smartwatches), which passively

collect and analyze behavioral sensor data 24/7, will complement traditional periodic

depression screening methods (e.g., PHQ-9 survey [174, 122, 121]) and visits to mental

health specialist – ultimately, if validated at scale mobile sensing has the potential to

replace periodic screening questionnaires such as PHQ-9. Recently, researchers have

made progress in understanding the relationship between behavioral sensor data from

phones and mental health [49, 19, 196, 126, 164, 163]. In addition, there is considerable

activity in the startup space in the area of mental health. A number of companies are

starting to use mobile technologies to assess and help people living with depression

[87, 189, 100, 143]. However, while progress is being made (e.g., significant correlations

between mobile sensing data and depression have been found across different studies

[196, 163]) to the best of our knowledge there is no mobile passive sensing technology

capable of predicting rising risk, impending depressive episodes, or occurrence from

a combination of smartphone and wearable passive sensing to date.

We aim to leverage depression symptom domain knowledge to develop symptom

features derived from passive sensing data from smartphones that are meaningful and

predictive of depression severity.

1.2.3 Assessing Serious Mental Illness

Schizophrenia is a severe and complex psychiatric disorder that develops in approx-

imately 1% of the world’s population [190]. Although it is a chronic condition, its

symptom presentation and associated impairments are not static. Most people with

schizophrenia vacillate between periods of relative remission and episodes of symptom
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exacerbation and relapse. Such changes are often undetected and subsequent inter-

ventions are administered at late stages and in some cases after the occurrence of

serious negative consequences. It is well understood that observable behavioral pre-

cursors can manifest prior to a transition into relapse [16]. However, these precursors

can manifest in many different ways. Studies have shown these to include periods

of social isolation, depression, stressed interactions, hearing voices, hallucinations,

incoherent speech, changes in psychomotor and physical activity and irregularities in

sleep [41, 88]. Evidence also suggests that clinical intervention at an early enough

stage is effective in the prevention of transitions into a full relapse state. This directly

reduces the need for hospitalization and can also lead to faster returns to remission

[145].

Existing clinical practices are inefficient in detecting early precursors. Standard

methods are based on face to face interactions and assessments with clinicians, con-

ducted at set times and locations. This has major limitations due to a high depen-

dency on patient attendance as well as the resources of clinical centers in terms of

time and expertise. Moreover, such assessments have limited ecological validity with

a heavy reliance on accurate patient recall of their symptoms and experiences. As

such, the data from standard assessments can only be considered as single snapshots

rather than a true record of dynamic behavior. This static data does little to inform

the robust detection of early warning signs as they emerge longitudinally, especially

if there is low adherence to follow-up visits.

To this end, research has begun in the use of mobile devices to achieve more

dynamic assessments in schizophrenia [115], though the use of smartphones for this

use is still in its infancy. This, in part, is due to the associated risks which necessitated
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studies to demonstrate feasibility, acceptability and usability within this population.

Ben-Zeev et al. developed the FOCUS self management app [28] that provides illness

self-management suggestions and interventions in response to participants’ rating of

their clinical status and functioning. This system received high acceptance rates

among users and is shown to be usable by this population [30]. A pilot study in the

efficacy of tracking patients [33] over two weeks shows that sensing using smartphones

is acceptable to both inpatients and outpatients. These results paves the way for new

sensing and inference systems to passively monitor and detect mental health changes

using commercially available smartphones.

The CrossCheck study is a randomized control trial (RCT)[50] conducted in col-

laboration with a large psychiatric hospital in New York City, NY. The study aims to

recruit 150 participants for 12 months using rolling enrollment. The participants are

randomized to one of two arms: CrossCheck (n=75) or treatment-as-usual (n=75).

Participants in the smartphone arm are given a Samsung Galaxy S5 Android phone

equipped with the CrossCheck app, which collect a large range of passive sensing

data. We aim to find behavioral features derived from the smartphone data that are

predictive of schizophrenia symptom severity and ultimately impending relapses. We

explore using the symptom predictions to guide informed interventions.

1.3 Protection of Human Subjects

The StudentLife study has been approved by the Committees for the Protection of

Human Subjects at Dartmouth College. The CrossCheck study has been approved

by the Committees for the Protection of Human Subjects at Dartmouth College and

Human Services and the Institutional Review Board at Zucker Hillside Hospital. We
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uses a number of data security techniques to secure the data collected during the Stu-

dentLife and CrossCheck studies. All data collected from smartphones (i.e., sensor,

survey and EMA data) are stored on secure servers at Dartmouth College. Project

data stored on smartphones are transferred periodically to servers using Transport

Layer Security (TLS) standard. Servers have a password-protected login. All servers

containing project data are located in lockable offices. The research buildings are

locked during non-business hours. The data stored on the server are labeled us-

ing research numbers instead of names, and any documents containing personally

identifiable information needed for project management (e.g., signed consent forms,

contact sheets) are stored in locked cabinets in a secure location accessible only to

authorized project personnel. Assessment interviews, measures, captured by study

staff during the periodic assessments are saved using research numbers rather than

names. Access to such data to researchers outside the team is limited as per IRB

protocol and user consent. The various StudentLife studies reported in this article is

supported the National Institute of Mental Health, grant number 5R01MH059282-12.

The CrossCheck study is supported the National Institute of Mental Health, grant

number R01MH103148.

1.4 Thesis Contributions

Smartphone sensing opens the door to continuously and unobtrusively tracking peo-

ple’s mental health. The idea of a passive sensing algorithm working efficiently in

the background of a mobile phone with the goal of collecting, analyzing and predict-

ing mental health outcomes in a privacy preserving and validated manner with no

user burden is potentially game changing for medicine. In this research, we make a
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number of contributions toward this vision; more specifically, we make the following

contributions:

• We build a core smartphone sensing system that can not only be applied to

college students but also to more challenging population: people living with

serious mental illness.

• We present the StudentLife study, which is the first to use automatic and con-

tinuous smartphone sensing to assess mental health, academic performance and

behavioral trends of a student body. We collect a large number of smartphone

data from 48 Dartmouth students over a 10-week term in 2013. We also collect

validated mental health measurements and students’ GPAs. We design behav-

ioral features that capture students’ life on campus (e.g., partying, studying)

by fusing multiple sensor streams. We identify correlations between automatic

sensing data and a broad set of well-known mental well-being measures. We pro-

pose for the first time a model that can predict a student’s cumulative GPA us-

ing automatic behavioral sensing data from smartphones. We observe trends in

the sensing data, termed the Dartmouth term lifecycle, where students start the

term with high positive affect and conversation levels, low stress, and healthy

sleep and daily activity patterns. As the term progresses and the workload

increases, stress appreciably rises while activity, sleep, conversation, positive

affect, visits to the gym and class attendance drop.

• We build upon the initial StudentLife study, and propose a set of passive sensor

based symptom features derived from phones and wearables that we hypothesize

proxy 5 out of the 9 major depressive disorder symptoms defined in DSM-5 [18].
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We identify a number of correlations between the symptom features and PHQ-

8, and we use ANOVA to compare the means of the symptom features between

the non depressed group and the depressed group, as defined in PHQ-8 [124].

We show that these two groups are clearly identified in our data set. Finally,

we show that we can predict PHQ-4 and PHQ-8 using the proposed symptom

features.

• We deploy the CrossCheck system (based on the StudentLife sensing core [196])

in a year long randomized control trial, which aims to track symptoms in people

with schizophrenia and predict impending relapses. We recruit 61 participants

in the smartphone arm, in which participants carry study phones with our

sensing app. We collect smartphone passive sensing data, self-report symp-

tom EMAs, clinician assessed BPRS (the brief psychiatric rating scale) [101]

symptom scores, and relapse events. We first look to predict participants’

self-reported symptoms and we identified meaningful associations between pas-

sively tracked data and indicators or dimensions of mental health in people

with schizophrenia (e.g., stressed, depressed, calm, hopeful, sleeping well, see-

ing things, hearing voices, worrying about being harmed) to better understand

the behavioral manifestation of these measures as a mean to develop a real-time

monitoring and relapse prevention system. We present and evaluate models that

can predict participants’ aggregated EMA scores that measure several dynamic

dimensions of mental health and functioning in people with schizophrenia. We

find that by leveraging knowledge from a population with schizophrenia, it is

possible to train personalized models that require fewer individual-specific data

to quickly adapt to a new user.
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• We build the CrossCheck symptom prediction system, which is the first system

capable of tracking schizophrenia patients’ symptom scores measured by the 7-

item BPRS using passive sensing and self-report EMA from phones. The system

enables clinicians to track changes in psychiatric symptoms of patients without

evaluating the patient in person. We identify a number of passive sensing pre-

dictors of the 7-item BPRS scores. These predictors describe a wide range of

behaviors and contextual environmental characteristics associated with patients.

The CrossCheck symptom prediction system predicts participants’ BPRS scores

each week. Our research staff use the predictions to determine whether or not

a participant is at risk. We discuss anecdotal information associated with three

patients in the study. These case studies show that our system can identify

patients with rising risk.

• We discuss the design considerations for building relapse prediction system.

Specifically, we identify two main challenges: 1) relapse cases are rare, and

2) the CrossCheck relapse dataset is imbalanced. We discuss and evaluate a

number of methods to address these challenges. We investigate the efficacy of

using passive sensing data and/or self-report EMAs to predict relapses. We

present classification performance from using only EMA or sensing data, and a

combination of EMA and sensing data. We investigate the best time window

to predict relapse. We explore using PCA to transform the feature space and

reduce the dimensionality for classification. Finally, we present features that

are the most predictive of impending relapse.

There are a growing number of studies that applied similar methodologies de-

scribed in this thesis to investigate using smartphones to assess mental illnesses, per-
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sonality traits, mood, academic performance, and work performance. The Campus-

Life Consortium [129] initiated by Abowd et al.in 2015 (and recently broadened into

the Community Life Consortium in 2018 by Saeed Abdullah (Penn State), Gabriella

Harari (Stanford) and Edison Thomaz (UT Austin)) aims to extend projects like

StudentLife to collect data from more campus communities, including Georgia Tech,

Cornell University, Penn State, Carnegie Mellon University, Cambridge University,

UT Austin, University of Washington, and Dartmouth College. The project collects

data from mobile and wearable devices and social media. There is also a growing

number of workshops dealing with mobile mental health including the NSF Work-

shop on Future Technology to Preserve College Student Health and Foster Wellbeing

(College Student Health), Northwestern University, Chicago, July 30-31, 2015 (see

studenthealth.cs.dartmouth.edu). Finally, we have released the StudentLife dataset

[6] to the research community and we will release our StudentLife core sensing system

to help future studies in assessing mental health using smartophones.

The thesis is structured as follows. In the first part of the thesis (Chapter 2-

3), we present our work with a college student population. We explore modeling

students’ on campus behaviors, identifying Dartmouth term behavioral trends, cor-

relations between smartphone data and mental health and academic performance,

and predicting depression and GPAs. In the second part of the thesis (Chapter 4-6)

we present results from applying sensing technology in a rigorously designed clinical

study to a population living with serious mental illness. We believe the studies, the

methods, and results presented in this thesis open the way to new forms of mental

health sensing, symptom tracking, and real time intervention going forward.
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Chapter 2

StudentLife: Using Smartphones to

Assess Mental Health and

Academic Performance of College

Students

2.1 Introduction

We rely on students’ self-reports to understand college students’ life on campus. How-

ever, such self-reports lack details and cannot show the dynamics of an academic term.

Consider students at Dartmouth College, an Ivy League college in a small New Eng-

land college town. Students typically take three classes over a 10-week term and live

on campus. The pace of the 10 week Dartmouth term is fast in comparison to a

15 week semester. The atmosphere among the students on campus seems to visibly
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change from a relaxed start of term, to an intense midterm and end of term. Typi-

cally classes at Dartmouth are small (e.g., 25-50 students), but introductory classes

are larger (e.g., 100-170), making it difficult for a faculty to follow the engagement

or performance of students on an individual level. Unless students contact a stu-

dent dean or faculty about problems in their lives, the impact of such challenges on

performance remains hidden. To shine a light on student life, we develop the Stu-

dentLife [196] smartphone app and sensing system to automatically infer human be-

havior in an energy-efficient manner. The StudentLife app integrates MobileEMA, a

flexible ecological momentary assessment [171] (EMA) component to probe students’

states (e.g., stress, mood) across the term. We administer a number of well-known

pre-post health and behavioral surveys at the start and end of term. In this chapter,

we present the results from a deployment of StudentLife on Google Nexus 4 Android

phones at Dartmouth College in 2013.

StudentLife is the first to use automatic and continuous smartphone sensing to

assess mental health, academic performance and behavioral trends of a student body.

We identify strong correlation between automatic sensing data and a broad set of well-

known mental well-being measures, specifically, PHQ-9 depression, perceived stress

(PSS), flourishing, and loneliness scales. Results indicate that automatically sensed

conversation, activity, mobility, and sleep have significant correlations with mental

well-being outcomes. we propose for the first time a model that can predict a student’s

cumulative GPA using automatic behavioral sensing data from smartphones. We

use the Lasso (Least Absolute Shrinkage and Selection Operator) [184] regularized

linear regression model as our predictive model. Our prediction model indicates that

students with better grades are more conscientious, study more, experience positive
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moods across the term but register a drop in positive affect after the midterm point,

experience lower levels of stress as the term progresses, are less social in terms of

conversations during the evening period, and experience change in their conversation

duration patterns later in the term. We observe trends in the sensing data, termed

the Dartmouth term lifecycle, where students start the term with high positive affect

and conversation levels, low stress, and healthy sleep and daily activity patterns. As

the term progresses and the workload increases, stress appreciably rises while activity,

sleep, conversation, positive affect, visits to the gym and class attendance drop.

2.2 Related Work

There is a growing interest in using smartphone sensing [142, 20, 43, 37, 188, 12, 55]

to infer human dynamics and mental health [11, 155, 116, 82, 62, 99, 156, 130, 133].

The StudentLife study is influenced by a number of important behavioral studies:

1) the friends-and-families study [11], which uses Funf [4] to collect data from 130

adult members (i.e., post-docs, university employees) of a young family community to

study fitness intervention and social incentives; and 2) the reality mining project [71],

which uses sensor data from mobile phones to study human social behavior in a

group of students at MIT. The authors show that call records, cellular-tower IDs,

and Bluetooth proximity logs accurately detect social networks and daily activity.

In [155] the authors use an early mobile sensing platform device [55] equipped with

multiple embedded sensors to track a 8 older adults living in a continuing care retire-

ment community. The authors demonstrate that speech and conversation occurrences

extracted from audio data and physical activity infer mental and social well-being.

Researchers at Northwestern University [164] find that mobility and phone usage
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features extracted from mobile phone data correlates with depressive symptom sever-

ity measured by PHQ-9[174, 122, 121] for 40 participants recruited from the general

community over a two week period. Results show features from GPS data, including

circadian movement, normalized entropy, location variance, and phone usage features,

including usage duration and usage frequency, are associated with depressive symp-

tom severity. It is important to note that the research team were able to reproduce

the findings from their initial study [163] using our StudentLife dataset [196]. The

replication of the Northwestern University researchers’ study results [164] using a

different dataset indicates that the mobility features could be broadly applicable in

depression sensing across different communities; that is, students on a small college

campus and people recruited in a metropolitan area.

There seems to be growing evidence that mobility features have significant signal

when it comes to depression sensing. Canzian et al [49] develop an expanded set of

mobility features over [164, 163] and found that location data correlates with PHQ-9

[174, 122, 121]. The authors show that the maximum distance traveled between two

places strongly correlates with the PHQ score. Mobility features are used to track

the trajectory of depression over time. Recently, the same team [140] report their

preliminary results from a 30 day 25 participant study on the association between

human-phone interaction features (e.g., interactions with notifications, number of

applications launched) and PHQ-8 scores. Demirci et al.[66] conduct an study with

319 university students to investigate the relationship between smartphone usage and

sleep quality, depression, and anxiety. They divide the participants into a smartphone

non-user group, a low smartphone use group, and a high smartphone use group based

on the Smartphone Addiction Scale (SAS)[125]. The authors find the Beck Depression
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Inventory (BDI) [25, 26] score is higher in the high use group than the low use group.

This study is solely based on self-report and does not have a sensing component but

illustrates that interaction usage could be important in depression sensing.

In [78], the authors present a study of 79 college-age participant from October

2015 to May 2016 in which they find a number of mobility features (e.g., home

stay duration, normalized entropy) correlate with PHQ-9. The authors report using

SVM with RBF kernel [170], they can predict clinical depression diagnoses with the

precision of 84%. Wahle et al. [192] recruit 126 adults to detect depression levels

from daily behaviors inferred by phone sensing, in addition to exploring intervention.

In the study 36 subjects with an adherence of at least 2 weeks are included in the

analysis. The authors compute features based on activity, phone usage, and mobility.

They report 61.5% accuracy in predicting a binary depression state. In [13], the

authors investigate difference in speech styles, eye activity, and head poses between

30 depressed subjects and 30 non-depressed subjects. The authors report 84% average

accuracy in predicting the depression state using a combination of the speech style,

eye activity, and head pose features. In [153] Place et al., report on a 12 week

study with 73 participants who report at least one symptom of post-traumatic stress

disorder (PTSD) [206] or depression. The study assess symptoms of depression and

PTSD using features extracted from passive sensing, including the sum of outgoing

calls, count of unique numbers texted, absolute distance traveled, dynamic variation

of the voice, speaking rate, and voice quality. They report area under the ROC

curve (AUC) for depressed mood is 0.74. Chow et al.[56] hypothesizes that time

spent at home is associated with depression, social anxiety, state affect, and social

isolation. The authors use passive sensing from phones to compute a participant’s
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time spent at home during a day. The study recruits 72 undergraduates and finds

participants with higher depression tended to spend more time at home between the

hours of 10 am and 6 pm. The DeepMood project [178] develops a recurrent neural

network algorithm to predict depression. The authors conduct a study with 2382

self-declared depressed participants using self-reports to collect self-reported mood,

behavioral log, and sleeping log. They report their long short-term memory recurrent

neural networks (LSTM-RNNs) [105] model predict depression state with AUC-ROC

0.886.

Detecting bipolar disorder is to some degree related to work on depression sens-

ing. The MONARCA project [150, 149, 96, 162] first reported on findings from

mobile sensing and bipolar disorder. The authors [150] discuss correlations between

the activity levels over different periods of the day and psychiatric evaluation scores

associated with the mania-depression spectrum. The findings reported in [8] show the

automatic inference of circadian stability as a measure to support effective bipolar

management. Maxuni et al. [138] extend these insights by using speech and activity

levels to successfully classify stratified levels of bipolar disorder.

There is a considerable interest in studying the health and performance of stu-

dents. In [185], the authors study the effect of behaviors (i.e., social support, sleep

habits, working hours) on grade points based on 200 randomly chosen students living

on the campus at a large private university. However, this study uses retrospective

survey data manually entered by users to assess health and performance. Watan-

abe [201, 202] uses a wearable sensor device to investigate the correlation between

face-to-face interaction between students during break times and scholastic perfor-

mance. Previous research [79] aimed at predicting performance has used a neural
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network model to predict student’s grades from their placement test scores. Various

data collected from entering students are used in [137] to predict student academic

success using discriminant function analysis. [119] proposes a regression model to

predict the student’s performance from their demographic information and tutor’s

records. [160] applies web usage mining in e-learning systems to predict students’

grades in the final exam of a course. In [208], the authors propose an approach based

on multiple instance learning to predict student’s performance in an e-learning en-

vironment. Recent work [180] showed that they can predict a student is at risk of

getting poor assessment performance using longitudinal data such as previous test

performance and course history.

2.3 Study Design

In this section, we discuss how participants were recruited from the student body,

and then describe our data collection process. We also discuss compliance and data

quality issues in this longitudinal study.

2.3.1 Participants

All participants in the study were voluntarily recruited from the CS65 Smartphone

Programming class [1], a computer science programming class at Dartmouth College

offered to both undergraduate and graduate students during Spring term in 2013.

This study is approved by the Institutional Review Board at Dartmouth College.

75 students enrolled in the class and 60 participants joined the study. As the term

progressed, 7 students dropped out of the study and 5 dropped the class. We remove
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this data from the dataset analyzed in the Section 2.6. Among the 48 students who

complete the study, 30 are undergraduates and 18 graduate students. The class

demographics are as follows: 8 seniors, 14 juniors, 6 sophomores, 2 freshmen, 3 Ph.D

students, 1 second-year Masters student, and 13 first-year Masters students. In terms

of gender, 10 participants are female and 38 are male. In terms of race, 23 participants

are Caucasians, 23 Asians and 2 African-Americans. 48 participants finished the pre

psychological surveys and 41 participants finished all post psychological surveys.

All students enrolled in the class were offered unlocked Android Nexus 4s to com-

plete assignments and class projects. Many students in the study had their own

iPhones or Android phones. We denote the students who use their own Android

phones to run the StudentLife sensing system as primary users and those who use

the Nexus 4s as secondary users. Secondary users have the burden of carrying both

their own phones and the Nexus 4s during the study. We discuss compliance and

data quality of users in Section 2.3.3.

The StudentLife study has been approved by the Committees for the Protection

of Human Subjects at Dartmouth College.

2.3.2 Study Procedure

The StudentLife study consists of orientation, data collection and exit stages. In

addition, we deployed a number of management scripts and incentive mechanisms to

analyze and boost compliance, respectively.

Entry and Exit. During the orientation stage, participants sign the consent form

to join the study. Each student is given a one-on-one tutorial of the StudentLife

system and study. Prior to signing the consent form, we detail the type of data to be
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collected by the phone. Students are trained to use the app. Students do not need

to interact with the background sensing or upload functions. They are shown how

to respond to the MobileEMA system. A series of entry health and psychological

baseline surveys are administered using SurveyMonkey as discussed in Section 2.6

and shown in Table 2.1. As part of the entry survey students provide demographic

and information about their spring term classes. All surveys are administered using

SurveyMonkey [7]. These surveys are pre measures which cover various aspects of

mental and physical health. Outcomes from surveys (e.g., depression scale) are used

as ground truth in the analysis. During the exit stage, we administered an exit

survey, interview and the same set of behavioral and health surveys given during the

orientation stage as post measures.

Data Collection. The data collection phase lasted for 10 weeks for the complete

spring term. After the orientation session, students carried the phones with them

throughout the day. Automatic sensing data is collected without any user interaction

and uploaded to the cloud when the phone is being recharged and under WiFi. During

the collection phase, students were asked to respond to various EMA questions as

they use their phones. This in-situ probing of students at multiple times during the

day provides additional state information such as stress, mood, happiness, current

events, etc. The EMA reports were provided by a medical doctor and a number

of psychologists on the research team. The number of EMAs fired each day varied

but on average 8 EMAs per day were administered. For example, on days around

assignment deadlines, we scheduled multiple stress EMAs. We set up EMA schedules

on a week-by-week basis. On some days we administer the same EMA (e.g., PAM

and stress) multiple times per day. On average, we administer 3-13 EMA questions
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per day (e.g., stress). The specific EMAs are discussed in Section 2.5.

Data Collection Monitoring. StudentLife includes a number of management

scripts that automatically produce statistics on compliance. Each time we notice

students’ phones not uploading daily data (e.g., students left phones in their dorms

during the day), or gaps in weekly data (e.g., phones powered down at night), or no

response to EMAs, we sent emails to students to get them back on track.

Incentives. To promote compliance and data quality, we offer a number of incentives

across the term. First, all students receive a StudentLife T-shirt. Students could win

prizes during the study. At the end of week 3, we gave away 5 Jawbone UPs to the

5 top student collectors randomly selected from the top 15 collectors. We repeated

this at week 6. We defined the top collectors as those providing the most automatic

sensing and EMA data during the specific period. At the end of the study, we gave

10 Google Nexus 4 phones to 10 collectors who were randomly selected from the top

30 collectors over the complete study period.

Privacy considerations. Participants’ privacy is a major concern of our study. In

order to protect participants’ personal information, we fully anonymize each partici-

pant’s identity with a random user id and kept the user id map separate from all other

project data so that the data cannot be traced back to individuals. Call logs and SMS

logs are one-way hashed so that no one can get phone numbers or messages from the

data. Participants’ data is uploaded using encrypted SSL connections to ensure that

their data cannot be intercepted by third-parties. Data is stored on secured servers.

When people left the study their data was removed.
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2.3.3 Compliance and Data Quality

The StudentLife app does not provide students any feedback by design. We do not

want to influence student behavior by feedback, rather, we aim to unobtrusively

capture student life. Longitudinal studies such as StudentLife suffer from a drop in

student engagement and data quality. While automatic sensor data collection does

not introduce any burden other than carrying a phone, collecting EMA data can

be a considerable burden. Students typically are compliant in responding to survey

questions at the start of a study, but as the novelty effect wears off, student compliance

drops.

There is a 60/40 split of iPhone/Android users in the study group. Of the 48

students who completed the study, 11 are primary phone users and 37 secondary

users. One concern is that the burden of carrying two phones for 10 weeks would

result in poorer data quality from the secondary users compared to the primary

users. Figure 2.1(a) shows the average hours of sensor data we have collected from

each participant during the term. As expected, we observe that primary users are

better data sources, but there is no significant difference. We can clearly see the trend

of data dropping off as the term winds down. Achieving the best data quality requires

24 hours of continuous sensing each day. This means that users carry their phones

and power their phones at night. If we detect that a student leaves their phone at

the dorm during the day, or it is powered down, then we remove that data from the

dataset. The overall compliance of collecting automatic sensing data from primary

and secondary users over the term is 87% and 81%, respectively.

Figure 2.1(b) shows the average number of EMA responses per day for primary

and secondary users. The figure does not capture compliance per se, but it shows
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Figure 2.1: Compliance and quality of StudentLife data collected across the term.

that secondary users are slightly more responsive to EMAs than primary users. On

average we receive 5.8 and 5.4 EMAs per day per student across the whole term from

secondary and primary users, respectively. As the term progresses there is a drop

in both administered EMAs and responses. However, even at the end of term, we

still receive over 2 EMAs per day per student. Surprisingly, secondary users (72%)

have better EMA compliance than primary users (65%). During the exit survey,

students favored short PAM-style EMAs (see Figure 2.3a), complained about the

longer EMAs, and discarded repetitive EMAs as the novelty wore off. By design,

there is no notification when an EMA is fired. Participants need to actively check
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their phone to answer scheduled EMA questions. The EMA compliance data (see

Figure 2.1(b)) shows that there are no significant differences between primary and

secondary phone users. It indicates that secondary phone users also used the study

phone when they were taking the phone with them. Therefore, the study phone can

capture the participants’ daily behavior even it was not their primary phone.

In summary, Figure 2.1 shows the cost of collecting continuous and EMA data

across a 10-week study. There is a small difference between primary and secondary

collectors for continuous sensing and EMA data, but the compliance reported above

is promising and gives confidence in the analysis discussed in Section 2.6.

2.4 StudentLife App and Sensing System

In what follows, we describe the design of the StudentLife app and sensing system,

as shown in Figure 2.2.

2.4.1 Automatic and Continuous Sensing

We build on our prior work on the BeWell App [127] to provide a framework for

automatic sensing in StudentLife. The StudentLife app automatically infers activity

(stationary, walking, running, driving, cycling), sleep duration, and sociability (i.e.,

the number of independent conservations and their durations). The app also col-

lects accelerometer, proximity, audio, light sensor readings, location, colocation, and

application usage. The inferences and other sensor data are temporarily stored on

the phone and are efficiently uploaded to the StudentLife cloud when users recharge

their phones under WiFi. In what follows, we discuss the physical activity, sociabil-
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Figure 2.2: StudentLife app, sensing and analytics system architecture.

ity/conversation and sleep inferences computed on the phone which represent impor-

tant heath well-being indicators [127].

Activity Detection. We use the physical activity classifier from our prior work

[127, 131] to infer stationary, walking, running, driving and cycling based on fea-

tures extracted from accelerometer streams. The activity classifier extracts features

from the preprocessed accelerometer stream, then applies a decision tree to infer the

activity using the features. The activity classifier achieves overall 94% of accuracy

[131]. (Note, we conducted our study before Google announced the availability of an

activity recognition service for Android phones). We extend our prior work to com-

pute a daily activity duration, and indoor and outdoor mobility measures, discussed

as follows. The activity classifier generates an activity label every 2 seconds. We

are only interested in determining whether a participant is moving. For each 10-min
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period, we calculate the ratio of non-stationary inferences. If the ratio is greater than

a threshold, we consider this period active, meaning that the user is moving. We add

up all the 10-min active periods as the daily activity duration. Typically, students

leave their dorms in the morning to go to various buildings on campus during the

day. Students spend a considerable amount of time in buildings (e.g., cafes, lecture

rooms, gym). We consider the overall mobility of a student consists of indoor and

outdoor mobility. We compute the outdoor mobility (aka traveled distance) as the

distance a student travels around campus during the day using periodic GPS sam-

ples. Indoor mobility is computed as the distance a student travels inside buildings

during the day using WiFi scan logs. Dartmouth College has WiFi coverage across

all campus buildings. As part of the study, we collect the locations of all APs in

the network, and the Wi-Fi scan logs including all encountered BSSIDs, SSIDs, and

their signal strength values. We use the BSSIDs and signal strength to determine if

a student is in a specific building. If so, we use the output of activity classifier’s walk

inference to compute the activity duration as a measure of indoor mobility. Note,

that Dartmouth’s network operations provided access to a complete AP map of the

campus wireless network as part of the IRB.

Conversation Detection. StudentLife implements two classifiers on the phone for

audio and speech/conversation detection: an audio classifier to infer human voice, and

a conversation classifier to detect conversation. We process audio on the fly to extract

and record features. We use the privacy-sensitive audio and conversation classifiers

developed in our prior work [155, 127]. Note, the audio classification pipeline never

records conversation nor analyses content. We first segment the audio stream into

15-ms frames. The audio classifier then extracts audio features, and uses a two-state
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hidden Markov model (HMM) to infer speech segments. Our classifier does not im-

plement speaker identification. It simply infers that the user is “around conversation”

using the output of the audio classifier as an input to a conservation classifier. The

output of the classification pipeline captures the number of independent conversations

and their duration. We consider the frequency and duration of conversations around

a participant as a measure of sociability. Because not all conservations are social,

such as lectures and x-hours (i.e., class meetings outside lectures), we extend our

conservation pipeline in the cloud to remove conversations associated with lectures

and x-hours. We use student location to determine if they attend lectures and auto-

matically remove the conservation data correspondingly from the dataset discussed in

Section 2.5. We also keep track of class attendance for all students across all classes,

as discussed in Section 2.6.

Sleep Detection. We implement a sleep classifier based on our previous work [53,

127]. The phone unobtrusively infers sleep duration without any special interaction

with the phone (e.g., the user does not have to sleep with the device). The StudentLife

sleep classifier extracts four types of features: light features, phone usage features

including the phone lock state, activity features (e.g., stationary), and sound features

from the microphone. Any of these features alone is a weak classifier for sleep duration

because of the wide variety of phone usage patterns. Our sleep model combines these

features to form a more accurate sleep model and predictor. Specifically, the sleep

model assumes that sleep duration (Sl) is a linear combination of these four factors:

Sl =
∑4

i=1 αi ·Fi, αi ≥ 0 where αi is the weight of the corresponding factor. We train

the model using the method described in [53] with an accuracy of +/- 32 mins to the

ground truth. We extend this method to identify the sleep onset time by looking at
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(a) PAM EMA (b) Stress EMA

Figure 2.3: MobileEMA: First the PAM popup fires followed by one of the StudentLife
EMAs – in this example the single item stress EMA.

when the user is sedentary in term of activity, audio, and phone usage. We compare

the inferred sleep onset time from a group of 10 students who use the Jawbone UP

during the study to collect sleep data. Our method predicts bedtime where 95% of

the inferences have an accuracy of +/- 25 mins of the ground truth. The output of

our extended sleep classifier is the onset of sleep (i.e., bedtime), sleep duration and

wake up time.
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2.4.2 MobileEMA

We use in-situ ecological momentary assessment (EMA) [171] to capture additional

human behavior beyond what the surveys and automatic sensing provide. The user

is prompted by a short survey (e.g., the single item [182] stress survey as shown

in Figure 2.3b) scheduled at some point during their day. We integrate an EMA

component into the StudentLife app based on extensions to Google PACO [5]. PACO

is an extensible framework for quantified self experiments based on EMA. We extend

PACO to incorporate:

• photographic affect meter (PAM) [154] to capture participant’s instantaneous

mood;

• pop-up EMAs to automatically present a short survey to the user when they

unlock or use the phone; and,

• EMA schedule and sync feature to automatically push a new EMA schedule to

all participants and synchronize the new schedule with StudentLife cloud.
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Figure 2.4: Statistics on class meeting times and sleep onset time (i.e., bedtime).

PACO is a self-contained and complex backend app and service. We extend and
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2.5 StudentLife Dataset

remove features and integrate the EMA component into the StudentLife app and

cloud. We set up EMA questions and schedules using the PACO server-side code [5].

The cloud pushes new EMA questions to the phones. The StudentLife app sets up an

alarm for each EMA in the list and fires it by pushing it to the users’ phone screen as

a pop-up. We implement PAM [154] on the Nexus 4 as part of the EMA component.

PAM presents the user with a randomized grid of 16 pictures from a library of 48

photos. The user selects the picture that best fits their mood. Figure 2.3(a) shows the

PAM pop-up asking the user to select one of the presented pictures. PAM measures

affect using a simple visual interface. PAM is well suited to mobile usage because

users can quickly click on a picture and move on. Each picture represents a 1-16

score, mapping to the Positive and Negative Affect Schedule (PANAS) [203]. PAM is

strongly correlated with PANAS (r = 0.71, p < 0.001) for positive affect. StudentLife

schedules multiple EMAs per day. We took the novel approach of firing PAM before

showing one of the scheduled EMAs (e.g., stress survey). Figure 2.3b shows an EMA

test after the PAM pop-up. We are interested in how students’ mood changes during

the day. By always preceding any EMA with PAM, we guarantee a large amount of

affect data during the term.

2.5 StudentLife Dataset

Using the StudentLife system described in Section 2.4, we collect a dataset from all

subjects including automatic sensor data, behavioral interferences, and self-reported

EMA data. Our ground truth data includes behavioral and mental health outcomes

computed from survey instruments detailed in Table 2.1, and academic performance

from spring term and cumulative GPA scores provided by the registrar. We discuss
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2.5 StudentLife Dataset

three epochs that are evident in the StudentLife dataset. We uses these epochs (i.e.,

day 9am–6pm, evening 6pm–12am, night 12am–9am) as a means to analyze some of

the data, as discussed in Section 2.6. The StudentLife dataset is publicly available [6].

Automatic Sensing Data. We collect a total of 52.6 GB of sensing inference data

from smartphones over 10 weeks. The data consist of: 1) activity data, including

activity duration (total time duration the user moves per day), indoor mobility and

the total traveled distance (i.e., outdoor mobility) per day; 2) conversation data,

including conversation duration and frequency per day; 3) sleep data, including sleep

duration, sleep onset and waking time; and finally 4) location data, including GPS,

inferred buildings when the participant is indoors, and the number of co-located

Bluetooth devices.

Epochs. Students engage in different activities during the day and night. As one

would expect, sleep and taking classes dominate a student’s week. Figure 2.4(a) shows

the collective timetable of class meetings for all the classes taken by the students in

the study. The darker the slot, the greater proportion of students taking classes in

the slot. We can observe that Monday, Wednesday, Friday slots from 10:00-11:05 am

and the x-period on Thursday 12:00-12:50 pm are dominant across the week; this is

the teaching time for the CS65 Smartphone Programming class which all students

in the study are enrolled in. Figure 2.4(a) clearly indicates that the timetable of

all classes ranges from 9am to 6pm – we label this as the day epoch. Students are

not taking classes for the complete period. Many class, social, sports, and other

activities take place during the day epoch but class is dominant. The next dominant

activity is sleep. Students go to bed at different times. Figure 2.4(b) shows the

distribution of bedtime for all students across the term. We see that most students
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go to bed between 12am and 4am but the switch from evening to night starts at

12am, as shown in Figure 2.4(b). We label the period between 12am and 9am as the

night epoch, when most students are working, socializing or sleeping – but sleep is

the dominant activity. We consider the remaining period between the end of classes

(6pm) and sleep (12am) as the evening epoch. We hypothesize that this is the main

study and socialization period during weekdays. We define these three epochs as a

means to analyze data. We acknowledge that weekdays are different from weekends

but consider epochs uniformly across the complete week. We also look for correlations

in complete days (e.g., Monday) and across epochs (i.e., Monday day, evening and

night).

EMA Data. Students respond to psychological and behavioral EMAs on their smart-

phones that are scheduled, managed, and synchronized using the MobileEMA com-

ponent integrated into StudentLife app. We collect a total of 35,295 EMA and PAM

responses from 48 students over 10 weeks. EMA and PAM data are automatically

uploaded to the cloud when students recharge their phones under WiFi. Students

respond to a number of scheduled EMAs including stress (stress EMA), mood (mood

EMA), sleep duration (sleep EMA)(which we use to confirm the performance of our

sleep classifier), the number of people students encountered per day (social EMA),

physical exercise (exercise EMA), time spent on different activities (activity EMA),

and short personality item (behavior EMA). All EMAs were either existing validated

EMAs (e.g., single item stress measure [182]) found in the literature, or provided by

psychologist on the team (e.g., mood EMA).

Survey Instrument Data. Table 2.1 shows the set of surveys for measuring behav-

ioral and mental well-being and personality traits we administer as part of our pre-post
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Table 2.1: Mental well-being and personality surveys.

survey measure

patient health questionnaire (PHQ-9) [122] depression level
perceived stress scale (PSS)[58] stress level
flourishing scale [67] flourishing level
UCLA loneliness scale [161] loneliness level
big five inventory (BFI) [111] personality traits

Table 2.2: PHQ-9 depression scale interpretation and pre-post class outcomes.

depression
minimal minor moderate

moderately
severe

severity severe
score 1-4 5-9 10-14 15-19 20-27
number of

17 15 6 1 1students
(pre-survey)
number of

19 12 3 2 2students
(post-survey)

stages, as discussed in Section 2.3. These questionnaires provide an assessment of stu-

dents’ depression, perceived stress, flourishing (i.e., self-perceived success), loneliness,

and personality. Students complete surveys using SurveyMonkey [7] one day prior

to study commencement, and complete them again one day after the study. Surveys

are administered on the phone and stored in the StudentLife cloud (Figure 2.2). In

what follows, we overview each instrument. The Patient Health Questionnaire (PHQ-

9) [122] is a depression module that scores each of the 9 DSM-IV criteria as 0 (not at

all) to 3 (nearly every day). It is validated for use in primary care. Table 2.2 shows

the interpretation of the scale and the number of students that fall into each category

for pre-post assessment. The perceived stress scale (PSS) [58] measures the degree

to which situations in a person’s life are stressful. Psychological stress is the extent
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to which a person perceives the demands on them exceed their ability to cope [58].

Perceived stress is scored between 0 (least stressed) to 40 (most stressed). The flour-

ishing scale [67] is an 8-item summary measure of a person’s self-perceived success

in important areas such as relationships, self-esteem, purpose, and optimism. The

scale provides a single psychological well-being score. Flourishing is scored between

8 (lowest) to 56 (highest). A high score represents a person with many psychological

resources and strengths. The UCLA loneliness (version 3) [161] scale scores between

20 (least lonely) to 80 (most lonely). The loneliness scale is a 20-item scale designed

to measure a person’s subjective feelings of loneliness as well as feelings of social iso-

lation. Low scores are considered a normal experience of loneliness. Higher scores

indicate a person is experiencing severe loneliness. Table 2.3 shows the pre-post mea-

sures (i.e., mean and standard deviation) for each scored survey for all students. We

discuss these assessments in Section 2.6.

Table 2.3: Statistics of mental well-being surveys.

survey pre-study post-study
outcomes participants mean std participants mean std
depression 40 5.8 4.9 38 6.3 5.8
flourishing 40 42.6 7.9 37 42.8 8.9
stress 41 18.4 6.8 39 18.9 7.1
loneliness 40 40.5 10.9 37 40.9 10.5

Academic Data. We have access to transcripts from the registrar’s office for all

participants as a means to evaluate their academic performance. We use spring and

cumulative GPA scores as ground truth outcomes. Undergraduates can receive an A–

E grade or I (incomplete). Students who get an Incomplete must agree to complete

the course by a specific date. GPA ranges from 0 to 4. For the CS65 smartphone

programming class we had all the assignment and project deadlines – no midterms or
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finals are given in this class. Students provide deadlines of their other classes at the

exit interview from their calendars or returned assignments or exams.

2.6 Results

In what follows, we discuss the main results from the StudentLife study. We identify

a number of significant correlations between objective sensor data from smartphones

and mental well-being. We present results using a subset of the StudentLife dataset

to analyze and predict academic performance. We also identify a Dartmouth term

lifecycle that captures the impact of the term on behavioral measures representing

an aggregate term signature experienced by all students.

2.6.1 Correlation with Mental Health

We first consider correlations between automatic and objective sensing data from

smartphones and mental well-being. We also discuss results from correlations between

EMA data. Specifically, we report on a number of significant correlations between

sensor and EMA data and pre-post survey ground truth outcomes for depression

(PHQ-9), flourishing, perceived stress, and loneliness scales, as discussed in Section 2.5

and shown in Table 2.3. We calculate the degree of correlation between sensing/EMA

data and outcomes using the Pearson correlation [57] where r (−1 ≤ r ≤ 1) indicates

the strength and direction of the correlation, and p the significance of the finding.

PHQ-9 Depression Scale. Table 2.2 shows the pre-post PHQ-9 depression severity

for the group of students in the study. The majority of students experience minimal

or minor depression for pre-post measures. However, 6 students experience moderate
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Table 2.4: Correlations between automatic sensor data and PHQ-9 depression scale.

automatic sensing data r p-value

sleep duration (pre) -0.360 0.025
sleep duration (post) -0.382 0.020
conversation frequency during day (pre) -0.403 0.010
conversation frequency during day (post) -0.387 0.016
conversation frequency during evening (post) -0.345 0.034
conversation duration during day (post) -0.328 0.044
number of co-locations (post) -0.362 0.025

depression and 2 students are moderately severe or severely depressed at the start of

term. At the end of term 4 students experience either moderately severe or severely

depressed symptoms. We find a number of significant correlations (p ≤ 0.05) be-

tween sleep duration, conversation frequency and duration, colocation (i.e., number

of Bluetooth encounters) and PHQ-9 depression, as shown Table 2.4. An inability

to sleep is one of the key signs of clinical depression [3]. We find a significant neg-

ative correlation between sleep duration and pre (r = −0.360, p = 0.025) and post

(r = −0.382, p = 0.020) depression; that is, students that sleep less are more likely to

be depressed. There is a known link between lack of sleep and depression. One of the

common signs of depression is insomnia or an inability to sleep [3]. Our findings are

inline with these studies on depression [3]. However, we are the first to use automatic

sensor data from smartphones to confirm these findings. We also find a significant

negative association between conversation frequency during the day epoch and pre

(r = −0.403, p = 0.010) and post (r = −0.387, p = 0.016) depression. This also holds

for the evening epoch where we find a strong relationship (r = −0.345, p = 0.034)

between conversation frequency and depression score. These results indicate that stu-

dents that have fewer conversational interactions are more likely to be depressed. For
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conversation duration, we find a negative association (r = −0.328, p = 0.044) during

the day epoch with depression. This suggests students who interact less during the

day period when they are typically social and studying are more likely to experience

depressive symptoms. In addition, students that have fewer co-locations with other

people are more likely (r = −0.362, p = 0.025) to have a higher PHQ-9 score. Finally,

we find a significant positive correlation (r = 0.412, p = 0.010) between the validated

single item stress EMA [182] and the post PHQ-9 scale. This indicates that people

that are stressed are also more likely to experience depressive symptoms, as shown in

Table 2.7.

Table 2.5: Correlations between automatic sensor data and flourishing scale.

automatic sensing data r p-value

conversation duration (pre) 0.294 0.066
conversation duration during evening (pre) 0.362 0.022
number of co-locations (post) 0.324 0.050

Flourishing Scale. There are no literal interpretation of flourishing scale, perceived

stress scale (PSS) and UCLA loneliness scale instruments, as discussed in Section 2.5.

Simply put, however, the higher the score the more flourishing, stressed and lonely a

person is. We find a small set of correlations (see Table 2.5) between sensor data and

flourishing. Conversation duration has a weak positive association (r = 0.294, p =

0.066) during the 24 hour day with flourishing. With regard to conversation during

the evening epoch we find a significant positive association (r = 0.362, p = 0.022) with

flourishing. We also find that students with more co-locations (r = 0.324, p = 0.050)

are more flourishing. These results suggest that students that are more social and

around people are more flourishing. Finally, positive affect computed from the PAM
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self-report has significant positive correlation (r = 0.470, p = 0.002) with flourishing,

as shown in Table 2.7. This is as we would imagine. People who have good positive

affect flourish.

Table 2.6: Correlations between automatic sensor data and perceived stress scale
(PSS).

automatic sensing data r p-value

conversation duration (post) -0.357 0.026
conversation frequency (post) -0.394 0.013
conversation duration during day (post) -0.401 0.011
conversation frequency during day (pre) -0.524 0.001
conversation frequency during evening (pre) -0.386 0.015
sleep duration (pre) -0.355 0.024

Perceived Stress Scale. Table 2.6 shows the correlations between sensor data and

perceived stress scale (PSS). Conversation frequency (r = −0.394, p = 0.013) and

duration (r = −0.357, p = 0.026) show significantly negative correlation with post

perceived stress. In addiction, we see more significant negative associations if we just

look at the day epoch. Here, conversation frequency (r = −0.524, p = 0.001) and

duration (r = −0.401, p = 0.011) exhibit significant and strong negative correlations

with pre and post measure of perceived stress, respectively. This suggests students

in the proximity of more frequent and longer conversations during the day epoch

are less likely to feel stressed. We cannot distinguish between social and work study

conversation, however. We hypothesize that students work collaborative in study

groups. And these students make more progress and are less stressed. There is also

strong evidence that students that are around more conversations in the evening

epoch are less stressed too. Specifically, there is strong negative relationship (r =

−0.386, p = 0.015) between conversation frequency in the evening epoch and stress.
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Table 2.7: Correlations between EMA data and mental well-being outcomes.

mental health outcomes EMA r p-value

flourishing scale (pre) positive affect 0.470 0.002
loneliness (post) positive affect -0.390 0.020
loneliness (post) stress 0.344 0.037
PHQ-9 (post) stress 0.412 0.010
perceived stress scale (pre) positive affect -0.387 0.012
perceived stress scale (post) positive affect -0.373 0.019
perceived stress scale (pre) stress 0.458 0.003
perceived stress scale (post) stress 0.412 0.009

Table 2.8: Correlations between automatic sensor data and loneliness scale.

automatic sensing data r p-value

activity duration (post) -0.388 0.018
activity duration for day (post) -0.326 0.049
activity duration for evening (post) -0.464 0.004
traveled distance (post) -0.338 0.044
traveled distance for day (post) -0.336 0.042
indoor mobility for day (post) -0.332 0.045

There is also a link between sleep duration and stress. Our results show that there

is a strong negative association (r = −0.355, p = 0.024) between sleep duration

and perceived stress. Students that are getting more sleep experience less stress.

Finally, we find significant positive (r = 0.458, p = 0.003) and negative correlations

(r = −0.387, p = 0.012) between self-reported stress levels and positive affect (i.e.,

PAM), respectively, and the perceived stress scale. There is a strong connection

between daily reports of stress over the term and the pre-post perceived stress scale,

as shown in Table 2.7. Similarly, students that report higher positive affect tend to

be less stressed.
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Loneliness Scale. We find a number of links between activity duration, distance

travelled, indoor mobility and the loneliness scale, as shown in Table 2.8. All our

results relate to correlations with post measures. Activity duration during a 24 hour

day has a significant negative association (r = −0.388, p = 0.018) with loneliness.

We can look at the day and evening epochs and find correlations. There is a negative

correlation (r = −0.464, p = 0.004) between activity duration in the evening epoch

and loneliness. Distance traveled during the complete day (r = −0.338, p = 0.044)

and the day epoch (r = −0.336, p = 0.042) show trends with being lonely. Indoor

mobility during the day epoch has strong negative links (r = −0.332, p = 0.045)

to loneliness. Indoor mobility is a measure of how much a student is moving in

buildings during the day epoch. Students that are less active and therefore less

mobile are more likely to be lonely. It is difficult to speculate about cause and effect.

Maybe these students move around less are more isolated (e.g., stay in their dorm)

because they have less opportunity to meet other students outside of class. These

students could feel lonely and therefore more resigned not to seek out the company

of others. There is also no evidence that people who interact with others regularly do

not experience loneliness. This supports our lack of findings between conversation and

loneliness. The PAM EMA data (positive affect) has a strong negative association

(r=−0.390, p = 0.020) with positive affect. In addition, stress self-reports positively

correlate (r = 0.344, p = 0.037) with loneliness. Students who report higher positive

affect and less stress tend to report less loneliness, as shown in Table 2.7.
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2.6.2 Predicting Academic Performance

We uses a subset of the StudentLife dataset to analyze and predict academic perfor-

mance. We only use undergraduate students’ (N=30) data because only undergrad-

uates have GPAs. In contrast, Dartmouth graduate students do not have GPAs and

only receive High Pass, Pass, Low Pass or No Credit in their classes. We propose new

methods to automatically infer study (i.e., study duration and focus) and social (i.e.,

partying) behaviors using passive sensing from smartphones [198]. We use time series

analysis of behavioral states to predict cumulative GPA. We use linear regression

with lasso regularization to identify non-redundant predictors among a large number

of input features and use these features to predict students’ cumulative GPA.

Assessing study and social behavior. The StudentLife dataset provides a number

of low-level behaviors (e.g., physical activity, sleep duration, and sociability based

on face-to-face conversational data) but offers no higher level data related to study

and social behaviors, which are likely to impact academic performance. We attribute

meanings or semantics to locations – called behavioral spaces [198] as a basis to better

understand study and social behaviors. That is, we extract high level behaviors, such

as studying (e.g., study duration and focus) and social (e.g., partying) behaviors by

fusing multiple sensor streams with behavioral spaces.

We use behavioral space information to determine study behavior [198]. Each

student takes three classes, which are scheduled at specific periods during the week [2].

Students’ transcripts indicate what classes they took. The registrar office has the

schedule and location for each class. We use location, date (i.e., weekday M-F) and

time to automatically determine if a student attends a class or not, checking the dwell

time at the location at least equals 90% of the scheduled period (e.g., 110 minutes).
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Using this approach the phone can automatically determine the classes a student is

taking and their attendance rates.

We heuristically determine if a student’s dwell time at a study areas (e.g., library,

labs, study rooms, cafes where student primarily work) is at least 20 minutes. We

consider periods shorter that 20 minutes are less likely to be real study periods. In

addition to dwell time, we use activity and audio attributes to determine a student’s

level of focus at a study area. The value of activity indicates how often the phone

moves – the person is either moving around in the study area or stationary but using

the phone. We consider a number of scenarios. If a student is in a study (e.g., a

library) and moves around we consider this contributes to a lack of focus. If the

phone is mostly stationary in a study area, we consider this contributes to focus. We

also use the audio attribute to determine the level of ambient noise in study areas. We

consider quiet environments may contribute to study focus and noisy environments

do not. In term of focus, a higher activity value indicates that the student moves

around less and thus is more focused and a higher audio value indicates that the

student is in a quieter environment which is more conducive to being focused. We

do not combine these values but use them as independent variables in the analysis

section.

We consider behavioral spaces (e.g., Greek houses, dorms) and their attributes

to infer if a student is partying [198]. If a student is in a party we assume that

they will be moving and around acoustic sound of conversation or music. We also

consider the day of the week as being significant for the fraternity and sorority parties

(i.e., Wednesday, Friday and Saturday). We discard dwell times under 30 minutes at

partying locations.
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We partition each Greek house dwell periods (i.e., visit or stay) into 10-minute

windows and calculate audio and activity attributes. We hypothesize that the audio

and the activity attributes should be significantly different when the student is party-

ing or not partying. We use k-means clustering [205] to find the partying thresholds

for both the audio (e.g., music or being surrounded by a large group of people) and

activity (e.g., dancing) attributes.

Capturing behavioral change. We extract behavioral change features from the

low-level automatic sensing (e.g., sleep duration) and EMA data (e.g., stress) and

high-level study and social behaviors discussed in the previous section. We create

time series of each behavior for each student. The behavior time series samples each

behavior each day. Each time series summarizes a different behavior (e.g., physical

activity, conversation frequency and duration, sleep, social behavior, and study be-

haviors). In order to understand behavior changes across the term, we propose two

features [198]: behavioral slope, which captures the magnitude of change (e.g., in-

crease or decrease in sleep) over the complete term as well as the first and second half

of the term for all students – from the start of term to the midterm point, and then

from the midterm point to the end of term; and behavioral breakpoints, which capture

the specific points in the term where individual behavior change occurs – the number

of breakpoints a student experiences indicates the rate of change that occurs. The

method to extract these behavioral change features are described in detail in [198].

Predicting cumulative GPA. Predicting GPA is a regression problem; that is,

predicting an outcome variable (i.e., GPA) from a set of input predictors (i.e., fea-

tures). We evaluate various regression models such as regularized linear regression,

regression trees, and support vector regression using cross-validation. We select the
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Lasso (Least Absolute Shrinkage and Selection Operator) [184] regularized linear re-

gression model as our predictive model. Lasso is a method used in linear regression;

that is, Lasso minimizes the sum of squared errors, with a bound on the sum of the

absolute values of the coefficients. Considering we have a large number of features,

collinearity needs to be addressed. There are two categories of methods that address

collinearity: feature selection and feature transformation. Lasso regularization is one

of the feature selection methods. Lasso solves the following optimization problem:

min
β0,β

(
1

2N

N∑
i=1

(yi − β0 − xTi β)2 + λ

p∑
j=1

|βj|)

where N is the number of observations; yi is the ground truth of observation i;

xi is the p degree feature vector at observation i; λ is a nonnegative regularization

parameter, which controls the number of nonzero components of β (i.e., number of the

selected features); β0 is the intercept; and β is the weight vector. The regularization

parameter λ is selected using cross-validation. The optimization problem is essentially

to minimize the mean square error 1
2N

∑N
i=1(yi − β0 − xTi β)2 of fitting while keeping

the model as simple as possible (i.e., select a minimal number of features to avoid

overfitting). Thus, Lasso automatically selects more relevant features (i.e., predictors)

and discards redundant features to avoid overfitting.

We use the mean absolute errors (MAE), the coefficient of determination (R2) [48],

and Pearson correlation to measure the performance of outcome prediction. MAE

measures how close predictions are to the outcomes. The mean absolute error is given

by MAE = 1
n

∑N
i=1 |yi − β0 − xTi β|. Smaller MAE is preferred because it indicates

that the predictions are closer to the ground truth. R2 is a another statistic that

measures the goodness of fit of a model and indicates how much of the variance our
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model explains. R2 ranges from 0 to 1, where 1 indicates that the model perfectly fits

the data. R2 can be seen to be related to the unexplained variance where R2 = 0 if

the feature vector X tells us nothing about the outcome. We use Pearson correlation

to measure the linear relations between the ground truth and the predictive outcome.

We apply leave-one-subject-out cross validation [117] to determine the parameters

for Lasso and the weights for each feature. In order to make the weight regularization

work properly, each feature is scaled within the range [0, 1]. Selected features have

non-zero weights. The MAE of our predicted cumulative GPA is 0.179, indicating

that the predictions are within ±0.179 of the groundtruth. The R2 is 0.559, which

indicates that the features can explain 55.9% of the GPA variance. The predicted

GPA strongly correlates with the ground truth with r = 0.81 and p < 0.001, which

further indicates that our predictions can capture outcome differences using the given

features.

Table 2.9 shows the selected features to predict the cumulative GPAs and their

weights. Interestingly, lasso selects a single long term measure (i.e., conscientious

personality trait), two self-report time series features ( i.e., affect and stress), and

three automatic sensing data behaviors (i.e., conversational and study behavior).

The weights indicate the strength of the predictors. Students who have better GPAs

are more conscientious, study more, experience positive moods (e.g., joy, interest,

alertness) across the term but register a drop in positive affect after the midterm

point, experience lower levels of stress as the term progresses, are less social in terms

of conversations during the evening period between 6-12 pm, and experience later

change (i.e., a behavioral breakpoint) in their conversation duration pattern.

56



2.6 Results

Table 2.9: Lasso Selected GPA Predictors and Weights.

features weight

sensing
conversation duration night breakpoint 0.3467
conversation duration evening term-slope -0.6100
study duration 0.0728

EMA
positive affect 0.0930
positive affect post-slope -0.1215
stress term-slope -2.6832

survey conscientiousness 0.0449

2.6.3 Dartmouth Term Lifecycle

We analyze the Dartmouth term lifecycle using both sensing data and self-reported

EMA data. Figure 2.5(a-c) shows key behavioral measures and activities over the

complete term. Figure 2.5(a) shows EMA data for stress and positive affect (PA),

and automatic sensing data for sleep duration. Figure 2.5(b) shows continuous sens-

ing trends specifically activity duration, and conversation duration and frequency.

Finally, Figure 2.5(c) shows location based data from GPS and WiFi, specifically,

attendance across all classes, the amount of time students spent in their dorms or

at home, and visits to the gym. We hypothesize that these sensing, EMA and lo-

cation based curves collectively represent a “Dartmouth term lifecycle”. Whether

these trends could be observed across a different set of students at Dartmouth or

more interestingly at a different institution is future work. In what follow we discuss

workload across the term, mental well-being using EMA data (i.e., stress and positive

affect) and automatic sensing data measures.

Academic Workload. We use the number of assignment deadlines as a measure of

the academic workload of students. We collect class deadlines during exit interviews
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and validate them against students’ calendars and returned assignments dates. Fig-

ure 2.5 shows the average number of deadlines for all student across each week of the

term. The number of deadlines peaks during the mid-term period in weeks 4 and 5.

Interestingly, many classes taken by the students do not have assignment deadlines

during week 8. Final projects and assignments are due in the last week of term before

finals, as shown in Figure 2.5(a). As discussed before, all study participants take the

same CS65 Smartphone Programming class, for which they share the same deadlines.

Among all CS65’s lab assignment, Lab 4 is considered to be the most challenging

programming assignment. In the last week of term the students need to give final

presentations and live demos of group projects for the smartphone programming class.

The students are told that app developed for the demo day has to work to be graded.

The demo is worth 30% of their overall grade.
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Figure 2.5: Dartmouth term lifecycle: collective behavioral trends for all students
over the term.

Self Reported Stress and Mood. Figure 2.5(a) shows the average daily stress

level and positive affect over the term for all subjects as polynomial curves. Students

are more stressed during the mid-term (days 22-36) and finals periods. The positive

affect results show a similar trend. Students start the term with high positive affect,

which then gradually drops as the term progresses. During the last week of term,
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students may be stressed because of finals and class projects, with positive affect

dropping to its lowest point in the term. Overall, the results indicate that the 10-

week term is stressful for students as workload increases. Figure 2.5(a) clearly shows

that students return to Dartmouth after spring break feeling the most positive about

themselves, the least stressed, the most social in terms of conversation duration and

the most active (as shown in Figure 2.5(b)). As the term progresses toward mid-term

week, positive affect and activity duration plunge and remain at low levels until the

final weeks where positive affect drops to its lowest point.

Automatic Sensing Data. We also study behavioral patterns over the term by

analyzing automatic sensing data. We plot the polynomial fitting curves for sleep

duration, activity duration, conversation duration, conversation frequency, as shown

Figure 2.5(b), and location visiting patterns in Figure 2.5(c). Our key findings are

as follows. We observe from Figure 2.5(a) that sleep peaks at the end of the first

week and then drops off and is at its lowest during the mid-term exam weeks. Sleep

then improves until the last week of term when it plummets to its lowest point in

the cycle. As shown in Figure 2.5(b) students start the term with larger activity

duration, which gradually drops as they become busier with course work and other

term activities. Finally, the activity duration increases a little toward the end of

term. Activity duration reaches its lowest point on day 36 when students are focused

on completing the Lab 4 assignment – considered the most demanding assignment in

the smartphone programming class.

The student’s level of face-to-face sociability starts high at the start of term,

then we observe an interesting conservation pattern, as shown in Figure 2.5(b). As

the term intensifies, conversation duration drops almost linearly until week 8, and
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then rebounds to its highest point at the end of term. Conversely, the frequency of

conservation increases from the start of term until the start of midterms, and then

it drops and recovers toward the end of term. We speculate that sociability changes

from long social/study related interactions at the start of term to more business-like

interactions during midterms when students have shorter conservations. At the end

of term, students are having more frequent, longer conversations.

Figure 2.5(c) provides a number of interesting insights based on location based

data. As the term progresses and deadlines mount the time students spend at the

significant places in their lives radically changes. Visits to the gym plummet during

midterm and never rebound. The time students spend in their dorm is low at the start

of term perhaps due to socializing then remains stable but drops during midterm. At

week 8 time spent in dorms drops off and remains low until the end of term. The most

interesting curve is class attendance. We use location data to determine if students

attend classes. We consider 100% attendance when all students attend all classes and

x-hours (if they exist). The term starts with 75% attendances and starts dropping

at week 3. It steadily declines to a point at the end of term were only 25% of the

class are attending all their classes. Interestingly, we find no correlation between class

attendance and academic performance. We speculate that students increasingly start

missing classes as the term progresses and the work load rises. However, absence

does not positively or negatively impact their grades. We put this down to their self

learning ability but plan to study this further as part of future work.

It is difficult in this study to be concrete about the cause and effect of this lifecycle.

For example, stress or positive affect could have nothing to do with workload and

everything to do with hardship of some sort (e.g., campus adjustment, roommate
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conflicts, health issues). We speculate the intensive workload compressed into a 10

week term puts considerable demands on students. Those that excel academically

develop skills to effectively manage workload, social life and stress levels.

2.7 Discussion

2.7.1 Compliance

Participants report feeling boredom with EMAs questions during the exit interview.

As a result, EMA response rate keeps dropping as shown in Figure 2.1. We get most

EMA responses from the simplest EMA questions. Stress EMA is a single question

EMA pops up multiple times a day, but students are willing to answer them. Students

like PAM because it is simple and fun. In contrast, we only get a few responses from

more complicated Behavior EMA, which has over 5 questions. Therefore, in future

study, the EMA design should be as simple as possible and require little user effort.

The biggest challenge for continuous sensing is energy consumption. Although the

battery life with continuous sensing is around 14 to 16 hours according to our tests,

a few students report that they have to charge their phone in the middle of day. This

is because these students are heavy phone users.

2.7.2 Academic Performance

Intuitively, class attendance should be positively correlate to academic performance.

However, we do not find such correlation. After inspecting the data, we find that for

students whose Sprint term GPA is greater than 3.7, 7 students’ attendance rates are

greater than 60%, while 5 students’ attendance rates are below 40%. Our observation
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is that for some high performers, they do not need to attend classes to excel in classes.

2.7.3 Analyzing multiple factors

We only analyze linear correlation between single behavior with multiple mental

health or academic performance outcomes. However, one specific outcome might

be influenced by multiple factors. For example, computer major students may need

less time than non-computer science major students to understand the content of a

computer science class. Therefore, their effort alone might not be sufficient to predict

performance. We need other data modeling technique to learn how different factors

act together to influence one particular outcome. Also, this data modeling technique

should be transparent so that we can not only predict the outcome, but also learn

the relations between the multiple factors and the outcome.

2.7.4 Extracting high level activities

One challenge of applying smartphone sensing technique to study students’ life (or

other social group’s life) is to identify activities beyond simple physical activity and

conversation. For example, in order to understand a student’s life, we would like to

learn their class attendances, when and where they eat, how often they go to party etc.

None of these behaviors can be inferred from single sensor. However, by combining

different sensor streams and necessary context information, we can infer these high

level activities. For example, we can infer if a student attended a class by looking at

their location history, class schedule and class location.
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2.8 Conclusion

In this chapter, we presented the StudentLife sensing system and results from a 10-

week deployment. We discussed a number of insights into behavioral trends, and

importantly, correlations between objective sensor data from smartphones and men-

tal well-being and predicting undergraduate students’ cumulative GPA for a set of

students at Dartmouth College. Our results showed that it is promising to use the

StudentLife sensing system to collect behavioral data and in-situ self-report EMAs

from college students and use the data to infer college students’ mental health and

academic performance.

There are a number of limitations in this work. First, the number of participants

is small and all participants were recruited from the same Computer Science class,

therefore, the participants cannot represent the wider Dartmouth student population.

Second, many of our participants used the study phones as their secondary phones. It

was burdensome for them to carry two phones all the time and not practical for large

scale studies. The StudentLife sensing app only works on Android phones, whereas

many students use iPhones. Lastly, the StudentLife study is not entirely focused on

predicting students’ mental health outcomes. We aim to tackle these limitations in

Chapter 3. We will discuss applying the smartphone sensing technology in a more

challenging environment (i.e., people with serious mental illness) in Chapter 4-6.
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Chapter 3

Tracking Depression Dynamics in

College Students Using Mobile

Phone and Wearable Sensing

3.1 Introduction

The StudentLife study described in Chapter 2 has shown great potentials in use

smartphones to assess college students’ mental health and academic performance.

We have found many correlations between the behavioral features derived from the

smartphone passive sensing data and a number of well-known pre-post health and

behavioral surveys (e.g., PHQ-9, Perceived Stress Scale). In this chapter, we focus on

using smartphone data to understand the connections between students’ behaviors

and depression and predict students’ depression states. To address the limitations

described in Chapter 2.8, we improve the StudentLife sensing app to support iPhones

and wearables (i.e., Microsoft Band 2). We recruit more participants (i.e., 83 students)
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from a wider student population over two academic terms in 2016. To ensure study

compliance and data quality, participants install the updated StudentLife app on their

own phones. We take a deep dive into the connections between human behaviors and

depression symptoms defined in the standard mental disorders diagnostic manual

(DSM-5 [18]) and propose symptom features that are predictive of depression in

college students.

The standard mental disorders diagnostic manual (DSM-5 [18]) defines 9 com-

mon symptoms associated with major depression disorders: depressed mood, sleep

changes, weight change, fatigue or loss of energy, restlessness or feeling slow, di-

minished interest or pleasure in activities, diminished ability to concentrate, feelings

of worthlessness, and thoughts of death and suicide. Existing work [49, 19, 196,

126, 164, 163] have found relationships between depression and generic behavioral

features from passive sensing. However, they do not discuss how these behavioral

features are associated with the well-defined depression symptoms. In this chapter,

we take a different approach and propose a set of depression sensing symptom fea-

tures (called symptom features for short) derived from phone and wearable passive

sensor data that represent proxies for the DSM-5 depression symptoms in college stu-

dents; that is, we design a set of behavioral features to capture the characteristics of

the depression symptoms that take into account lifestyles of students (e.g., going to

class, working in study areas, socializing on campus). Specifically, we hypothesize:

(1) the sleep change symptom can be measured by sleep duration, start time, and

end time inferred from passive sensor data from phones [54, 196, 195]; (2) the dimin-

ished ability to concentrate symptom can be associated with excessive smartphone use

[66, 125], specifically when measured in study spaces across campus (e.g., libraries,
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study rooms, quiet working areas associated with cafes, dorms, etc.) where students

typically focus on their course work; (3) the loss of interest or pleasure in activities

symptom may cause changes in activity and social engagement patterns [18], thus can

be associated with changes in activity, conversation, and mobility patterns inferred

from mobile sensing data; and finally (4) the depressed mood symptom and fatigue or

loss of energy symptom relate to changes in physiology, thus, may be associated with

changes in heart rate data passively measured by wearables (e.g., prior work found

heart rate data is associated with depressed mood [109, 113] and fatigue [169]). To

test our hypothesis, we conduct a study of 83 undergraduate students at Dartmouth

College across two 9-week terms during the winter and spring terms in 2016. The

study has been approved by the Committees for the Protection of Human Subjects

at Dartmouth College. The research is supported the National Institute of Mental

Health, grant number 5R01MH059282-12. Each student installed an updated Stu-

dentLife app on their own Android or Apple phones and were given a Microsoft Band

2 [141] for the duration of a 9-week term. The updated StudentLife app continu-

ously collects behavioral passive sensing data from smartphones and physiological

sensing data from Microsoft Band 2 [141]. We compute the symptom features from

the passive sensing data and conduct correlation analysis between the symptom fea-

tures and PHQ-8/PHQ-4 depression outcomes. We look at the correlations between

the symptom features and the PHQ-8 [124] and PHQ-4 [123] depression groundtruth.

We further look to predict PHQ-4 depression subscale states (i.e., non depressed and

depressed) [123] using the proposed symptom features.

The contributions of this chapter are: (i) we propose a set of passive sensor based

symptom features derived from phones and wearables that we hypothesize proxy 5 out
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of the 9 major depressive disorder symptoms defined in DSM-5; (ii) we find a number

of correlations between the proposed symptom features and PHQ-8 item scores. The

findings evaluate the efficacy of the symptom features to capture depression symp-

toms; (iii) we identify a number of correlations between the symptom features and

PHQ-8; (iv) we use ANOVA to compare the means of the symptom features between

the non depressed group and the depressed group, as defined in PHQ-8 [124]. We show

that these two groups are clearly identified in our data set; and (v) we show that we

can predict PHQ-4 and PHQ-8 using the proposed symptom features.

3.2 Depression Sensing using Symptom Features

How we assess depression has not changed in 30 years. Mental health specialists rely

on depression screening tools (e.g., Patient Health Questionnaire (PHQ) [174, 122,

121], Major Depression Inventory (MDI) [24], Beck Depression Inventory (BDI) [25],

Hamilton Depression Rating Scale (HDRS) [92]) and clinical interviews to assess the

severity of the symptoms of major depressive disorder as defined in the DSM-5 [18].

These questionnaires rate the frequency of the symptoms that factor into scoring a

severity index called a “depression score”. These tools, however, rely on periodic

subjective self-reports. A person is said to suffer from a depressive episode if they

experiencing at least 5 of the 9 depression symptoms during the same 2-week pe-

riod, including either depressed mood or loss of interest or pleasure in activities, the

symptoms cause clinically significant distress or impairment in social, occupational,

or other important areas of functioning [18], and the symptoms are not attributable

to other medical conditions [18]. Existing work on predicting depression using mobile

phone sensing focuses on using generic behavioral features to predict or correlate the
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depression scale. We take a different approach and hypothesize that mobile sensor

data from phones and wearables represent proxies for the DSM-5 depression symp-

toms in college students; that is, we design a set of behavioral features to capture the

characteristics of the depression symptoms that take into account lifestyles of students

(e.g., going to class, working in study areas, socializing on campus). In what follows,

we describe the depression symptom features that represent 5 of the 9 major depres-

sive disorder symptoms. The symptom feature implementation details are described

in Section 3.4.1.

Sleep changes may result in students experiencing difficulty sleeping (insomnia)

or sleeping too much (hypersomnia) and changes in sleep schedules. Many times

because of the demands of the term (e.g., assignment due dates, exams, social life,

sports, etc.) students experience changes in the regular sleep patterns as demands

on the term increase. We infer students’ sleep time, wake up time, and sleep dura-

tion using passive sensing from phones [54]. We use phone sensing to determine if

depressed students sleep more or less than non-depressed students and if depressed

students have more irregular sleep schedules; that is, more variation in the time they

go to bed and wake up. As a result we can accurately infer the sleep changes symptom.

Diminished ability to concentrate may cause students to appear distracted,

unfocused, and unable to perform well. We use phone usage to measure if a student

is more likely to be distracted. Previous work [66] shows that smartphone overuse

may lead to increased risk of depression and/or anxiety. Specifically, we measure the

number of unlocks of the phone and associated usage duration across the day and

at specific locations; for example, dorm, in study areas and in the classroom, etc.

When a student is at the classroom or study areas, they are supposed to focus on
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work at hand or studying. In such locations we assume the more phone usage (i.e.,

spend more time on their phones) may indicate they are having difficulty focusing on

their work. We hypothesize that phone usage in the classroom and study places is a

potential indicator of a student’s diminished ability to concentrate in comparison to

regular phone use in social spaces, dorm, gym, or walking around campus. By using

phone location data and contextual labeling of the campus [197] we can differentiate

these different use cases accurately.

Diminished interest or pleasure in activities may cause changes in students’

activity and social engagement patterns that are not easily explained by external

forces like deadlines or exams. We can observe changes in a student’s physical ac-

tivity (i.e., more/less active) and mobility (e.g., visit more/fewer places on campus).

Specifically, we look at the time spent at different types of places. On campus build-

ings and spaces in buildings are usually associated with a primary function (e.g.,

study area, classroom, library, gym, social, cafes, etc). Most Dartmouth undergradu-

ate students study in a large number of shared study spaces across campus including

libraries and typically dormitory buildings are used to rest, sleep and socialize and

rarely used to study. We compute time spent in all areas but specifically in study

places and dorms; specifically, we compute a number of behavioral features including

dwell time at locations, phone usage (unlock frequency and duration), and the num-

ber and duration of conversation students are around in these spaces. All the location

based behavioral features are normalized by the dwelling duration. We use the fusion

of these features to proxy a student’s diminished interest or pleasure in activities.

Depressed mood and Fatigue or loss of energy are difficult to detect from

passive behavioral sensing from phones. Instead we consider heart rate from wear-
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ables. Previous work has found that heart rate data is associated with depressed

mood [109, 113] and fatigue [169]. We determine if depressed students’ heart rate

is different from non-depressed students. We consider this might be a potential sig-

nal and proxy for depressed mood or fatigue or loss of energy. In addition, we also

determine if more depressed students visit on-campus health facilities more.

3.3 Data Collection

We collect a smartphone and wearable sensing dataset from 83 Dartmouth College

undergraduate students across two 9-week terms during winter (56 students) and

spring (27 students) terms in 2016. The average age of the participants is 20.13

(std=2.31) and 40 are male and 43 are female (26 are Asian, 5 are African American,

24 are Caucasian, 1 is multiracial, and 26 not specified). This study is approved by

the Institutional Review Board at Dartmouth College. Figure 3.1 shows the sensing

system, symptom feature mappings, and the depression ground truth. In what follows,

we discuss the sensing system, the study design, and the dataset.

3.3.1 Mobile Sensing System for Phones and Wearables

We update the StudentLife sensing app described in Chapter 2 to support iOS. We

replace our in-house activity classifier with the build-in Android and iOS activity

recognition API. The updated StudentLife app continuously infers and record par-

ticipants’ physical activities (e.g., stationary, in a vehicle, walking, running, cycling),

sleep (duration, bed time, and rise time) based on our prior work on sleep inference

using phones [54], and sociability (i.e., the number of independent conversations a
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PHQ-4 
weekly depression

from EMA

Raw Sensing Data Symptom Features
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sleep time
wake up time
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Depression Measurement

Figure 3.1: We continuously collect behavioral passive sensing data from Android and
Apple iOS smartphones and physiological sensing data from Microsoft Band 2. We
compute the symptom features from the passive sensing data. The symptom features
map smartphone and wearable passive sensing to 5 depression symptoms defined
in DSM-5: sleep changes, diminished ability to concentrate, diminished interest in
activities, depressed mood, and fatigue or loss of energy. We look for associations
between the symptom features and the PHQ8/PHQ4 depression outcomes.

participant is around and their duration). The app also collects audio amplitude,

location coordinates, and phone lock/unlock events. A built-in MobileEMA compo-

nent is used to administer self-reported PHQ-4 [123] EMAs. The app uploads the

data to the secured server when the user is charging their phones and under WiFi.

StudentLife is extended to collect data from wearables; specifically, we collect physi-

ological data from Microsoft Band 2 [141] given to each of the students in our study.

The StudentLife app collects the heart rate, galvanic skin response (GSR), skin tem-

perature, and activity data from the band in real time. Band data is uploaded to

the StudentLife app over Bluetooth and then uploaded to our servers as described

71



3.3 Data Collection

above. Note, during data modeling and analysis we found poor data quality issues

associated with GSR and skin temperature data from the band. First, the GSR sam-

ple rate provided by the Microsoft Band SDK [141] is too low (0.2 HZ) to be useful

in analysis. Such a low sample rate limited extracting useful GSR features. We also

found that the skin temperature sensor reading is affected by the ambient environ-

ment temperature. The temperature differences between indoor and outdoor during

New Hampshire winter can be as large as 70 degree Fahrenheit. We observed signifi-

cant drops in skin temperature when participants are outside during the winter term.

For these reasons we collected but did not uses GSR and skin temperature data in our

modeling. While the StudentLife app infers sleep data from the phone only within

+/- 25 mins of error [54] the band has much better sleep measurements. However,

because the band only lasted one day due to limited battery and the demands of

continuous sensing most students wore the band during the day and recharged it at

night. The result is that we have limited sleep data from the band. We therefore only

use sleep measurements from our phone data. Even though we collect GSR, sleep,

skin temperature we end up only using heart rate and activity data from the band.

3.3.2 Depression Groundtruth

We use the self-reported PHQ-8 [124] and PHQ-4 [123] as groundtruth for depression

outcomes in our study. This is a widely used measure with excellent validity. PHQ-8

is administered at the beginning and the end of the study period as a pre-post depres-

sion measures. PHQ-4 is administered once a week and used to capture depression

dynamics across the term. The PHQ-8 scores 8 of the 9 major depressive disorder

symptoms over the past two weeks where each item (i.e., question) is scored by the
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(c) The distribution of PHQ-4 depression
subscale scores
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(d) The distribution of mean PHQ-4 depres-
sion subscale scores

Figure 3.2: The distribution of the PHQ-8 and PHQ-4 responses. (a) The mean
score for the pre PHQ-8 is 6.09 (N = 82, std = 4.33), where 16 students are in the
depressed group (PHQ-8 ≥ 10). (b) The mean score for the post PHQ-8 is 6.69
(N = 71, std = 5.46), where 17 students are in the depressed group. (c) The mean
score of the PHQ-4 depression subscale is 1.34 (N = 707, std = 1.50), where 108
responses are above the depressed cutoff (≥ 3). (d) The mean per-participant PHQ-4
depression subscale score is 1.31 (std = 1.17), where 4 participants’ mean PHQ-4
depression subscale score is above the depressed cutoff (≥ 3).

user from 0 (not at all) to 3 (nearly every day). The PHQ-8 does not score the thoughts

of death and suicide symptom nor do we consider this in our study. The resulting

PHQ-8 depression score ranges from 0 to 24 indicating five levels of depression: (1)

none to minimal depression (range 0-4); (2) mild depression (range 5-9); (3) moderate

depression (range 10-14); (4) moderately severe depression (range 15-19); and finally

(5) severe depression (20 to 24). The score can also be interpreted as no depression
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(range 0-9) and current depression (range 10-24) according to [124]. Figure 3.2(a-b)

shows the distribution of the pre-post PHQ-8 responses. The mean score for the pre

PHQ-8 is 6.09 (std = 4.33), where 16 out of 82 students are in the depressed group

(PHQ-8 ≥ 10). The mean score for the post PHQ-8 is 6.69 (std = 5.46), where 17

out of 71 students are in the depressed group. We receive fewer post PHQ-8 surveys

because some participants do not complete the survey.

The PHQ-4 is an ultra-brief tool for screening both anxiety and depression disor-

ders over the past two weeks. It uses a depression subscale to score depression and

an anxiety subscale to score anxiety. We only consider the depression subscale in our

study on depression. The depression subscale comprises 2 questions from the PHQ-4

that score the diminished interest or pleasure in activities symptom and the depressed

mood symptom. The score of the depression subscale ranges from 0-6, where a score

of 3 or greater is considered depressed according to [123]. We collected in total 707

PHQ-4 responses across the terms. Figure 3.2(c) shows the distribution of the PHQ-4

depression subscale scores from all responses. The mean score of the PHQ-4 depres-

sion subscale is 1.34 (std = 1.50), where 108 responses are above the depressed cutoff

(≥ 3). Figure 3.2(d) shows the distribution of each student’s PHQ-4 depression sub-

scale. The mean per-student PHQ-4 depression subscale score is 1.27 (std = 1.15),

where 5 students’ mean PHQ-4 depression subscale score is above the depressed cutoff

(≥ 3).

3.4 Methods

In what follows, we present our symptom features and methods to evaluate the efficacy

of using the symptom features to predict depression severity in college students.

74



3.4 Methods

3.4.1 Symptom Features

We present our symptom features listed in Table 3.1 that capture the 5 out of 9 major

depressive symptoms based on data collected using phone and wearable passive mobile

sensing data.

Table 3.1: Depression symptom features.

DSM symptom Symptom features

sleep changes
sleep duration
sleep start
sleep end

diminished ability to concentrate
unlock duration
unlock duration at dorm
unlock duration at study places

diminished interest or pleasure in activities

stationary time
conversation duration
number of places visited
time at dorm
time at study places

depressed mood and fatigue or loss of energy heart rate

Sleep. We compute three sleep features to measure the sleep change symptom: sleep

duration, sleep onset time, and wake time. We assume students experiencing this

symptom may sleep significantly more or less than normal, or experience irregular

sleep schedules (i.e., more variations in sleep onset time or wake time). The sleep

inferences are based on four phone sensors: ambient light, audio amplitude, activity,

and screen on/off [54]. The sleep classifier does not infer naps. It simply computes

the longest period of inferred sleep. The sleep classifier approximates sleep duration

within +/- 30 minutes and has been used in a number of other studies [8, 196, 195].
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Physical activity. Students who experience the diminished interest or pleasure in

activities symptom may change their activity pattern (e.g., being less mobile and

more stationary) [18]. We compute the stationary duration during a day to measure

students’ sedentary levels. The app continuously infers physical activities using the

Android activity recognition API [89, 195] and iOS Core Motion [15]. Activity recog-

nition infers whether a user is on foot, stationary, in vehicle, on bicycle, tilting, or

doing an unknown activity. We compute the non-physically active duration (i.e., the

stationary duration) using the still label from the classifier. Both Android and iOS

activity recognition API detects the stationary state with high accuracy.

Speech and conversational interaction. Students who experience the dimin-

ished interest or pleasure in activities symptom may experience social withdrawal

and change their social engagement patterns [18]. We compute the number of inde-

pendent conversations and their duration everyday as a proxy for social interaction.

The StudentLife app infers the amount of speech and conversation a participant is

around [195, 196]. In [196, 195] we discuss the detailed in design of the conversation

classifier that continuously runs on the phone in an energy efficient manner (i.e., duty

cycled). In brief, it represents a two level classifier. At the lowest level we detect

speech segments and at the higher level we determine if the set of segments represent

a unique conversation. The conversation classifier does not identify speakers. There-

fore, we do not know that if the participant is actively involved in the conservation

or not (e.g., they could be sitting at a table in a cafe where others around them are

speaking). However, we have validated this in a number of studies and it is capable

of capturing levels of social interaction.
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Location and mobility. There is evidence that people’s mobility patterns are

related to depression. We use mobility and location features as a proxy for the di-

minished interest or pleasure in activities symptom. Prior work indicates [78, 49]

that people with this symptom avoid leaving their homes. We compute students’

distance traveled, the number of places visited and time spend at dorms and study

areas across campus based on location data [49, 196, 164] and a semantic understand-

ing of locations across Dartmouth campus. We use DBSCAN [136] to cluster GPS

coordinates collected during the day to find significant places that students dwell at.

The DBSCAN algorithm groups location/GPS coordinates that are close together as

a significant place where students visit. We compute the number of places visited as a

feature. We label every on-campus building and spaces in buildings (e.g., classrooms,

study area, dorms, libraries, cafes, social spaces, gyms, etc.) according to their pri-

mary function; for example, we label each student’s dorm as the place where they

dwell between 2-6 am. In addition, we also determine the number of times a student

visits the on-campus health center as a contextual mobility feature.

Phone usage. We use phone usage to measure the diminished ability to concentrate

symptom. Phone overuse has been linked to depression in college students [66, 125].

We compute the number of phone lock/unlock events and the duration that the

phone is unlocked during a day, when a student is at their dorms and study areas. To

avoid the impact of stay duration on the location based phone usage features (e.g.,

a student tends to record higher phone usage when they stay at a place longer), we

normalize the phone usage features for location based usage data by duration of their

stay. Excessive smartphone usage at study places or in the classroom may indicate

students are experiencing difficulty in concentrating on the work at hand.

77



3.4 Methods

Heart rate. We use students’ physiological signals to detect if they are experiencing

depressed mood or fatigue or loss of energy symptoms. Previous work has found that

heart rate variability is associated with depressed mood [109, 113] and fatigue [169].

The average of beat-to-beat or NN intervals (AVNN) is one of the heart rate variability

measures [134]. The heart rate (HR) is the inverse of the AVNN in milliseconds:

HR = 60000/AVNN. The StudentLife app collects heart rate data from Microsoft

Band 2 in real time. The accuracy of wrist heart rate monitors depends on many

factors. The heart rate measured by Microsoft Band 2 is accurate when the user

wears the band correctly (i.e., not too loose nor too tight) and is relatively stationary

during measurement periods. Based on our testing we found that the heart rate error

is within 2 beats for the band. However, the accuracy suffers if moving their arms

because of motion artifacts in the signal. In order to get an accurate measure of daily

heart rate, we compute the median heart rate during each day. The median heart rate

is a more robust measure of daily heart rate than the mean, maximum, and minimum

heart rate because median heart rate is less likely to be influenced by outliers.

3.4.2 Feature Set Construction

We construct a PHQ-8 dataset and a PHQ-4 dataset to look at association between

the symptom features and the depression groundtruth.

The PHQ-8 dataset uses students’ pre-post PHQ-8 responses as the ground truth.

We look to find correlations between the PHQ-8 scores and the symptom features.

In addition to the PHQ-8 scores, we include the PHQ-8 depression group assignment

(i.e., non depressed group (range 0-9) and depressed group (range 10-24) as defined

in [124]) as students’ binary pre-post depression state. We compute the term mean,
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standard deviation, and the slope of each symptom features described in Section 3.4.1.

The term mean features describes the average of the daily symptom features over the

9-week term. For example, the mean time spend at study places is the average time

a student spends at study places every day during the term. The term standard

deviation describes the variations in the daily symptom features. For example, a

higher standard deviation in sleep start time and end time indicates that the student

has an irregular sleep schedule. The term slope features describe how the daily

symptom features change over the term. We fit the daily feature time series with

a linear regression model and use the regression coefficient as the slope. The slope

describes the direction and the steepness of change. For example, a positive slope in

conversation duration indicates the student is around more and more conversations as

the term progresses, whereas a negative slope indicates the surrounding conversations

decrease over time. The absolute value of the slope shows how fast the conversation

duration changes. In addition to the symptom features, we also include the mean

PHQ-4 score from each student in the dataset. The correlations between the mean

PHQ-4 and PHQ-8 show the validity of the EMA administered PHQ-4.

The PHQ-4 dataset uses students’ weekly self-administered PHQ-4 depression sub-

scale scores as the groundtruth. We include the PHQ-4 depression group assignment

(i.e., non depressed group (range 0-2) and depressed group (range 3-6) as defined in

[123] as students’ binary weekly depression state. For each PHQ-4 response, we com-

pute the mean symptom features using data from the past 2 weeks. This is because

PHQ-4 asks for participants’ symptoms during the last two weeks.
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3.4.3 PHQ-8 Association and Prediction Analysis

We test our hypothesis that the mobile sensing derived depression features represent

proxies for the depression symptoms for college students by first running Pearson

correlation analysis to assess the relations between the term symptoms features and

the pre-post PHQ-8 item scores. Each of the PHQ-8 items maps to one of the major

depression disorder symptoms defined in DSM 5 except the suicidal ideation symptom.

The correlations between the PHQ-8 item scores and symptom features may give

us preliminary insight about whether or not the symptom features are likely to be

associated with individual symptoms.

We then run Pearson correlation analysis to assess the relations between the term

symptoms features and the pre-post PHQ-8 scores. PHQ-8 scores are validated de-

pression severity measures. The correlations suggest how the symptom features are

related to the overall depression severity. We report the correlation coefficients and

the p values. We also apply the False Discovery Rate (FDR) [207] to address the

multiple testing problem [84, 70].

In addition to the correlation analysis, we use ANOVA [167] to test whether or

not the mean of the symptom features are significantly different between the non

depressed group and the depressed group. The PHQ-8 defines a non depressed group

(< 10) and a depressed group (≥ 10) [124]. We use ANOVA [167] to test whether

or not the mean of the symptom features are significantly different between the non

depressed group and the depressed group. Analysis of variance (ANOVA) is a statis-

tical model that is widely used to analyze the differences among group means [167].

We report the F statistics and the p value from ANOVA. The F statistics indicate

the ratio of between-group variability and the within-group variability. The p value
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indicates whether or not the group means are significantly different.

Finally, we use lasso regularized linear regression [184] to predict pre-post PHQ-8

scores. The lasso regularization selects features that are predictive of the outcome

by penalizing irrelevant features’ weights to zeros [184]. Before training the model,

we normalize each feature to have zeros mean and one standard deviation. Feature

normalization avoids the different feature scales adversely affecting regularization.

We use 10-fold cross-validation to select the regularization hyperparameter, which

controls the penalizing strength of non-zero-weight features. We choose the hyperpa-

rameter that minimizes the mean squared error (MSE). We report the mean absolute

error and correlations between the predicted PHQ-8 scores and the groundtruth. We

use the population PHQ-8 mean as the prediction baseline to compare the prediction

performance.

3.4.4 PHQ-4 Regression and Prediction Analysis

We further test our hypothesis by identifying a number of associations between 2-

week symptom features and the PHQ-4 depression subscale scores using regression

analysis. We use the 2-week symptom features to predict if a student is considered

depressed according the PHQ-4 depression subscale. The periodic PHQ-4 responses

are longitudinal across the term where every student provides multiple responses.

Ordinary linear regression and correlation cannot be applied to analyze longitudinal

data because the responses from the same individual are likely correlated. We run

bivariate regression analysis using the generalized linear mixed model (GLMM) [139]

to understand associations between the 2-week symptom features and the PHQ-4

depression subscale scores. GLMM is a widely used model to analyze longitudinal
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data. It describes the relationship between two variables using coefficients that can

vary with respect to one or more grouping variables. In our case, the group variable

is student. GLMM better explains the intra-individual differences. We normalize

each symptom feature to have zero mean and one standard deviation. The regression

coefficient of a normalized feature b can be interpreted as a unit increase in the feature

value is associated with b increases in the associated PHQ-4 depression subscale value.

A positive coefficient indicates that a greater feature value is associated with a greater

depression score, whereas a negative coefficient indicates that a greater feature value

is associated with a smaller depression score. PHQ-4 are collected at a weekly rate.

The 2-week symptom features may artificially create dependency among consecutive

PHQ-4 scores. To address the dependency problem, we first run GLMM on all PHQ-

4 data, then we remove consecutive PHQ-4 responses by skipping a week’s PHQ-4

response. The skip-a-week dataset is half of the PHQ-4 dataset in size. We compare

the regression results from the complete PHQ-4 dataset and the skip-a-week dataset.

Similar results from the two datasets would suggest dependency does not have an

impact on the analysis.

We then use lasso regularized logistic regression [184] to predict whether or not

a student is depressed week by week (i.e., the reported PHQ-4 depression subscale

is ≥ 3). We use the PHQ-4 data to train a logistic regression model to predict each

student’s PHQ-4 for a given week. We first use 10-fold cross-validation to select the

regularization hyperparameter, which controls the penalizing strength of non-zero-

weight features. We then choose the hyperparameter that maximizes the regression

deviance to train a generic PHQ-4 prediction model. We report the prediction per-

formance from the 10-fold cross-validation.
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3.5 PHQ-8 Results: assessing depression across

the term

In what follows, we first report the correlations between the symptom features and

PHQ-8 item scores to show whether or not the symptom features are likely to be

associated with individual symptoms. We then report the correlations between the

symptom features and PHQ-8 scores. Finally, we report ANOVA results to show

whether or not the mean of the symptom features are significantly different between

the non depressed group and the depressed group.

3.5.1 Correlations Between Symptom Features and PHQ-8

Item Scores

In what follows, we discuss the relationship between the specific PHQ-8 item scores

and the proposed symptom features. Figure 3.3 shows the correlation matrices of

the term mean symptom features and eight pre-post PHQ-8 item scores. We omit

correlations with p > 0.05. In what follows, we discuss our findings.

Higher sleep changes (more irregular sleep patterns) item score is associated

with shorter sleep duration (in line with our hypothesis), longer unlock duration

during the day at dorm and study places, more time being stationary, and spending

more time at on-campus health facilities. The sleep start time and end time, however,

are not correlated with the sleep changes item score.

Higher mood item score is associated with longer unlock duration at dorm and

study places, more time being stationary, and spending more time at on-campus

health facilities. The heart rate is not correlated with the mood item score.
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Figure 3.3: The correlation matrix of proposed symptom features and PHQ-8 pre-post
item scores. Correlations with p > 0.05 are omitted.

Higher loss of energy (fatigue) item score is associated with spending more

time at dorm. The heart rate is not a predictor of this PHQ-8 item.

Higher diminished ability to concentrate item score is associated with longer

unlock duration at study places (in line with our hypothesis) and more time being

stationary.
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Higher diminished interest in activities item score is associated with longer

unlock duration at study places, more time being stationary (in line with our hypoth-

esis), and visiting fewer places a day (in line with our hypothesis).

Higher feeling worthless item score is associated with longer unlock duration

during the day at dorm and study places, spending more time at on-campus health

facilities, more time being stationary, and visiting fewer places a day.

Higher psychomotor retardation/agitation item score is associated with longer

unlock duration during the day, at dorm, and at study places.

Higher appetite changes item score is associated with visiting fewer places a

day, longer unlock duration during the day, at dorm, and at study places.

We find more statistically significant correlations between the symptom features

and the post PHQ-8 item scores. We believe this is because post PHQ-8 scores

better capture students depression states during the term whereas pre PHQ-8 scores

capture the depression states when students started the academic term. The symptom

features computed from the data collected during the term better capture students’

depression symptoms during the term. The results show there are indeed association

between the proposed symptom features and symptoms scores. We also find that

some symptom features correlate with symptoms that are considered relevant. For

example, phone use data (e.g., unlock duration) is associated with sleep changes.
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Table 3.2: Pearson correlations between the term symptom features and pre-post
PHQ-8 scores

PHQ-8 pre PHQ-8 post
r p r p

sleep duration all > 0.05 > 0.05
sleep start std 0.236 0.059 0.301 0.024
sleep end std 0.183 0.145 0.271 0.043
unlock duration mean 0.282 0.010* 0.268 0.024
unlock duration at dorm mean 0.245 0.027 0.206 0.085
unlock duration at dorm std 0.270 0.014* 0.222 0.062
unlock duration at study places mean 0.391 < 0.001** 0.322 0.006*
unlock duration at study places std 0.260 0.018 0.120 0.319
stationary time mean 0.256 0.040 0.347 0.009*
conversation duration slope 0.467 < 0.001** 0.223 0.062
number of places visited mean -0.066 0.556 -0.269 0.023
time at on-campus health facilities mean 0.210 0.059 0.029 0.812
time at dorm all > 0.05 > 0.05
time at study places all > 0.05 > 0.05
heart rate all > 0.05 > 0.05
PHQ-4 depression subscale mean 0.743 < 0.001** 0.849 < 0.001**
PHQ-4 depression subscale std 0.328 0.003* 0.521 < 0.001**
PHQ-4 depression subscale slope 0.045 0.688 0.438 < 0.001**

*FDR < 0.1, **FDR < 0.05

3.5.2 Correlations Between Symptom Features and PHQ-8

Depression Scores

The correlation results are presented in Table 3.2. In what follows, we discuss the

correlation results in detail. Sleep duration, sleep start time, and sleep end time

are proxies to measure the sleep changes symptom. We do not find correlations

between sleep duration and PHQ-8 score. However, we find students who have more

variations in their bed time schedule report higher pre (r = 0.236, p = 0.059) and

post (r = 0.301, p = 0.024) PHQ-8 scores. Students who have more variations in their
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wake up time report higher post PHQ-8 scores (r = 0.271, p = 0.043). The results

show that students with more irregular sleep patterns tend to be more depressed.

Phone unlock duration during the day, at their dorms, and in study places are

proxies to measure the diminished ability to concentrate symptom. We find all 3

unlock duration features correlate with the PHQ-8 scores. In general, students who

use their phones more during the day report higher pre PHQ-8 score (r = 0.282, p =

0.010) and post PHQ-8 scores (r = 0.268, p = 0.024). When students are at their

dorms, those who use their phone more report higher pre PHQ-8 score (r = 0.245, p =

0.027). We find strong correlations when students are at study places where the

typically goal is to focus on school work. Students who spend more time using their

phones in study areas report higher pre PHQ-8 scores (r = 0.391, p < 0.001) and

higher post PHQ-8 scores (r = 0.322, p = 0.006). The results show that context

aware device usage can be used to detect distractions and measure the ability of

students to concentrate.

Stationary time during the day, conversation duration, number of places visited,

and time spent at dorms and study places are proxies to measure the diminished

interest or pleasure in activities symptom. Students who report higher post PHQ-8

scores are likely to spend more time being stationary (r = 0.256, p = 0.040 for the

pre survey and r = 0.374, p = 0.009 for the post survey) and visit fewer places during

the day (r = −0.269, p = 0.023 for the post survey). Students who report higher pre

PHQ-8 scores see an increase in conversation duration (i.e., conversation duration

slope) as the term progresses (r = 0.467, p < 0.001). However, there is no correlation

between the mean conversation duration and the post PHQ-8 scores. We speculate

this is because students who are depressed at the beginning of the term are not social
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at the beginning of the term. However, as the term progresses, students become

more socially engaged. This may because some students in the cohort seek help at

on campus health facilities.

The daily median heart rate is a proxy for the depressed mood symptom and the

fatigue or loss of energy symptom. However, it does not correlate with the PHQ-8

score. Students who report higher pre PHQ-8 scores at the beginning of the term

spend more time at the campus health center (r = 0.210, p = 0.059). However, the

correlation does not hold for the post PHQ-8 scores. The results show that although

students who are more depressed at the beginning of the term actively seek medical

help, students who become depressed during the term may not seek out help at

campus health center. When talking to the clinicians and mental health counselors

at the Dartmouth campus health center they indicate that the peek demand time

they see students is during midterm weeks, during once per term social festivals, and

at the end of term (week before, during and after the final exam period). Clearly,

there seems to be a barrier for depressed students to visit the campus health center.

Many issues might stop a student reaching out including not understanding they

are experiencing depression or stigma associated with mental illness. The result is

consistent with what other colleges experience [73].

We administer weekly PHQ-4 EMAs to track how students’ depression changes

as the term progresses. We compute the PHQ-4 depression subscale term average for

each student and compare the subscale scores with the PHQ-8 scores. The PHQ-4

depression subscale scores strongly correlate with both pre (r = 0.743, p < 0.001) and

post (r = 0.849, p < 0.001) PHQ-8 scores. The result show that PHQ-4 responses

are consistent with PHQ-8, which gives us confidence to use the PHQ-4 depression
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subscale to track depression changes during the term. The PHQ-4 depression subscale

standard deviation correlate with both pre (r = 0.328, p = 0.003) and post (r =

0.521, p < 0.001) PHQ-8 scores. It suggests students who are more depressed have

more variations in depression severity over the term. The PHQ-4 depression subscale

slope correlate with post (r = 0.438, p < 0.001) PHQ-8 scores but not with the pre

scores, which suggests the symptom severity may increase over the term for students

who are more depressed by the end of the term.

3.5.3 Depression Groups Mean Comparison

We show the ANOVA group comparison results in Table 3.3. In what follows, we

discuss the group differences in sleep, conversation, and study behaviors.

Table 3.3: ANOVA significance of mean term symptom feature differences between
the non depressed and depressed group

PHQ-8 pre PHQ-8 post
F p F p

unlock duration mean 5.179 0.026 5.733 0.019
unlock duration at study places mean 11.599 0.001 6.084 0.016
unlock duration at study places std 5.694 0.019 1.426 0.237
unlock duration at dorm mean 4.748 0.032 6.121 0.016
unlock duration at dorm std 5.042 0.027 5.443 0.023
conversation duration slope 13.46 < 0.001 0.379 0.540
time at study places slope 4.199 0.044 0.546 0.462
PHQ-4 depression subscale mean 22.240 < 0.001 57.256 < 0.001
PHQ-4 depression subscale std 0.312 0.578 11.207 0.001
PHQ-4 depression subscale slope 0.319 0.574 6.716 0.012

Figure 3.4 shows the depression groups’ distribution of the time spent at study

places, the slope of the time spent at study places over the term, and the unlock dura-

tion at study places. Figure 3.4(a) shows that there is no significant differences in time
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Figure 3.4: The distribution of the time at study places, the slope of the time at study
places over the term, and the unlock duration at study places of the pre-post PHQ-8
non depressed group and depressed group. Students from the depressed group

spend at study places between non depressed and depressed groups. Figure 3.4(b)

shows that the pre PHQ-8 depressed group students spend a decreasing amount of

time at study places whereas the non depressed group students spend same amount of

time at study places across the term (F = 4.199, p = 0.044). Figure 3.4(c) shows that

the PHQ-8 pre and post depressed group students spend more time using their phones

at study places. The differences are significant with F = 11.599, p = 0.001 for the

pre PHQ-8 groups and F = 6.084, p = 0.016 for the post PHQ-8 groups. Figure 3.5
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Figure 3.5: The distribution of the conversation duration and the conversation dura-
tion slope of the pre-post PHQ-8 non depressed group and depressed group.

shows the distribution of the conversation duration and the conversation duration

slope of the pre-post PHQ-8 depression groups. Figure 3.5(a) shows that there is no
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significant differences in the mean conversation duration of the pre and post PHQ-8

depressed groups. However, the pre PHQ-8 depressed group shows a large in-group

variation in conversation duration. Figure 3.5(b) shows that the pre PHQ-8 depressed

group’s conversation duration slope is positive whereas the non depressed group has

a slight negative slope. The difference is significant with F = 13.46, p < 0.001. The

result shows that students in the pre PHQ-8 depressed group are around an increasing

amount of conversations as the term progresses whereas students in the pre PHQ-8

non depressed group are around decreasing amount of conversations. The difference

in conversation duration slope does not exist in post PHQ-8 groups. The result is

consistent with the correlation analysis.
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Figure 3.6: The distribution of sleep duration, sleep start time standard deviation,
and sleep end time standard deviation for the pre-post PHQ-8 non depressed group
and depressed group. The group differences are not statistically significant according
to ANOVA.

Figure 3.6 show the distribution of sleep duration, sleep start time standard de-

viation, and sleep end time standard deviation of the non depression group and the

depression group for pre-post PHQ-8. Figure 3.6(a) shows that the sleep duration of

the depressed group is shorter than the non depressed. Figure 3.6(b-c) show that stu-

dents in the depressed group have more variations in sleep start and end times. The

differences, however, are not statistically significant (p > 0.05) according to ANOVA.
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3.5.4 Predicting PHQ-8 Scores

Pre PHQ-8 scores. The lasso regularization selects 10 features to predict pre

PHQ-8 scores. Specifically, it selects phone usage at study places, the stationary

time, time spend at on-campus health facilities, sleep start time standard deviation,

unlock duration at dorm standard deviation, unlock duration at study places slope,

conversation duration slope, number of places visited slope, time at on-campus health

facilities slope, and heart rate slope. The MAE of the baseline model, where the

mean PHQ-8 score is used as the predicted PHQ-8 score, is 3.44. Our prediction

model predict the pre PHQ-8 scores with MAE of 2.40, which is 1.04 lower than the

baseline. The predicted PHQ-8 score strongly correlate with the groundtruth with

r = 0.741, p < 0.001.

Post PHQ-8 scores. The lasso regularization selects 5 features to predict post

PHQ-8 scores. Specifically, it selects phone usage at study places, the stationary

time, number of places visited, sleep start time standard deviation, and conversation

duration slope. The MAE of the baseline model is 4.29. Our prediction model predict

the pre PHQ-8 scores with MAE of 3.60, which is 0.59 lower than the baseline. The

predicted PHQ-8 score strongly correlate with the groundtruth with r = 0.578, p <

0.001.

Most of the selected features have shown significant linear correlations with the

PHQ-8 outcomes, as shown in previous sections. Interesting enough, the lasso regu-

larization selects the heart rate term slope to predict the pre PHQ-8 scores, whereas

heart rate term slope does not show correlations with the PHQ-8 scores. We suspect

the heart rate data may provide extra information in predicting PHQ-8 scores when

combined with other symptom features.
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3.6 PHQ-4 Results: tracking depression weekly

dynamics

In what follows, we further test our hypothesis by identifying a number of associations

between 2-week symptom features and the PHQ-4 depression subscale scores using

regression analysis. We use the 2-week symptom features to predict if a student is

considered depressed according the PHQ-4 depression subscale.

3.6.1 Regression Analysis

Table 3.4 shows the bivariate generalized linear mixed model (GLMM) [139] regres-

sion results. We report the coefficient b and the p value associated with the variable

(i.e., the 2-week symptom feature) from the bivariate regression between the 2-week

symptom features and the PHQ-4 depression subscale scores. The value of the co-

efficient indicates the direction and strength of the association between symptom

features and PHQ-4 depression subscale scores. The p-value indicates the probability

that the coefficient is equal to zero. A low p-value (i.e., < 0.05) indicates that the

coefficient is not equal to zero and likely to be the learned value.

The results suggest students who are around fewer conversations per day (p =

0.002), sleep less (p = 0.024), and visit fewer places (p = 0.003) are likely to be more

depressed. Students who go to sleep late (p = 0.027) and wake up late (p = 0.001)

are likely to be more depressed. The regression coefficients and p-values are similar

between the full PHQ-4 dataset and the skip-a-week dataset, which suggests the

dependency does not have an impact on the analysis.
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3.6 PHQ-4 Results: tracking depression weekly dynamics

Table 3.4: Associations between symptom features and PHQ-4 depression subscale
score

all skip a week
coefficient p coefficient p

number of conversations -0.269 0.002 -0.222 0.037
sleep duration -0.156 0.024 -0.222 0.025
sleep end 0.151 0.027 0.236 0.012
sleep start 0.223 0.001 0.317 0.001
number of visited places -0.211 0.003 -0.224 0.016

3.6.2 Prediction Analysis

The regularization selects 9 features to make the prediction as shown in Table 3.5.

Specifically, it selects the stationary time, the number of conversations, heart rate,

sleep end time, time spend at a dorm, time spend at study places, phone usage at

study places, and the number of places visited. Similar to predicting PHQ-8 scores,

the regularization selects the heart rate feature as a predictor. It further suggests the

heart rate feature helps predicting depression outcomes.

Table 3.5: Selected features to predict PHQ-4 depression subscale non depressed and
depressed group

lasso selected features

stationary time, number of conversations, heart
rate, sleep end, time at dorm, time at study places,
unlock duration at study places, unlock number at
study places, number of places visited

Figure 3.7 shows the receiver operating characteristic (ROC) curve [94] of the

logistic regression model obtained from the 10-fold crossvalidation. The ROC curve

show the different true positive rate and false positive rate using a different threshold

to determine if the logistic regression output is a positive case (i.e., depressed) or not.
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3.6 PHQ-4 Results: tracking depression weekly dynamics

The area under the ROC curve (AUC) [94] is a widely used metric to evaluate a binary

classifier. AUC ranges from 0.5 to 1. Higher score indicates better performance. Our

PHQ-4 state model’s AUC is 0.809, which indicate good prediction performance. The

model archives 81.5% of the recall (i.e., 81.5% of the depressed cases are correctly

identified) and 69.1% of the precision (i.e., 69.1% of the inferred depressed cases are

correct).
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Figure 3.7: The ROC curve of using lasso logistic regression to predict PHQ-4 de-
pression states. The area under the ROC curve (AUC) is 0.809.

3.6.3 Case Study Showing Depression Dynamics

Many of the students in this study have interesting behavioral curves and depres-

sion dynamics. Here we highlight one anecdotal case study. Figure 3.8 shows the

depression dynamics of a student’s PHQ-4 depression subscale score, number of con-

versations they are around, sleep duration, bed time, wake time, and number of places

visited over a 9-week term. We do not want to identify this student by detailing their

academic or demographic information. The curves show the student starts the term
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3.6 PHQ-4 Results: tracking depression weekly dynamics

in a non depressed state but their PHQ-4 depression subscale score deteriorates as the

term progresses and peaks during week 4 (anecdotal this is the mid term week but we

have no evidence that this is causal). The student’s depression subscale score drops

after week 4 and the student reports a non depressed state in week 6 before dropping

to 0 in week 8. If we now compare the students behavioral data from the StudentLife

app we can observe some interesting trends in the sensor data. Comparing the stu-

dent’s sleep data, the number of places visited every day and number of conversations

they are around before and after their PHQ-4 depression subscale score peaks in week

4, we can observe that this student is around fewer conversations, sleep less, goes to

bed later at night and wakes up earlier in the morning, and visit fewer places. This

all seems indicative of a busy student who might be experiencing increased stress and

anxiety because of the increasing academic demands of the term if we only looks at

the behavioral curves from sensing data. However, seeing the depression dynamics

from the PHQ-4 confirms that this student is struggling with the elevated levels of

depression. The student has coping skills that are unknown to us and recovers from

this increased risk without (from our data) any visits to the campus health center. As

the term ends the student recovers showing resilience their behavioral sensing curves

sleeping earlier, getting up later and therefore sleeping longer, visiting more locations

on campus during the day, and being around more conversation indicating more en-

gagement with fellow students and less isolation. All around a healthier person at

the end of term. We do not present this example as some common set of curves we

analyzed but an interesting one that gives insights into this student’s academic term.
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Figure 3.8: The dynamics of a student’s PHQ-4 depression subscale score, number
of conversations around, sleep duration, bed time, wake time, and number of places
visited over a 9-week term. The student starts the term in a non depressed state but
their PHQ-4 depression subscale score deteriorates as the term progresses and peaks
during week 4 and drops to 0 in week 8. The student is around fewer conversations,
sleep less, goes to bed later at night and wakes up earlier in the morning, and visit
fewer places before week 4. As the term ends the student recovers showing resilience
and their behavioral sensing curves sleeping earlier, getting up later and therefore
sleeping longer, visiting more locations on campus during the day, and being around
more conversation.

3.7 Discussion

Existing research on using passive sensing to predict depression do not design features

that explicitly map to depression symptoms defined in DSM-5. For example, prior

97



3.7 Discussion

work propose location features [49, 164, 163] based on the assumption that depressed

persons would travel less and have more irregular mobility patterns. In this chapter,

we propose to use well-known symptoms to guide us design passive sensing features

that are more likely to be associated with depression. Incorporating the symptom

domain knowledge and the behavioral characteristics of the population (e.g., college

students), we can come up with novel behavioral features that leverage multiple sensor

streams. For example, with the knowledge of college students’ daily routine, we

can leverage multiple sensors on the smartphone to assess students are likely to be

distracted when they should be studying. However, the proposed symptoms features

might not be able to generalize to other populations. For example, people with

other occupations (i.e., non students) do not usually go to classes. Generic features,

such as distance traveled and conversation duration, might not generalize well. We

would expect salespersons would be around more conversations than people working

in quite offices. Our method shows that we need to tailor behavioral features to

different populations.

While the current study provides evidence that passive sensing may help tracking

and predicting real-world changes in mental health, specifically depression, there are a

number of limitations to our study. The sample size of our study dataset is relatively

small relative to the number of features and quantity of data acquired for each of those

features. As such, the results here should be considered relatively exploratory and

preliminary. There is a need for the community interested in depression sensing to

take the next step and conduct a large scale, longitudinal study with a diverse cohort

well beyond students. While our results show associations between symptom features

and depression groundtruth, associations cannot tell us if changes in behavior would
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benefit or worsen depression severity. Future studies, need to be designed with the aim

to find causalities between the proposed symptom features and changes in depression

as discussed in [187]. Another limitation is that all of the subjects were Dartmouth

undergraduates. While our results are statistically significant and encouraging they

are limited to students at Dartmouth College. There are a number of other on-going

studies looking into a wide-variety of student health issues as part of the CampusLife

Consortium [129]. Results from these studies may shine a light on differences across

different campuses (e.g., small Ivy in small town, large research university in city).

We evaluate the symptom features using the PHQ-8 item scores. The item scores,

however, might not be a good indicator of symptoms because individual PHQ-8 items

have not been validated against depression symptoms defined in DSM-5. Future

studies may need to collaborate with clinicians to get better individual symptom

measures.

Finally, the use of early wearables (in our case the Microsoft Band 2) present prob-

lems for longitudinal studies. The band could only hold a charge for approximately

14 hours while continuously sensing. This meant students would have to charge their

bands before bed to get any data from the band during the night. Students had to

take the band off while showering. Neglecting to put the band back on after showering

would also cause losing data. Newer bands such as the Gamin Vivosmart 3 can run

for 4 days and are waterproof potentially increasing compliance for wearables and

making them more useful.
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3.8 Conclusion

We proposed depression symptom features derived from phone and wearable passive

sensor data that proxy 5 out of the 9 major depressive disorder symptoms defined

in the DSM-5 for college students. We found students who report higher PHQ-8

scores (i.e., are more depressed) are more likely to use their phones more particu-

larly at study places (r = 0.391, p < 0.001) in comparison with all day phone usage

(r = 0.282, p = 0.010); have irregular sleep schedules (i.e., more variations in bed

time (r = 0.301, p = 0.024) and wake time (r = 0.271, p = 0.043); spend more

time being stationary (r = 0.374, p = 0.009) and visit fewer places during the day

(r = −0.269, p = 0.023). We identified a number of symptom features capturing

depression dynamics during the term associated with the PHQ-4 depression subscale

groundtruth. Specifically, students who report higher PHQ-4 depression subscale

scores (i.e., are more depressed) are around fewer conversations (p = 0.002), sleep for

shorter periods (p = 0.024), go to sleep later (p = 0.001), wake up later (p = 0.027),

and visit fewer places (p = 0.003) during the last two week period. We showed that

the symptom features can predict whether or not if a student is depressed each week

with 81.5% recall and 69.1% precision. We believe the methods and results presented

in this chapter open the way for new forms of depression sensing going forward.

Although the results are encouraging, we still face many challenges to move for-

ward with mental health sensing. First, we have tested the sensing technology in

college students, who are tech-savvy and usually do not suffer from serious mental

illnesses. We need to test the effectiveness of mental health sensing in people with

serious mental illnesses. Second, we have used the smartphone data to correlate and

predict mental health, however, we have not used the information for intervention.
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I.e., how can we use mental health sensing to help clinicians adjust treatment when

necessary. Finally, we need more rigorous study designs. For example, the study

should have a clear inclusion and exclusion criteria for participation and account for

different demographic factors and social economics. To test the effectiveness of inter-

vention based on mental health sensing, we would need a randomized controlled trial

to reduce bias.

In the rest of this thesis, we discuss applying smartphone sensing technology in a

more challenging population: people with serious mental illness (i.e., schizophrenia).

We discuss the CrossCheck RCT, which split the participants into two groups: a

smartphone group, and a treatment-as-usual group. We focus on the smartphone

group and discuss using the smartphone data to track how schizophrenia symptoms

changes and use the smartphone data to provide interventions. We would also discuss

using the smartphone data to predict whether or not a patient is going to relapse.
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Chapter 4

CrossCheck: Toward passive

sensing and detection of mental

health changes in people with

schizophrenia

4.1 Introduction

In the first part of this thesis, we discuss using smartphone sensing to assess col-

lege students’ mental health (especially depression) and academic performance. The

promising results show there are great potentials in applying mental health sensing

from smartphones in people with serious mental illnesses and provide interventions.

In this chapter, we discuss the CrossCheck randomized control trial and analyze

preliminary data from the trial. CrossCheck app is a smartphone sensing system
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deployed to outpatients with schizophrenia. It is the first system to use continuous

passive sensing and periodic self-reports to monitor and assess mental health changes

in schizophrenia. The ultimate goal of the project is to develop sensing, inference

and analysis techniques capable of dynamically assessing mental health changes and

predicting the risk of relapse without the need for retrospective recall or self-reports.

Another aim of CrossCheck is to implement new invention techniques to automat-

ically alert clinicians in time to prevent or reduce the severity of relapse. In this

chapter, we are not directly addressing relapse or intervention, but take a first step

towards these goals by investigating: (i) the relationships between passively tracked

behavior and self-reported measures, and (ii) how much personalization of the system

is required given the observed variability between individual patients.

Specifically, the contributions of this exploratory study are: (i) meaningful associ-

ations between passively tracked data and indicators or dimensions of mental health

in people with schizophrenia (e.g., stressed, depressed, calm, hopeful, sleeping well,

seeing things, hearing voices, worrying about being harmed) to better understand

the behavioral manifestation of these measures and eventually develop a real-time

monitoring and relapse prevention system; (ii) models that can predict participants’

aggregated ecological momentary assessment (EMA) scores that measure several dy-

namic dimensions of mental health and functioning in people with schizophrenia; and

(iii) level of personalization that is needed to account for the known variations within

people. We show that by leveraging knowledge from a population with schizophrenia,

it is possible to train personalized models that require fewer individual-specific data

to quickly adapt to a new user.
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4.2 Related Work

There is a growing amount of research studying early warning signs and rising risk for

people with schizophrenia. It is widely accepted that traditional clinical evaluation

approaches, such as face to face interviews or periodic self-reported surveys, cannot

offer continuous monitoring to detect early warnings of symptom exacerbation [40,

72, 176]. Early work in mobile mental health for schizophrenia conducted by Ben-

Zeev et al. [33] first study the feasibility and acceptability of using mobile devices

for behavioral sensing among individuals with schizophrenia. In [33] the authors

find that participants feel comfortable using the mobile phones, accepting of passive

sensing, with participants interested in receiving feedback and suggestions regarding

their health. Kerz et al. [114] tests feasibility and acceptability of SleepSight, a

system collecting longitudinal accelerometry, heart-rate, ambient light and phone

usage patterns for 15 participants diagnosed with schizophrenia living at home. A

recent pilot study [23] collect smartphone data from 17 patients with schizophrenia in

Boston and find increased rate of behavioral anomalies detected in the 2 weeks prior

to relapse. the subjects, can provide an unprecedented and detailed view into patient

behavior outside the clinic.

4.3 CrossCheck Study Design

The CrossCheck study is a randomized control trial (RCT)[50] conducted in collab-

oration with a large psychiatric hospital in New York City, NY. The study aims to

recruit 150 participants for 12 months using rolling enrollment. The participants are

randomized to one of two arms: CrossCheck (n=75) or treatment-as-usual (n=75).
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The study has been approved by the Committees for the Protection of Human Sub-

jects at Dartmouth College and Human Services and the Institutional Review Board

at Zucker Hillside Hospital. In what follows, we discuss participant recruitment, the

sensing system, and the detailed study procedure.

4.3.1 Identifying Participants

The study hospital’s Electronic Medical Record is used to identify potential study

candidates who are then approached by a staff member to gauge their interest in

the study. If interested, a research interview is scheduled. Research flyers are also

posted at the study site with the research coordinator’s phone number. A candidate

is a patient who is 18 or older, met DSM-IV or DSM-V criteria for schizophrenia,

schizoaffective disorder or psychosis, and had psychiatric hospitalization, daytime

psychiatric hospitalization, outpatient crisis management, or short-term psychiatric

hospital emergency room visits within 12 months before study entry. The candidate

should be able to use smartphones and have at least 6th grade reading determined

by the Wide Range Achievement Test 4 [204]. Individuals with a legal guardian are

excluded.

4.3.2 Recruiting Participants

The staff at the recruitment hospital first screened candidates based on criteria de-

scribed in 4.3.1. Then the staff contacted candidates in person at the study site or

by phone to provide a complete description of the study. Interested individuals re-

view the consent form with study staff and are administered a competency screener

to verify that they understand what is being asked of them and are able to provide
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Figure 4.1: CrossCheck sensing and analysis system.

informed consent. After consent, enrolled participants are administered the baseline

assessment, then are randomly assigned to CrossCheck or the treatment-as-usual arm

where no sensing is done. Participants in the smartphone arm are loaned a Samsung

Galaxy S5 Android phone equipped with the CrossCheck app and receive a tutorial

on how to use the phone. To ensure the acquired data has a broad coverage of be-

haviors, participants personal phone numbers are migrated to the new phone and

they are provided with an unlimited data plan for data uploading. Participants are

asked to keep the phone turned on and to carry it with them as they go about their

day and charge it close to where they sleep at night. As of February 2, 2016, 48

participants are randomized to the CrossCheck arm, with 14 who dropped out. The

primary reason for dropping out is due to leaving treatment at the study site. A few

participants dropped out due to not being interested in participating anymore. In the

34 remaining, 17 participants are females and 17 are males (11 African American, 2

Asian, 19 Caucasian, 1 Multiracial and 1 did not disclose).
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4.3.3 CrossCheck System

The CrossCheck sensing system is built based on StudentLife described in Chapter 2

that uses smartphone sensing and self-report tools. Compared with the StudentLife

sensing system, the CrossCheck app uses the Android activity recognition API in-

stead of the self developed classifier to infer activities. The CrossCheck app collects

sensor data continuously and does not require the participant’s interaction. The

CrossCheck app automatically infers activity (stationary, walking, running, driving,

cycling), sleep duration, and sociability (i.e., the number of independent conserva-

tions and their durations). The app also collects audio amplitude, accelerometer

readings, light sensor readings, location coordinates, and application usages. Cross-

Check uses a built in MobileEMA module [196] to administer EMAs [33]. During the

collection phase, participants are asked to respond to EMA questions every Monday,

Wednesday, and Friday (see Section 4.4). This chapter focuses on the EMA data

as symptom measures. CrossCheck is published in Google Play Store’s beta testing

channel to control access. Google Play Store is used to remotely update the sensing

system when necessary. The inferences, the sensor data, and the EMA responses are

temporarily stored on the phone and are efficiently uploaded to a secured server when

users recharge their phones. Figure 4.1 gives an overview of the data collection and

analysis workflow.

Data collection monitoring. CrossCheck includes management scripts that au-

tomatically produce statistics on compliance. It sends a daily report on how many

hours of sensor data had been collected for the last few days. The daily report labels

participants who have not uploaded any data. CrossCheck also sends out weekly

reports with visualizations of participants’ sensing data (e.g., distance traveled, sleep
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and conversation duration) and EMA responses for the most recent week. Daily re-

ports and weekly reports help researchers to identify participants who are collecting

data or are having problems with the system. Research staff would call non-compliant

participants to give assistance and get them back on track.

Privacy considerations. In order to protect participants’ personal information,

each participant is given a random study ID. Any identifiable information is stored

securely in locked cabinets and secured servers. The participant’s personal informa-

tion, such as phone number and email address, is not collected by the sensing app.

Participants’ data is uploaded to a secured server using encrypted SSL connections.

If a participant’s phone is lost we remotely erase the data on the phone and reset it.

4.4 CrossCheck Dataset

The dataset includes behavioral features and inferences from raw sensor data, EMA

responses, and combined indicator scores calculated from EMA responses. We select

behavioral features based on participants’ behaviors (e.g., physical activity, socia-

bility, sleep , mobility) that are associated with dimensions of mental health state

[150, 138, 155, 196, 8, 127, 49, 164]. We use self-reported EMA data as mental health

state indicators of schizophrenia patients.

4.4.1 Timescale and Epochs

Behavioral features are computed on a daily basis. For example, the daily conversa-

tion frequency is the number of conversations a participant is around over a 24-hour

period. In addition, a day is partitioned evenly into four epochs: morning (6 am to
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12 pm), afternoon (12 pm to 6 pm), evening (6 pm to 12 am), and night (12 am to 6

am), we also compute behavioral features for these four epochs to explore behavioral

patterns within different phases in a day.

4.4.2 Behavioral Sensing Features

A wide range of behavioral sensing features from the raw sensor data and behavioral

inferences are collected by the CrossCheck app. These features describe patterns

of participants’ physical activity, sociability, mobility, phone usage, sleep, and the

characteristics of the ambient environment in which the participant dwells. Below,

we discuss these features and the rationale behind using them for our analysis.

Activity. We use the Android activity recognition API that includes: on foot, still,

in vehicle, on bicycle, tilting, and unknown. CrossCheck gives an activity update

every 10 seconds when the user is moving, or every 30 minutes when the user is

stationary. We compute the durations of stationary state and walking states per day

and within each of the four epochs as physical activity features. Our scale evaluation

shows that the Android activity recognition API infers walking and stationary with

95% accuracy.

Speech and conversation. Previous studies [155, 196, 127] have shown that the

detection of conservations and human voice is related to wellness and mental health.

We compute the number and duration of detected conversational episodes per day

and over each of the four epochs. We also compute the number of occurrences of

human voice and non human voice along with their respective durations per day.

Calls and SMS. To further inform the level of social interaction and communication

we consider phone calls and SMS activities. We compute the number and duration
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of incoming and outgoing calls over a day and the number of incoming and outgoing

SMS.

Sleep. Changes in sleep pattern or the onset of unusual sleep behavior may indicate

changes in mental health [41]. Sleep related features that are derived from the sleep

inferences are: overall duration of sleep, going to sleep time, and wake time for each

day[54, 196].

Location. Prior studies have shown that a user’s mobility patterns from geo-location

traces are associated with mental health and wellness [49, 196, 164]. In schizophrenia,

for example, it is not uncommon for people to be isolated and stay at home with lit-

tle external contact especially when individuals are experiencing distressing psychotic

symptoms. We calculate the following set of location features on a daily basis: total

distance traveled, maximum distance travelled between two tracked points, maximum

displacement from the home, standard deviation of distances, location entropy, dura-

tion of time spent at primary location, duration of time spent at secondary location.

Finally, we compute a locational routine index over seven days to quantify the degree

of repetition in terms of places visited with respect to the time of day over a specific

period of time. These features stem from the works on depression in [49, 164]. Fur-

ther we propose the number of new places visited in a day by using the number of

new locations in a day that have not been seen previously. Sampled location read-

ings/coordinates are clustered in to primary, secondary or other location using the

DBSCAN clustering method [136] with a minimum of ten points per cluster and a

minimum cluster radius of ten meters over the entirety of a single user’s data. The

first and second largest clusters are labeled as the primary and secondary locations,

respectively.
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Phone and app usage. User interaction with the phone is potentially indicative of

general daily function. For a coarse measure, we compute the number of times the

phone is unlocked per day, as well as the duration in which the phone is unlocked

per day and within each of the four epochs. We also create more nuanced measures

by leveraging information about the types of apps that are running. Given the wide

variety of apps, we classify each app into one of the three broad categories: social,

engagement, and entertainment. These categories were chosen as they are indicative

of sociability and daily function which in turn may potentially be indicative of mental

health changes. We use the meta-information from Google Play’s categorizations and

bin all active apps into one of the three categories. The social category is a combina-

tion of social and communication apps, examples include Facebook and Twitter. The

engagement category consists of health & fitness, medical, productivity, transporta-

tion and finance apps, examples include Calendar and Runkeeper. The entertainment

category consists of news & magazines, media & video, music & audio, and enter-

tainment apps. Examples of apps in this category are YouTube and NetFlix. We

compute the total number of apps that belong to each of these three categories every

15 minutes from the process stack. We then calculate the increases in the number

of apps that belong to each category which is indicative of how often the participant

launches an app in one of the categories.

Ambient environment. We compute features to measure the ambient sound and

light environment. The mean levels of ambient volume per day and within four epochs

reflect the ambient context of the participant’s acoustic environment, for example

quiet isolated places versus noisy busy places. Similarly, we consider the ambient light

levels to get more information about the environmental context of the participant,
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for example dark environment versus well illuminated environment. We acknowledge

that the phone cannot detect the ambient light when in the pocket. However, we

found that the phone can opportunistically sense the ambient light environment that

can be used to help infer sleep [54]. We use the mean illumination over a day and

within the four epochs.

4.4.3 Ecological Momentary Assessments

There are several dynamic dimensions of mental health and functioning in people with

schizophrenia that are of interest. These include items such as visual and auditory

hallucinations, incoherent speech delusion, social dysfunction or withdrawal, disorga-

nized behavior, and inappropriate affect [18]. Other possible indicators of changes

in mental health include variations in sleep, depressive mood and stress. EMA has

shown to be a valid approach to capture mental health states amongst people with

schizophrenia[90]. The set of EMA questions we use in CrossCheck are based on self-

reported dimensions defined in previous schizophrenia research [31]. The EMA has

10 questions, which can be grouped into two categories: positive item questions and

negative item questions. Higher score in positive questions indicates better outcomes

whereas higher scores in negative item questions indicates worse outcomes. Positive

questions ask a participant if they have been feeling calm, been social, been sleep-

ing well, been able to think clearly, and been hopeful about the future. Negative

questions ask a participant if they have been depressed, been feeling stressed, been

bothered by voices, been seeing things other people can’t see, and been worried about

being harmed by other people. The questions are framed as simple one sentence ques-

tions with a 0-3 multiple choice answers (for specific phrasing see Table 4.1). The
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MobileEMA user interface is designed to be simple and easy to use. It shows the

questions one by one. The participant responds to the question by touching a big

button associated with their response.

We calculate the EMA negative score, positive score, and sum score from the

responses. The EMA positive score is the sum of all positive questions’ score, the

negative score is the sum of all negative questions’ score, and the sum score is the

positive score minus the negative score. The positive and negative score range from

0 to 15 and the sum score ranges from -15 and 15.

Table 4.1: EMA questions related indicators of mental health

Have you been feeling CALM?
Have you been SOCIAL?
Have you been bothered by VOICES?
Have you been SEEING THINGS other people can’t see?
Have you been feeling STRESSED?
Have you been worried about people trying to HARM you?
Have you been SLEEPING well?
Have you been able to THINK clearly?
Have you been DEPRESSED?
Have you been HOPEFUL about the future?

Options: 0- Not at all; 1- A little; 2- Moderately; 3- Extremely.

4.5 Analysis and Results

We identify a number of important associations between phone-based behavioral fea-

tures described in Section 4.4 and dynamic dimensions of mental health and function-

ing in terms of EMA scores (e.g., feeling depressed, hearing voices or thinking clearly).

Also in this section, we present results on the use of predictive models on aggregated

EMA scores. We test the level of personalization needed for accurate modeling and
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for predicting longer term underlying trends in the scores.

4.5.1 Methods overview

We first run bivariate regression analysis to understand associations between the

measures of interest in schizophrenia from the EMA scores and passively tracked be-

havioral features. The regression results are presented in Section 4.5.3. We then run

prediction analysis using gradient boosted regression trees (GBRT) [84, 152] to eval-

uate the feasibility of predicting EMA sum scores, which is discussed in Section 4.5.4.

Finally, we generate person specific models using random forest (RF) [44] to gain in-

sight into predicting smoothed EMA sum scores that characterize underlying trends.

Data cleaning. Given that our analysis is based on data that are aggregated over a

day (e.g., distance traveled during a day), missing data during a day would skew de-

rived values and may misrepresent behavior. Therefore, the proportion of three forms

of continuously sampled data (activity, location, and audio) are used to determine

how many hours of data is sensed in a day. Days with fewer than 19 hours of sensing

data are discarded. Since recruitment of outpatients and data collection is an ongoing

process, participants join the study at different times leading to varying amounts of

data. We include participants who have been in the study for longer periods and are

compliant when answering EMAs. Specifically, we select participants who have more

than 60 days of sensor data as of February 2nd 2016 and completed at least 50% of

the EMAs. 21 out of 34 participants in the CrossCheck arm of the RCT satisfy this

criteria. As a result we analyze 2809 days of sensing data and 1778 EMA responses

for 21 participants. All participants are in the study for a minimum of 64 days. The

total number of days ranges from 64 to 254 days. On average, each participant in the
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study provides 133.76 days (19 weeks) of sensing data and 84.7 EMA responses.

Data preparation. Given that the EMA module launches a set of questions every

2-3 days, we aggregate the sensed data from the days within this interval by taking

the mean. Figure 4.2 shows the daily data aggregation strategy used to predict EMA

scores. For example, if a participant gave EMA responses on day 3, 6, and 9, we

compute the mean of each feature data (e.g., the mean sleep duration and the mean

distanced traveled) from day 1 to 3 to predict the EMA score at day 3, the mean

from day 4 to 6 to predict the EMA score at day 6, and the mean from day 7 to 9 to

predict the EMA on day 9.

EMA

sensing

days

average average average

Figure 4.2: Feature/EMA preparation

4.5.2 Feature Space Visualization

To gain an insight into the feature space, the data from all participants is mapped

using the t-Distributed Stochastic Neighbor Embedding (t-SNE) [132] method. The

t-SNE [132] is an emerging technique for dimensionality reduction that is particularly

well suited to visualize high-dimensional datasets. It projects each high-dimensional

data point to a two-dimensional point such that similar data points in the high-

dimensional space are projected to nearby points in the two-dimensional space and
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Figure 4.3: Feature visualization using t-SNE. (a) Data is color coded by user ID.
Individual subject’s data clusters together. (b) Data is color coded by EMA sum
scores. Data with same score tend to cluster within subject.

dissimilar data points are projected to distant points. The feature visualization is

shown in Figure 4.3.

Figure 4.3(a) shows the mapped features on a two-dimensional space. Each data

point represents a subject’s behavioral features used to predict EMA responses. We

observe data points are grouped into different clusters. By color-coding each point

per participant, it can be clearly seen that each cluster is predominantly participant

specific. This important finding is interesting because it shows that our features

captures behavioral difference between different individuals and that the data is highly

person dependent. Figure 4.3(b) shows a further color coding of the data; this time

by EMA sum scores. In this case, the colors are intermixed. However, we observe that

data points associated with the same score are also clustered together, though the

purity of such clusters are not as high as shown in Figure 4.3(a). This observation

gives us confidence in predicting participants’ EMA sum scores using personalized

models. These insights govern the analysis discussed in the remainder of this section.
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(a) Positive score distribu-
tion.
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(b) Negative score distribu-
tion.
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(c) Sum scores distribution.

Figure 4.4: EMA aggregated score distributions

4.5.3 Bivariate Regression Analysis

Standard statistical analysis methods such as correlation analysis and ordinary re-

gression analysis assume independence between observations. However, our longitu-

dinal dataset violates this independence assumption: data from the same subject are

likely to be correlated. Models that do not account for intra-subject correlations can

lead to misleading results. To addrress this, we apply generalized estimating equa-

tions (GEE) [128, 46, 209, 68] – a model specifically designed to analyze longitudinal

datasets – to determine associations between each of the features and their EMA

responses.

The GEE method is a marginal model, in which the regression and within-subject

correlation are modeled separately. The marginal expectation of subject i’s response

Yit at time t is E(Yit) = µit. This is related to the features xit by function g(µit) =

β0 + βxit, where g is a link function. From initial inspection we assume the EMA

responses have Poisson distributions leading to the use of log as the link function.

The β coefficients corresponding to feature vector xit, which indicates the association

between the features and the outcome Yit, where β0 is the intercept. The p-value

associated with each β indicates the probability of the feature coefficient β being

zero (i.e., the feature does not associate with the outcome). In addition, GEE does
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not rely on strict assumptions about distribution and is robust to deviation from

assumed distribution. The GEE analysis describes differences in the mean of the

response variable Y across the population, which is informative from the population

perspective.

The resultant β values indicate the direction and strength of the association be-

tween a behavioral feature and an EMA score. A unit increase in the feature value

is associated with eβ increase in the associated EMA value. To allow for inter-person

comparability, each feature is normalized per participant to a zero mean with one

standard deviation. Therefore, the resultant features values are indicative of feature

deviation from the mean. A positive β indicates that a greater feature value is as-

sociated with a greater EMA score, whereas a negative β indicates that a greater

feature value is associated with a smaller EMA score. The most significant β values

are selected using the corresponding p-value from each feature-EMA combination.

We apply a bivariate regression using GEE to all 610 combinations of the 61

features and 10 EMA questions. We apply the Benjamini-Hochberg procedure (BH)

proposed in [35, 36] to inform the false discovery rate (FDR) in our exploratory

regression analysis. The BH procedure finds a threshold for the p value given the

target false discovery rate by exploring the distribution of the p-values. We find 88

regressions with p < 0.05, which corresponds to FDR < 32.8%, meaning associations

with p < 0.05 has at most 32.8% chance of being false discoveries. We find 12

regressions with p < 0.0016,FDR < 0.1, and 7 regressions with p < 0.00025,FDR <

0.05.

Positive Questions. Table 4.2 shows features that are associated with the five

positively worded questions (viz. calm, social, thinking clearly, sleeping well and
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Table 4.2: Positive questions regression results

EMA item associated behavior

calm

sleep end time (-), conversation number (-), conversation
number afternoon (-), conversation number night (-), call
in (-), call out (-), increase in entertainment app use (-),
ambient light afternoon (-), ambient sound volume night
(-)

hopeful
call out (-), call out duration (-), sms in (-), sms out
(-)

sleeping
conversation duration evening (-), conversation number
evening (-), ambient sound volume morning (-)

social
walk duration evening (-), sleep duration (-), sleep end time
(-), ambient light evening (-)

think

conversation duration night (-), call in (-), call in duration
(-), call out (-), sms in (-), increase in entertainment app use
(-), durations of non-voice sounds (-), number of non-voice
sounds (-), number of voice sounds (-)

(-):negative association, (+):positive association
all associations with p < 0.05.

FDR < 0.1 in bold and FDR < 0.05 in bold italic.

hopeful). A higher score indicates a more positive mental health state. The reported

associations’ feature β values are within −0.04 < β < −0.02 with p < 0.05. We

find in general, higher scores in positive questions are associated with waking up

earlier, having fewer conversations, fewer phone calls, and fewer SMS. Specifically,

higher calm scores are associated with fewer number of conversations, fewer phone

calls, and staying in quieter environment at night and darker environment in the

afternoon. Higher hopeful scores are associated with making fewer phone calls, and

sending and receiving fewer SMS. Higher sleeping well scores are associated with fewer

conversations, and staying in quieter environment in the morning. Higher social scores

are associated with walking less in the evening, sleeping less, waking up earlier, and
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(a) Predicting positive
scores.
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(b) Predicting negative
scores.
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(c) Predicting sum scores.

Figure 4.5: EMA aggregated scores prediction MAE and Pearson r. loso: leave-one-
subject-out model, mixed: mixed model, individual: individual model. The results
show that the model without personalization does not work. The prediction perfor-
mance improves as more data from the subject is included in the training set.

staying in darker environment in the evening. Finally, higher ability to think clearly

is associated with fewer conversations at night, having fewer calls and SMS, and using

fewer entertainment apps.

Negative Questions. Table 4.3 shows features that are associated with the five

negatively worded questions (viz. hearing voices, seeing things, stress, harm and de-

pressed). A higher score indicates a more negative mental health state. The reported

associations’ feature β values are within −0.22 < β < 0.2 with p < 0.05. We find

in general, higher scores in negative questions are associated with staying station-

ary more in the morning but less in the evening, visiting fewer new places, being

around fewer conversations but making more phone calls and SMS, and using the

phone less. In addition, we find higher depressed scores are associated with using

the phone less in the morning; higher harmed scores are associated with using fewer

engagement apps; higher hearing voices scores are associated with staying in quieter

environments, especially in the morning period.
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4.5.4 Prediction Analysis

In this section, we discuss two supervised learning schemes for predicting aggregated

EMA scores. The first scheme explores the level of personal data needed for accurate

prediction. We use different training sets with various proportions taken from one

participant of interest along with instances taken from the general population, we then

test the model on the scores of the said participant. The second scheme is a further

analysis on a set of wholly personalized models to test the difference in predicting

smoothed versus raw aggregated EMA and the effect on accuracy by varying temporal

proximity between training and testing data. The distribution of EMA positive scores,

negative scores, and sum scores are shown in Figure 4.4.

Personalized EMA Predictions

Predicting the aggregate EMA scores is a regression task. We use gradient boosted

regression trees (GBRT) [84, 152] to predict EMA scores. GBRT is an ensemble

method which trains and combines several weak regression trees to make accurate

predictions. It builds base estimators (i.e., regression trees) sequentially. Each esti-

mator tries to reduce the bias of the previously combined estimators. More formally,

GBRT is an additive model with the following form [152]: F (x) =
∑M

m=1 γmhm(x),

where hm(x) are the basis functions and γm are the step length for gradient decent.

Building the additive model can be viewed as gradient descent by adding hm(x).

This addition is based on a forward stagewise fashion where the model at stage m is

Fm(x) = Fm−1(x) + γmhm(x). The additional term γmhm(x) is determined by solv-

ing Fm(x) = Fm−1(x) + argmin
h

∑n
i=1 L(yi, Fm−1(xi) − h(x)), where L is the Huber

loss [108, 84] also GBRT is less sensitive to outliers [108].
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Ideally, an EMA score prediction system should be able to predict a new user’s

scores accurately. However, the visualization of participants’ data (Figure 4.3) shows

that there are clear separations between different subjects’ behavioral data. There-

fore, a certain level of model personalization is needed. We personalize a predictive

model by training the model with the subject’s data. In order to understand the ef-

fectiveness of the model personalization, we train three models with different training

data setups to predict each of the three aggregate EMA scores: leave-one-subject-out

models, mixed models, and individual models.

A leave-one-subject-out model (LOSO) is trained to predict a particular subject’s

EMA scores. The model is trained on the data from other study participants with

the subject’s data left out. This model emulates a new unseen user starting to use

the system that has learned on data from other people. A mixed model personalizes

the training data by introducing a small amount of the subject’s data to a larger

population data. The idea is to leverage knowledge from the population to help

training so fewer examples of the subject’s data are needed. Specifically, we train a

model for a particular subject with data from the population plus some data from the

subject. We want to understand how much data from a subject is needed to train an

accurate model. We test models with different amount of data from a subject while

keeping the population data fixed. Specifically, we use 20%, 40%, 60%, and 80% of

a subject’s data plus the population data to train and evaluate four models. This

model emulates a system making predictions for a new user by leveraging knowledge

from the population plus a small amount of the subject’s behavioral patterns. Please

note, the leave-one-subject-out model is a special case of the mixed model, where we

use 0% of a subject’s data for training. An individual model is a fully personalized
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model, which uses data from only the subject to train the model.

We use a 10-fold blocked cross validation method [38, 45, 173, 93] to evaluate the

prediction performance of the individual models and mixed models. We define a block

as a temporally continuous segment of the data. This ensures that test data stems

from a different block of time to those in the training data. Moreover, for additional

rigour, we also omit boundary instances in the training set that are temporally close

to the test set based on the h-block cross-validation as proposed in [45], which was

designed to evaluate time dependent observations. Training instances that are less

than or equal to h time points from the test block are not used in training. This

ensures that temporally the test instances are always at least h time points from

instances used in the training set.

To evaluate the individual model, we use n− 1 blocks as the training set and the

remaining block as the test set. As stated, we remove h observations in the training

set preceding and following the observation in the test. In order to make use of all

the data, we iteratively select each block for testing, as suggested in [38]. As the data

collection is ongoing, there are different amounts of data from each subject leading

to different sized test sets for different subjects. The number of observations in the

testing set ranges from 5 to 13 with median of 9. We choose h = 6 for our cross-

validation (i.e., 2 weeks of data because we administer 3 EMAs a week). The value

of 6 for h is used as it is ˜50% of the block size of the subject with the most data.

For the mixed models, we use the same h-block cross validation method. The

mixed-model’s training data has two parts: the population data and the subject’s

data. The population data does not contain any data from the subject and is the

same for all folds. The training data from the target subject follows the similar
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h-block cross validation principle as in the individual model. Again, we test using

20%, 40%, 60%, and 80% of the data from the subject (i.e., 2 blocks, 4 blocks, 6

blocks, and 8 blocks) plus the population data for training. We test on the rest of

the subject’s data. Similar to the individual model, the training and test data are

from time-continuous blocks and h = 6 observations are removed from the subject’s

training data that are at either side of the test data. For every fold, we shift the

training data from the subject 1 block forward, and test on the rest. For example,

if we run cross-validation with 20% from the subject, we first train the model with

block 1 and 2 plus the population data, and test on blocks 3 to 10. In the second

fold, we train the model with block 2 and 3 plus the population data, and test on

block 1 and blocks 4 to 10.

Prediction performances. Figure 4.5 shows the mean absolute error (MAE), and

the Pearson’s r for all models predicting EMA positive, negative, and sum scores.

For the positive scores, we get the best prediction performance from the individual

model, where MAE = 1.378. The prediction strongly correlates with the outcome

with r = 0.77 and p < 0.001. We get the worst prediction performance from the

leave-one-subject-out model, where MAE = 3.573 and the predicted scores do not

correlate with the ground-truth. This supports our observation from Figure 4.3 for

the need for personalization in building the model. In mixed models, we see consistent

prediction performance improvement as we include more data from the subject in the

training set. With 20% of the subject’s data as the training data plus the population

data, the MAE of the mixed model is reduced to 2.254 comparing with the LOSO

model. The predicted scores correlate with the ground-truth with r = 0.479 and

p < 0.001. The MAE further reduces and the predicted scores are more correlated

124



4.5 Analysis and Results

with ground-truth as we use more data from the subject for training. With 80% of

the data from the subject as training data, the MAE drops to 1.525.

This same trend occurs with the negative scores and the sum score (Figure 4.5b),

the LOSO models are not predictive. However, the negative score mixed models

trained with 20% of an individual’s data starts to be able to make predictions with

MAE = 2.401, r = 0.680, and p < 0.001. The prediction performance steadily

improves as we use more data from the subject for training. The individual model

achieves the best prediction performance with MAE = 1.383, r = 0.856, and p <

0.001.

Please note that the EMA sum score has a larger scale than the positive score

and the negative score, where the sum score ranges from -15 to 15 and the positive

and negative scores range from 0 to 15. By taking the different score scales into

consideration, we find that the individual model predicts the sum score (MAE×0.5 =

1.15) more accurately than the positive score (MAE = 1.378) and negative scores

(MAE = 1.383). We suspect that the sum score better captures individuals’ mental

health state in general. Again, the results from mixed models show that including

20% of the subject’s data in the training set bolsters performance and the prediction

performance steadily improves as more data from the subject is used.

Our results show that model personalization is required to build EMA score pre-

diction systems. With small amount of training data from the subject (20%) plus the

population’s data we can make relevant EMA predictions that are correlated with

the ground truth. Therefore, we can quickly build an EMA prediction model for a

new user when we do not have much data from them. The predictions would be more

accurate as more data from the subject becomes available. These results provide con-
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fidence that our ultimate goal of building a schizophrenia relapse prediction systems

is likely feasible.

Relative feature importance. We examine which features are relatively more im-

portant in predicting EMA positive, negative, and sum scores. In GBRT models, this

is calculated by averaging the number of times a particular feature is used for split-

ting a branch across the ensemble trees, higher values are deemed as more important.

We average the feature importance across all individual models to find the top-10

most important features for predicting the EMA positive, negative, and sum scores,

as shown in Table 4.4.

Compared with the regression analysis results, we find that four of the top-10

features (i.e., durations of non-voice sounds, walk duration evening, call in duration,

and ambient sound volume night) to predict the positive score are associated with

positive EMA items. To predict the negative score, six of the top-10 features (i.e.,

sleep start time, walk duration morning, conversation duration morning, call out

duration, call in, and call in duration) that are associated with negative EMA items.

For the sum score, two of the top-10 important features (i.e., ambient sound volume

afternoon and ambient light night) are not associated with any EMA items. We also

observe that epoch behavioral features are more important than corresponding daily

features. For example, the predictive models find conversational features during the

morning is more predictive than daily conversational features. This supports our

initial decision to divide the day into 4 equal epochs to explore the data. We suspect

that epoch features better capture behavioral changes when an individual experiences

changes in mental health state.
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Predicting Underlying EMA Trends

In this section, we investigate the prediction of underlying trends in the EMA score

specific to each participant. Figure 4.6 shows lower frequency trends in the aggregated

EMA score which are especially apparent for outpatients who are in the study for

longer durations. To extract these underlying trends we apply a Savitzky-Golay filter

(with polynomial order of 2) to the sum EMA score only. Smoothing is not applied to

the feature values. Compared with other adjacent averaging techniques, this method

better preserves the signal’s characteristics (e.g., relative maxima, minima and width).

For prediction, we train a set of random forest regression (RF) [44] models. Training

is done using person specific data to generate a set of individual models. We consider

data points that are temporally closer would be more similar to each other than

data points taken further in time. We also consider that such temporal dependencies

to be personalised, hence the use of individual models only in this experiment. For

example, the amount of staying at home in cold months may be high and may decrease

as months get warmer, however the rate of this change will be dependent on each

person’s circumstances. Similar to the evaluation in the previous section, we evaluate

the models using a time blocked cross validation approach. We set the block size to

be a variable interval length in terms of multiples of training instances m, this can

be interpreted in real terms since a unit m spans 2-3 days.

We implement a grid search between different levels of smoothing (i.e., the Savitzky-

Golay frame size parameter) and different time interval sizes which we will call the

leave-one-interval-out validation. We choose the Savitzky-Golay frame size parameter

f as one of {5, 15, 25, .., 45} and the time interval sizes m as one of {1, 5, 10, .., 25}.

We train models with different f and m combinations, and evaluate their prediction
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Figure 4.6: Examples of smoothing on EMA sum score from one participant where f
is the frame size of the Savitzky-Golay filter.

performance using Mean Squared Error (MSE). Figure 4.7 shows an example of the

MSE of a model trained on one participant’s data. The MSE is taken from the leave-

one-interval-out validation. It can be seen that where m is smaller the MSE is better,

demonstrating that smaller intervals which contain data that is closer in time between

the training and test sets leads better to MSE scores, but as m increases the MSE

score gets worse. However, the grid search also reveals that smoothing the target

score has the effect of countering this limitation. This is due to the model predicting

a more stable underlying trend which is more predictable. For example in Figure 4.7

a smoothed outcome with f = 45 and m = 25 has a similar MSE to a model at f = 5

and m = 1. This can be interpreted as: if the interval is 3 days long (time between

EMA scores), a model for a smoothed score (f = 45) trained on data up to 75 days

ago (25 x 3) is as good as a model for an non-smoothed score (f = 5) trained on data

up to 3 days ago. Within the personal models we find that additive increases in the

smoothing parameter f by 10 increases the time span within which the tracked data
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Figure 4.7: Mean Squared Error from Leave-One-Interval-Out validation for interval
sizes versus smoothing level.

is relevant and predictive by 10-15 days.

4.6 Conclusion

CrossCheck is the first system to use passive sensing data from smartphones to find

significant associations with mental health indicators and to accurately predict men-

tal health functioning in people with schizophrenia. We find lower levels of physical

activity are associated with negative mental health, which is consistent with previ-

ous work [81]. In terms of sociability, our results show that patients around fewer

conversations during the morning and afternoon periods are more likely to exhibit

negative feelings. However, we also find participants who make more phone calls and

send more SMS messages also have significant associations with negative dimensions

of mental health. This may suggest that the participants prefer to use the phone

instead of face-to-face communication when exhibiting a negative mental state. In
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terms of locations, our findings show that outpatients are likely to visit fewer new

places when in a negative state. Our “new places visited” measure adds to the emerg-

ing knowledge in the use of location data for mental well being [49, 164]. For sleep,

getting up earlier is associated with positive mental health, whereas going to bed later

is associated with negative feelings; this also relates to a promising new direction in

considering a person’s chronotype and changes in sleep rhythm [159] for mental health

assessment. However, we would like to note that we do not yet understand the cause

and effect of these associations.

The predicted mental health indicators (i.e., aggregated EMA scores) strongly

correlates with ground-truth, with r = 0.89, p < 0.001 and MAE = 2.29. We also

find that by leveraging data from a population with schizophrenia it is possible to

train personalized models that require fewer individual-specific data thereby adapting

quickly to new users. The predictive power of participants’ data decreases when

temporally more distant data are included in the training of the models. However,

this can be countered by predicting underlying lower frequency trends instead.

CrossCheck shows significant promise in using smartphones to predict changes in

the mental health of outpatients with schizophrenia. We believe that CrossCheck

paves the way toward real-time passive monitoring, assessment and intervention sys-

tems. This would include models capable of predicting the mental health outcomes

discussed in this paper but also the detection of impending relapse. In the next

chapters, we discuss leveraging the smartphone data to predict clinician evaluated

symptom scores and use the predictions to provide interventions. In Chapter 6, we

discuss using the smartphone data to predict schizophrenia relapses.
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Table 4.3: Negative questions regression results

EMA item associated behavior

depressed

still duration morning (+), walk duration (-), walk duration
morning (-), sleep start time (+), new places visited (-), call
in duration (+), call out (+), call out duration (+), sms
in (+), sms out (+), unlock duration morning (-)

harm

still duration morning (+), walk duration (-), walk duration
night (-), walk duration morning (-), walk duration evening
(+), sleep start time (+), new places visited (-), conver-
sation duration morning (-), call in (+), call in duration
(+), call out (+), number of non-voice sounds (+), number
of voice sounds (+), unlock duration (-), unlock duration
morning (-), unlock duration afternoon (-), increase in en-
gagement app use (-)

seeing things

still duration evening (-), walk duration evening (+), walk
duration morning (-), sleep start time (+), conversation
duration morning (-), call in duration (+), call out (+),
number of non-voice sounds (+), number of voice
sounds (+), unlock duration (-), unlock duration after-
noon (-), unlock duration evening (-)

stressed

still duration morning (+), walk duration morning
(-), sleep start time (+), conversation duration afternoon
(-), conversation duration morning (-), call in duration (+),
call out duration (+), unlock duration morning (-)

voices

still duration morning (+), walk duration night (-), sleep
start time (+), new places visited (-), conversation dura-
tion morning (-), call in (+), call in duration (+), unlock
duration afternoon (-), unlock duration morning (-),
ambient sound volume (-), ambient sound volume morning
(-)

(-):negative association, (+):positive association
all associations with p < 0.05.

FDR < 0.1 in bold and FDR < 0.05 in bold italic.
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Table 4.4: Feature importance

top-10 important features

positive score

durations of non-voice sounds, ambient light night, unlock
duration night, walk duration evening, sleep start time, call
in duration, ambient sound volume night, walk duration,
location entropy, duration at primary location

negative score

sleep start time, call out duration, max dist travelled btwn
2 location points, ambient light morning, unlock number,
call in, call in duration, walk duration morning, stdev of
distances travelled, conversation number morning

sum score

call out duration, ambient sound volume afternoon, walk
duration, conversation number morning, unlock duration
evening, sleep start time, durations of non-voice sounds,
call in, ambient light night, call in duration
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Chapter 5

Predicting Symptom Trajectories

of Schizophrenia using Mobile

Sensing

5.1 Introduction

In Chapter 4, we reported on associations between passive sensing data and self-

reported EMA responses, and models that can predict the self-reported EMA scores

using sensor data from phones. These weekly EMA questions developed specifically

for the CrossCheck study attempt to measure several dynamic dimensions of men-

tal health and functioning in people with schizophrenia. The results show that we

can track schizophrenia patients’ symptoms. The study has been approved by the

Committees for the Protection of Human Subjects at Dartmouth College and Human

Services and the Institutional Review Board at Zucker Hillside Hospital. Participant

recruitment and the consent procedure are described in Section 4.3. In this chapter,
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5.1 Introduction

we turn to predict the 7-item BPRS, which is administered by a trained clinician.

The predictions are used by our research staff to determine at-risk patients and alert

their their clinicians.

At the CrossCheck study [195] partner hospital, Zucker Hillside Hospital, in New

York City, schizophrenia outpatients regularly schedule clinical visits with their clin-

icians. The time between visits varies from once a week to once a month, depending

on the patients’ symptom severity and risk. Clinicians use a battery of mental health

tests to evaluate the patients’ symptom states and adjust their treatment accordingly.

In our study, clinicians administer a 7-item brief psychiatric rating scale (BPRS), a

subset of the original 24-item BPRS [98, 69, 179, 118] as a part of their clinical

model. The BPRS is a rating scale to measure psychiatric symptoms associated with

schizophrenia, such as, depression, anxiety, hallucinations, and unusual behavior.

Each symptom is rated 1-7 (1 is given if the symptom is not present to 7 extremely

severe). The reliability, validity and sensitivity of the BPRS measurement has been

widely examined and considered a gold standard in assessment [101]. The 7 items in-

clude grandiosity, suspiciousness, hallucinations, unusual thought content, conceptual

disorganization, blunted affect, and mannerisms and posturing. The clinical research

team at Zucker Hillside Hospital determines these 7 items represent the strongest

predictors of deterioration in symptoms amongst all BPRS items. The total score of

the 7 BPRS items measures the overall symptom severity. However, this assessment

has its shortcomings. Clinicians are not aware if a patient experiences deteriorated

symptoms between visits. Because of this gap of knowledge in outpatients manage-

ment between visits, clinicians are more likely to miss the optimal time to intervene

to treat patients who are increasingly symptomatic and experiencing increased risk of
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relapse. Finally, the burden of hospital visits and face to face assessments on patients

and health service providers further prohibits patients from more frequent visits with

their clinicians to adjust treatment or provide intervention.

In order to address these shortcomings, we develop the CrossCheck symptom pre-

diction system to monitor patients’ trajectory of psychiatric symptoms. The sys-

tem predicts patients’ weekly 7-item BPRS total scores using passive sensing and

self-reported ecological momentary assessment (EMA) responses from smartphones.

Other than self-reported EMAs, the 7-item BPRS is administered by a trained clin-

ician at our study partner hospital. The scored 7-item BPRS survey serves as a

clinical indicator of treatment for patients who have moderate to severe disease. The

clinician is responsible for interpreting the constructs in the assessment which are

technical. The CrossCheck symptom prediction system predict the total score of the

7-item BPRS every week. Weekly predictions track participants’ overall psychiatric

symptoms and level of risk for relapse.

We present 7-item BPRS prediction results from CrossCheck randomized con-

trol trial (RCT), where passive sensor data, self-reports and clinically administered

7-item BPRS reports are collected from 36 outpatients with schizophrenia recently

discharged from hospital over a period ranging from 2-12 months. We show that

our system can predict 7-item BPRS using a combination of passive sensing data

and self-reported EMA. Importantly, we also show that we can predict 7-item BPRS

scores purely based on passive sensing data from mobile phones.This paper makes the

following contributions: (i) to the best of our knowledge, the CrossCheck symptom

prediction system is the first system capable of tracking schizophrenia patients’ symp-

tom scores measured by the 7-item BPRS using passive sensing and self-report EMA
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from phones. The system enables clinicians to track changes in psychiatric symptoms

of patients without evaluating the patient in person; (ii) we identify a number of

passive sensing predictors of the 7-item BPRS scores. These predictors describe a

wide range of behaviors and contextual environmental characteristics associated with

patients. Specifically, we find features extracted from physical activity, conversation,

mobility, phone usage, call logs, and ambient sound are predictive of the 7-item BPRS;

(iii) we use leave-one-record-out and leave-one-subject-out cross validations [117] to

evaluate the 7-item BPRS prediction performance for prediction using passive sensing

and EMA data. With leave-one-record-out cross validation, the system predicts the

7-item BPRS scores within ±1.45 of error on average. With leave-one-subject-out

cross validation, the system predicts the 7-item BPRS scores within ±1.70 of error on

average; and (iv) we discuss anecdotal information associated with three patients in

the study. These case studies show that our system can identify patients with rising

risk.

5.2 CrossCheck Symptom Prediction System

The CrossCheck symptom prediction system comprises the CrossCheck app running

on Android phones and the CrossCheck data analytics service running in the cloud.

The CrossCheck app collects participants’ passive sensing data and self-reported EMA

data [195] and uploads it daily to the data analytics service. The CrossCheck data

analytics service processes the participants’ data and predicts participants’ 7-item

BPRS scores on a weekly basis. These weekly reports allow the research and clinical

teams to reach out to patients if the system predicts rising risk. Figure 5.1 summarises

the systems components, workflow, and outreach. The CrossCheck app is described

136



5.2 CrossCheck Symptom Prediction System

in Chapter 4 in detail. In this section, we focus on the CrossCheck data analytics

system.

activity
sleep
ambient sound
ambient light
conversation
mobility
location
call/SMS
app
phone usage
…

hearing voices
seeing things
stressed
harm
depressed
calm
social
sleep
think clearly
hopeful

EMA

Passive Sensing

1

2
Data Upload to Cloud
when the phone is being 
charged and connected 
to the Internet

3 Report
data visualization
daily study adherence

4 Clinician Rated 7-item BPRS Scores
ground truth for training the BPRS prediction model

5
Weekly BPRS predictions
based on the participants’ behavioral 
data and self-report symptom data 
over the last 30 days

6
Reach Out

Once a patient is identified as at risk of experiencing increased symptoms 
based on their predicted 7-item BPRS score, the research staff reach out 
to them via phone

Figure 5.1: System overview of the CrossCheck symptom prediction system

5.2.1 CrossCheck App and Sensing System

The CrossCheck app [195] is built based on StudentLife core sensing system describe

in Chapter 2. The app continuously infers and record participants’ physical activ-

ities (e.g., stationary, in a vehicle, walking, running, cycling), sleep (duration, bed

time, and rise time), and sociability (i.e., the number of independent conservations a

participant is around and their duration). The app also collects audio amplitude, ac-

celerometer readings, light sensor readings, location coordinates, application usages,

and call logs. The app uses a built-in MobileEMA component [196] to administer self-

reported EMAs [33]. To protect participants’ privacy, the app does not collect phone

numbers, content of text messages or any conversation content [196]. We remotely

137



5.2 CrossCheck Symptom Prediction System

erase the CrossCheck data on the phone and reset it if the phone is lost. The app

uploads the data to the secured CrossCheck data analytics service in the cloud when

the participant is charging their phones and under WiFi or cellular data services. The

study provides participants with a Samsung Galaxy S5 Android phone and unlimited

data plan for the duration of the study. We administer a 10-item CrossCheck EMA

every Monday, Wednesday, and Friday. The EMA asks participants to score them-

selves on been feeling calm, social, bothered by voices, seeing things other people

can’t see, feeling stressed, worried about people trying to harm them, sleeping well,

able to think clearly, depressed, and hopeful about the future. The detailed questions

are list in Table 4.1.

5.2.2 CrossCheck Data Analytics System

The CrossCheck data analytics system receive and process the data from the Cross-

Check app. It generates reports and visualizations for research staff to monitor study

adherence and changes in participants’ behaviors. The research team periodically

receive clinician rated BPRS scores (i.e., ranging from weekly to monthly depending

on patients’ condition severity) and the system predicts every participant’s 7-item

BPRS score every week.

Smartphone data processing. The analytics system receives the passive sens-

ing and EMA data from the CrossCheck app and stores the data to a distributed

mongoDB database. The analytics system automatically generates behavioral fea-

tures from raw passive sensing and EMA data. The behavioral features are the basis

for visualizing behavior changes, monitoring study adherence, and predicting BPRS

scores.
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Clinician rated BPRS scores. Participants schedule monthly visits with their

clinicians. During their visits, clinicians administer the 7-item BPRS. The 7-item

BPRS score ranges from 7 to 49. Higher scores are associated with more severe

symptoms. Our study staff input the clinician rated 7-item BPRS scores to the

CrossCheck data analytics system. The clinician rated 7-item BPRS scores are used

as the ground truth for training the 7-item BPRS prediction model.

Passive Sensing and EMA Data visualization. The system generates plots to

show how participants’ behaviors and self-report symptoms change over time. For

example, Figure5.2 shows the distance traveled by a participant, and self-reported

visual hallucinations (i.e., the seeing things EMA item) symptom over 30 days. These

visualizations help research staff evaluate participants’ symptoms in addition to 7-

item BPRS predictions.
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Figure 5.2: Example data visualization used for assessment showing the changes
in distance traveled and self-reported visual hallucinations symptom over a 30 day
period. Our research staff uses these plots to better understand behavioral trends
associated with 7-item BPRS predictions.
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Weekly 7-item BPRS predictions. The system predicts every participant’s 7-item

BPRS scores at the beginning of each week and emails prediction reports to research

staff to review. The weekly interval gives research staff enough time to respond (i.e.,

reach out to patients and their clinical team) if needed. The prediction is based

on the participants’ passive sensing data and their self-reported symptom data over

the last 30 days. The reports contain the predicted 7-item BPRS score for the last

three weeks and the changes in the predicted 7-item BPRS scores. Research staff

use the 7-item BPRS prediction reports to identify participants at increased risk. A

patient at risk is one whose predicted 7-item BPRS score is above 12 or experiences an

increase of 10% or more since their last predicted 7-item BPRS score. The research

and clinical teams determined the rising risk threshold criteria (i.e., the score cut

off and percent change) by studying the historical BPRS scores from patients who

experienced relapse; that is, we analyzed scores in time periods prior to relapse to

determine the cut-off and, in addition, because some patients’ data prior to relapse

showed a lower cut off but large increasing percent changes we also determined the

additional criteria of the 10% change or greater between two predictions as a red flag.

Once a participant is considered at rising risk, the research staff reach out to the

patient to check if they are indeed experiencing increased symptoms. The research

staff reach out to clinicians to notify them of any potential risk allowing clinicians to

take actions to help patients (e.g., arrange for a caregiver to contact them, schedule

an immediate clinical visit). The 7-item BPRS prediction model is described in detail

in Section 5.4.

Daily study adherence reports. To monitor patients’ study adherence and detect

if any participants are experiencing technical issues that prevent the app from up-
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loading the passive sensing data, the system sends a daily report on how many hours

of different sensor data are collected for the last few days. These daily reports label

participants who have not uploaded any data. Researchers rely on these daily reports

to identify participants who are having problems with the system so they would call

non-compliant participants to give assistance and get them back on track – we deem

this a technical outreach and not a clinical outreach associated with BPRS predic-

tion. Examples of non-adherence because of technical problems include not using the

phone because of problems with the device, no data coverage, can’t recharge, or lost

or stolen.

5.3 CrossCheck BPRS Dataset

The CrossCheck symptom prediction system is deployed in a randomized controlled

trial [50] conducted in collaboration with a large psychiatric hospital, Zucker Hillside

Hospital, in New York City [195]. In what follows, we discuss the CrossCheck dataset

in detail.

The dataset comprises the participants’ monthly 7-item BPRS scores rated by

their clinicians, behavioral features extracted from passive sensing, and symptom

features extracted from self-report EMAs. We use 30 days of sensing and self-report

EMA data to predict a 7-item BPRS score. The 30-day time frame is called the

7-item BPRS prediction time frame. The 30-day time frame matches the interval

of clinician rated 7-item BPRS, which is 30 days on average. The passive sensing

features summarize the level of behaviors (e.g., the average conversation duration per

day in the 30-day time frame) and behavior changes (e.g., increase or decrease in

conversation duration and the dynamics – for example direction and steepness – of
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change) in the 7-item BPRS prediction time frame. To compute a feature for the

prediction time frame, we first compute the daily feature time series from the raw

sensing data. We then compute the 30-day features from the daily feature time series.

In what follows, we discuss the construction of the dataset in detail.

5.3.1 The 7-item Brief Psychiatric Rating Scale

The BPRS [151, 98, 69, 179, 118] survey is a 24-item rating scale that is is a validated

tool administered by clinicians to evaluate symptom severity in schizophrenia. The

reliability, validity, and sensitivity of the BPRS measurement has been widely exam-

ined [101]. BPRS is rated by a trained rater, usually a clinician. The rater scores

each BPRS item based on the patient’ responses to questions, observed behavior, and

speech.

Table 5.1 lists all the BPRS items [151]. Each item is rated from 1-7 (1 is given if

the symptom is not present to 7 extremely severe). The clinical team at our partner

hospital administers 7-item BPRS, which is a subset of the 24-item BPRS. Specif-

ically, the 7 items are grandiosity, suspiciousness, hallucinations, unusual thought

content, conceptual disorganisation, blunted affect, and mannerisms and posturing.

The clinical research team at Zucker Hillside Hospital chooses these 7 items as a

part of their clinical model because they represent the strongest predictors of dete-

rioration in symptoms. A 7-item BPRS total score is computed by summing up the

scores from the 7 items. The total score ranges from 7 to 49, where higher score

indicates deteriorating symptoms. The 7-item BPRS total score is the outcome of

our predictions.

As mentioned only 7 out of 24 items (marked in bold in Table 5.1) are evaluated
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Table 5.1: Brief Psychiatric Rating Scale Items

Somatic concern, anxiety, depression, suicidality, guilt, hostility
Elevated mood, grandiosity, suspiciousness, hallucinations, unusual thought content
Bizarre behavior, self-neglect, disorientation, conceptual disorganization
Blunted affect, emotional withdrawal, motor retardation, tension, uncooperativeness
Excitement, distractibility, motor hyperactivity, mannerisms and posturing

Note, only items in bold are evaluated during monthly clinic visits.

during clinic visits. The 7-item BPRS total score is the sum score of items in bold,

which ranges from 7 to 49. The CrossCheck study clinicians enter a score for each

of 7 term that best describes the patient’s condition at the time of the face to face

visit. In what follows we briefly explain each item. For more detail on the BRPS

form see [42] and the theory behind the BPRS see [101, 151]. The “grandiosity”

item assesses exaggerated self-opinion, arrogance, conviction of unusual power or

abilities. The “suspiciousness” item captures mistrust, belief others harbor malicious

or discriminatory intent. The “hallucinations” survey item, measures the patient’s

perceptions without normal external stimulus correspondence. The item that relates

to “unusual thought content” gauges unusual, odd, strange, bizarre thought content

that the patient has experienced or exhibits. “Conceptual disorganization” relates

to how patients’ thought processes might be confused, disconnected, disorganized,

disrupted. The item associated with “blunted affect” captures reduced emotional

tone, reduction in formal intensity of feelings, flatness the patient exhibits during

assessment. The final item, “mannerisms and posturing” rates any peculiar, bizarre,

unnatural motor behavior (not including tic) displayed by the patient.

Figure 5.3(a) shows the distribution of the 7-item BPRS total scores in the dataset.

The 7-item BPRS data is from 36 participants over a period of 2-12 month period.

There are a total of 116 administered BPRS reports. The BPRS scores range from 7
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to 21. The mean score is 10.0 and the standard deviation is 2.86. The score cutoff for

symptom deterioration is 12, which is determined by looking at the clinician rated

7-item BPRS scores closest in time to symptomatic relapse for participants who previ-

ously relapsed. Figure 5.3(b) shows the within-individual BPRS score variation. We

list participants according to their average BPRS scores. We give greater participant

IDs to participants rated with higher average BPRS scores. Some participants record

the same BPRS score (e.g., participant 1, 2, and 5) whereas other participants record

larger ranges of BPRS scores (e.g., participant 26).
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Figure 5.3: The distribution of 7-item BPRS total scores from 36 participants admin-
istered over a of 2-12 month period. In total 116 surveys were administered during
this period. The 7-item BPRS scores from the participants ranges from 7 to 21. The
mean BPRS score is 10.0, and the standard deviation is 2.86. (a) shows that partici-
pants are rated with low 7-item BPRS scores most of the time. However, some cases
show higher 7-item BPRS scores, meaning the participants experienced deteriorated
symptoms during the span of the study. (b) shows the the within-individual BPRS
score variation. Some participants record the same BPRS score (e.g., participant 1,
2, and 5) whereas other participants record larger range of the BPRS scores (e.g.,
participant 26). The order of participants in (b) is based on their average BPRS
score (i.e., participants with greater participant id are rated higher BPRS score on
average).

.
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5.3.2 Feature Set Constructions

The dataset has two sets of features: passive sensing features and self-report EMA

features, which are described in Chapter 4 in detail. In order to construct the feature

sets, we first compute the daily feature time series. For example, for a participant

evaluated on day d, we compute the daily sensing features and EMA features from

day d− 31 to day d− 1. Take conversation duration as an example, we compute the

total conversation durations over the 24-hour day and four 6-hour epochs everyday

from day d − 31 to day d − 1. The result is four conversation duration time series.

We then compute four features from each of the time series: a mean to capture the

level of behavior and three slopes to capture behavior changes.

Time series means. We compute the mean of the daily feature time series. The

mean describes the average behavior or self-reported symptoms during the 30-day

period. For example, the mean conversation duration over the 30-day period is the

average conversation duration the participant is around everyday.

Time series slopes. We compute the slopes of the daily feature time series to

describe how behavior or self-reported symptoms change overtime. We fit the feature

time series with a linear regression model and use the regression coefficient as the

slope. The slope describes the direction and the steepness of the change. For example,

a positive slope in conversation duration indicates the participant is around more and

more conversations, whereas a negative slope indicates the surrounding conversations

decrease over time. The absolute value of the slope shows how fast the conversation

duration changes. We compute three slopes for each time series: over the prediction

time frame (slope), over the first 15 days of the prediction time frame (slope 1), and

over the last 15 days of the prediction time frame (slope 2). In summary, we extract
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486 features from the passive sensing and EMA data. The passive sensing feature set

has 434 features and the EMA feature set has 52 features. We use the same feature

extraction method to compute features for weekly 7-item BPRS prediction.

5.3.3 Passive Sensing Inclusion Criteria

We define a “good day” as a day with more than 19 hours of the sensing data. In

order to avoid missing data skewing the time series features in the prediction time

frame, we need to control the data completeness in the 30-day time frame. We

include time frames with more than 20 good days of the sensing data. As a result,

we take a conservative approach to collection of data to increase the fidelity of the

data signal. In addition, we use 116 7-item BPRS records and corresponding features

from 36 participants for evaluating the 7-item BPRS prediction performance. For

the 36 participants included in the analysis, 17 participants are females and 19 are

males. 14 patients are African American, 1 Asian, 9 Caucasian, 3 Pacific Islander, 8

Multiracial, and 1 did not disclose. The average age of the 36 participants is 35 years.

8 participants reported they previously owned basic cell phones, 9 did not own any

type of cell phone, 19 previously owned a smartphone.

5.4 Prediction Model and Results

In this section, we present the CrossCheck 7-item BPRS prediction model and its

prediction performance. We compare the prediction accuracy between three different

feature setups: (i) using both the passive sensing feature set and the EMA feature set

to predict 7-item BPRS; (ii) using just the passive sensing feature set to predict 7-item
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BPRS; and (iii) using just the EMA feature set to predict 7-item BPRS. We report the

prediction accuracy obtained by two cross validation methods: leave-one-record-out

cross validation and leave-one-subject-out cross validation. We then discuss the most

significant features selected by the prediction models. We use regression analysis to

explore the linear relations between the selected features and the 7-item BPRS score.

Finally, we present an example of predicting a participant’s weekly 7-item BPRS

scores.

5.4.1 Predicting BPRS Scores

We use Gradient Boosted Regression Trees (GBRT) [84, 152] to predict the 7-item

BPRS scores. GBRT is an ensemble method that trains and combines several weak

regression trees to make accurate predictions. It builds base estimators (i.e., regression

trees) sequentially. Each estimator tries to reduce the bias of the previously combined

estimators. GBRT has many advantaged inherited from the tree based classification

and regression models: that is, it is less sensitive to outliers [108] and robust to

overfitting [77]. It computes feature importance measures, which can be used for

feature selection.

In order to understand the prediction accuracy of the three different feature se-

tups, we train three models with (i) using both the passive sensing features and the

EMA features; (ii) using just the passive sensing features; and (iii) using just the

EMA features. We evaluate the prediction accuracy with leave-one-record-out cross

validation and leave-one-subject-out cross validation. The leave-one-record-out cross

validation leaves one 7-item BPRS example out from the dataset as the testing ex-

ample and use the rest of the examples for training the model. The results from the
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leave-one-record-out cross validation show the prediction accuracy of predicting an

existing participant’s 7-item BPRS score. The participant’s previous clinician rated

7-item BPRS scores are available to the system to improve the prediction accuracy

by incorporating the data to the training examples. The leave-one-subject-out cross

validation trains the model with data from subjects other than the testing subject

and tests on the testing subject’s data. The results from the leave-one-subject-out

cross validation shows the prediction accuracy of predicting a new participant who

just joined the study when their clinician rated 7-item BPRS scores are not available

to the system.

Feature selection. Considering the high dimensionality of the feature space (i.e.,

486 features) and the relatively small number of training examples that exist (i.e., 116

BPRS surveys), we need to significantly reduce the feature space dimensionality so

that the prediction model can be properly trained. We select features based on GBRT

feature importance. GBRT computes feature importance by averaging the number

of times a particular feature is used for splitting a branch across the ensemble trees,

higher values are deemed as more important. The feature importance value ranges

from 0 to 1, where higher values indicate more important features. We train the GBRT

model on all the 7-item BPRS data. We select features with a feature importance

greater than the average importance value of all features. We repeat this process

until no more than 20 features are left. The heuristic 20 feature rule is based on

our experiments in which we find we get higher training error with a lower or higher

threshold. We repeat this process for the three feature set setups as discussed above:

that is, passive sensing and EMA, passive sensing only, and EMA only.

Prediction performance. We use mean absolute error (MAE), the Pearson’s
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r, and generalized estimating equations (GEE) [128, 46, 209, 68] to evaluate the

prediction performance. MAE describes the bias of the predictions. The Pearson

correlation treats the predicted BPRS scores as independent variables. The Pearson’s

r describes how well the predictions capture the outcome’s variance. GEE focuses on

estimating the average response over the population [128]. It is a more robust method

to evaluate correlations between repeated measures. The GEE coefficient shows the

direction of the correlation and the p-value indicates the statistical significance of the

coefficient.

Table 5.2: Prediction performance

passive sensing + EMA passive sensing EMA

leave-one-record-out
MAE 1.45 1.59 1.62
Pearson’s r 0.70* 0.63* 0.62*
GEE coeff 1.05* 1.11* 0.81*

leave-one-subject-out
MAE 1.70 1.80 1.90
Pearson’s r 0.61* 0.48* 0.50*
GEE coeff 0.99* 0.93* 0.81*

* p < 0.0001

Table 5.2 shows the mean absolute error, the Pearson’s r, and GEE coefficient for

all models predicting the BPRS score. The leave-one-record-out cross validation with

both passive sensing and EMA features achieves the best result with MAE = 1.45,

meaning we can predict the 7-item BPRS score with on average ±1.45 error (3.5%

of the scale). The predicted 7-item BPRS scores strongly correlate with the 7-item

BPRS ground truth (i.e., clinician scored BPRS surveys) with r = 0.70, p < 0.0001.

The result shows our existing system can accurately predict patients’ 7-item BPRS

scores. The result gives us confidence to track symptoms every week. The prediction

performance for leave-one-record-out cross validation using only passive sensing or

EMA features is MAE = 1.59, r = 0.63, p < 0.0001 (3.8% of the scale) and MAE =
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1.62, r = 0.62, p < 0.0001 (3.9% of the scale), respectively. The leave-one-subject-out

cross validation offers the best prediction performance using both passive sensing and

EMA features with MAE = 1.70 (4.0% of the scale). The predicted 7-item BPRS

scores strongly correlate with the 7-item BPRS ground truth with r = 0.61, p <

0.0001.

The prediction performance for leave-one-subject-out cross validation using only

passive sensing or EMA features is MAE = 1.80, r = 0.48, p < 0.0001 (4.3% of the

scale) and MAE = 1.90, r = 0.50, p < 0.0001 (4.5% of the scale), respectively. When

comparing using both passive sensing and EMA features, results in a 0.1 and 0.2

increase in absolute errors, respectively. Again, passive sensing features outperforms

EMA features in term of MAE. Figure 5.4 shows the cumulative distribution func-

tion (CDF) of the absolute error of the 7-item BPRS predictions in greater detail.

In both cross validations, we see combining the passive sensing and EMA features

performs better than just using passive sensing features, which in turn outperforms

EMA features.

Within-individual prediction errors. Figure 5.5 shows the average within-individual

prediction error of the six models with the different feature setups and cross-validation

methods. The order of the participants shown in the plots is determined by their av-

erage clinician rated BPRS scores. We observe that all six models archive lower

prediction errors for participants with lower clinician rated BPRS scores but higher

errors for participants with higher clinician rated BPRS scores. Judging from Fig-

ure 5.3(a) most of the clinician rated BPRS scores are between 7 and 12. Therefore,

the dataset is unbalanced and skews to lower BPRS scores (< 12). The GBRT

models are undertrained for higher BPRS scores (≥ 12). As a result, the models
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Figure 5.4: The cumulative distribution function (CDF) of the absolute errors for
leave-one-record-out cross validation and leave-one-subject-out cross validation. Us-
ing both passive sensing and EMA features results in the best prediction performance,
followed closely by passive sensing alone, whereas using only EMA features presents
the worst prediction performance.

underestimate high-BPRS-score participants’ scores (i.e., participants with average

BPRS ≥ 12). The prediction models need more high-BPRS-score participants’ data

to improve the prediction performance. The impact of prediction errors on clinical

practice is discussed in Section 5.4.3.

5.4.2 Interpreting Selected Features

We use bivariate regression analysis to understand the linear relationship between

the features selected by GBRT feature importance measures and the 7-item BPRS

scores. Considering the longitudinal nature of our dataset; that is, because data

from the same subject is likely correlated we apply generalized estimating equations

(GEE) [128, 46, 209, 68] to determine associations between each of the selected fea-

tures and the 7-item BPRS scores. In order to better understand the regression

results, we normalize each feature to zero mean and one standard deviation so that
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(a) passive sensing + EMA leave-one-record-
out.

-6

-4

-2

 0

 2

 4

 6

 0  3  6  9  12 15 18 21 24 27 30 33 36
 0

 3

 6

 9

 12
average BPRS < 12 ≥ 12

p
re

d
ic

ti
o

n
 e

rr
o

r

n
u

m
b

e
r 

o
f 

B
P

R
S

 r
e

c
o

rd
s

participants

BPRS number
prediction error

(b) passive sensing + EMA leave-one-
subject-out.
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(c) passive sensing leave-one-record-out.
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(d) passive sensing leave-one-subject-out.
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(e) EMA leave-one-record-out.
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(f) EMA leave-one-subject-out.

Figure 5.5: The average within-individual prediction error of the six models. The
patients are ordered by their average rated BPRS scores. The vertical dashed line
separate patients with average BPRS score ≤ 12 and patients with BPRS score > 12.
The horizontal lines labels the region with prediction error more than -2 and less than
2. Patients with higher rated BPRS scores get worse predictions. This is because the
dataset is skewed to patients with lower BPRS scores.

the coefficients are within a reasonable range. Table 5.3 shows the 13 selected fea-

tures from the model using both passive sensing and EMA features based on the
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feature selection criteria described in Section 5.4.1. Out of the 13 features, two are

self-reported EMA features associated with hearing voices and being social and 11

are passive sensing features. The passive sensing features cover a broad range of be-

haviors: unlocking phones, conservation, being stationary, visiting different locations,

and being in different ambient acoustic environments. Interesting enough, the model

selects the duration that a patient is stationary or in vehicle (we consider the patient

as stationary while in a vehicle) as a predictor rather than simply the duration of

being stationary. It indicates that the combination of the stationary label and the

in vehicle label gives a stronger 7-item BPRS predictor. GEE finds four significant

associations between the selected features and the 7-item BPRS scores. For example,

patients who report hearing voices, tend to use their phone more often during the

evening period, are typically around more voices (i.e., more audio frames are labeled

as human voice) in the morning, spend an increasing amount of time in more ac-

tive ambient sound environments (i.e., there is more variation in audio volume over

time) in the morning during the first 15 days of the 7-item BPRS prediction time

frame; these patients are more likely to have higher BPRS scores. The model selects

seven slope features and six mean features for prediction, which shows that behavior

changes are good 7-item BPRS predictors.

Table 5.4 shows the 18 features selected from the prediction model for passive

sensing features only. The features cover a wide range of behaviors. In comparison

with the features selected using a combined model for passive sensing and EMA, the

pure passive sensing model selects four additional features related to phone calls. GEE

finds six significant associations between the selected features and the 7-item BPRS

scores. Specifically, participants who decrease phone usage during the night, have
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Table 5.3: Selected features for the passive sensing and EMA model, features with
p < 0.05 are in bold.

feature GEE coefficient p value

unlock number slope 1 0.248 0.505
ambient sound volume afternoon slope 0.236 0.484
voices EMA 0.994 0.006
unlock duration evening 0.914 0.025
ambient sound volume evening slope 2 0.491 0.100
call out number evening 0.791 0.086
social EMA slope 2 1.308 0.173
ambient sound volume standard deviation morning slope 1 0.600 0.008
stationary and in vehicle duration night slope 0.346 0.272
conversation duration slope -0.015 0.975
ratio of voice frames morning 0.647 0.041
number of visited locations -0.196 0.556
ratio of voice frames 0.310 0.356

more phone usage during the afternoon, stay in louder acoustic environments with

more human voice, and show increasing visits to more places (i.e., locations) in the

morning during the second 15 days of the 7-item BPRS prediction time frame; these

patients are more likely to have higher 7-item BPRS scores. Out of the 18 features,

12 are associated with behavior changes. Again, we observe that behavior changes

are strongly predictive of 7-item BPRS scores. Specifically, conversation duration is

not selected as a predictor whereas the change in conversation duration is considered

a predictor of 7-item BPRS.

Table 5.5 shows the selected EMA features by the EMA model. GEE finds 4

significant associations between the selected features and the 7-item BPRS scores.

Specifically, patients who report decreasing sociability, feeling less calm, and increases

in hearing voices and the feeling of being harmed are more likely to have higher BPRS

scores.
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Table 5.4: Selected features for the passive sensing model, features with p < 0.05 are
in bold.

feature GEE coefficient p value

unlock number night slope -0.896 < 0.001
ratio of voice frames slope 2 0.422 0.114
stationary and in vehicle duration night slope 0.346 0.272
unlock duration afternoon 0.857 0.039
conversation duration afternoon slope -0.145 0.624
call out duration slope 0.112 0.597
ambient sound volume night 0.158 0.603
ambient sound volume morning 0.906 0.006
call in duration morning 0.083 0.714
call out number afternoon slope 0.179 0.643
ratio of voice frames morning 0.647 0.041
ambient sound volume 0.769 0.008
ambient sound volume evening slope 2 0.491 0.100
number of visited locations morning s2 0.485 0.022
call out duration slope 2 -0.266 0.164
number of visited locations slope 2 0.065 0.835
conversation duration morning slope -0.368 0.081
distance traveled evening slope 0.141 0.178

In summary, a wide range of behaviors captured by phones are predictors of the

7-item BPRS score. We find that changes in behavior are more predictive than the ab-

solute level of behaviors. The bivariate regression analysis, however, does not confirm

that every selected feature is linearly associated with the 7-item BPRS scores. This is

because the regression analysis finds only linear association whereas the GBRT model

is non-linear – capturing non-linear relations between features and outcomes. Further-

more, prior work [91] has found features with little power at predicting outcomes when

combined with other features can provide significant performance improvements.
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Table 5.5: Selected features for EMA model, features with p < 0.05 are in bold.

feature GEE coefficient p value

social -0.027 0.949
social slope 2 1.308 0.173
sum score -0.414 0.354
sleeping slope -0.211 0.360
calm slope -0.715 0.038
voices 0.994 0.006
harm 0.806 0.030
negative score 0.699 0.089
depressed 0.228 0.661
calm 0.013 0.976
think -0.116 0.796
stressed slope 0.217 0.440
sum score slope -0.340 0.266
stressed 0.222 0.616
social slope -0.369 0.264
negative score slope 0.239 0.499
think slope 0.101 0.829
positive score slope 2 -0.055 0.895
hopeful slope 0.242 0.152
voices slope 0.257 0.344

5.4.3 Application of Predicting Weekly 7-item BPRS Scores

We use our prediction model to predict the 7-item BPRS scores each week. The model

predicts weekly BPRS scores using both passive sensing and EMA features. The

model is updated weekly using any new BPRS evaluations from clinicians. Figure 5.6

shows an example of a patient’s predicted BPRS scores over a 10-week period. The

scores are computed weekly and reflected in weekly prediction reports automatically

sent out every Sunday evening to all researcher staff in the study. In this case,

a clinician evaluated the patient during week 4 and week 8 scoring a BRPS value

of 7 (i.e., no symptoms) for each clinic visit. Please note, the differences between
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clinician’s scores and the predicted scores may due to the different days the patient

was rated and the predictions were made. The predictions, however, show that the

participants’ BPRS scores are slightly higher before the first evaluation, between two

evaluations, and after the second evaluation. The result shows that the prediction

may capture nuanced changes in the patient’s state that could not be observed with

out the predictive reports and mobile sensing. This example highlights the strength

of our approach and vision. It may provide opportunities for clinicians and care givers

to reach out to outpatients.

Our research staff use the weekly 7-item BPRS predictions to determine if a patient

is at risk and requires reachout from the clinical team. A patient is at risk if the

predicted 7-item BPRS score is above 12 or experiences an increase of 10% or more

since their last predicted 7-item BPRS score. The prediction errors would affect how

research staff determine whether a patient is at risk. Suppose a patient’s true BPRS

score is 11, research staff would correctly identify this patient as not at risk if the

predicted score is below 12 (e.g., a negative error). However, if the predicted score is

more than 12 (i.e., a positive error greater than 1) the research staff would incorrectly

identify the patient as at risk (i.e., a false positive). Conversely, if a patient’s true

BPRS score is 15, which is above the cutoff, the research staff would correctly identify

that this patient is at risk if the prediction has a positive error. A negative error of

more than 3 (i.e., predicted BPRS score is less than 12) would make the research

staff incorrectly identify the patient as not at risk. Figure 5.5(a) shows that the

average absolute errors of the predictions are below 2 for participants whose average

BPRS scores are below 12, which indicates that they are not likely to be incorrectly

identified as at risk. For participants whose average BPRS scores are above 12, the
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predicted scores are likely to be lower than the true score. However, the errors are not

big enough to make the predicted scores below the cutoff. For example, participants

34,35’s lowest true BPRS scores are 15 whereas the errors are below -3 thus the

predicted scores are still above the cutoff 12.

In addition to the cutoff, the research staff use the changes in the predicted BPRS

scores to identify patients at risk. The predicted BPRS scores highly correlate with

clinician rated BPRS scores. Therefore, how the BPRS scores change over time is a

symptom deterioration indicator. We combine both the score cutoff and changes in

two consecutive scores as symptom deterioration indicators for reachout. In the next

section, we present a number of case studies that show that the predictive system

reflects what is going on in patients lives.

The study is ongoing and we are evolving the BPRS prediction based patient-at-

risk criteria described above to reduce false positives and false negatives.
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Figure 5.6: A participant’s predicted 7-item BPRS score over 10 weeks. The clinician
gave a score 7 twice for this participant in week 4 and week 8. The BPRS predictions,
however, shows the scores changes during the two evaluations.
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5.5 Patient Case Studies

The CrossCheck prediction model is re-trained each week if new clinician rated 7-

BPRS scores are available. Each week our research staff review the weekly prediction

scores of all patients in the smartphone arm of the randomized control trial to de-

termine if patients are at risk – based on the criteria discussed previously. Once we

identify that a patient might be at risk, our research staff outreach and contact the

participant and the clinical team at the hospital. A natural question when building

predictive infrastructure is how well the system predicts time varying symptoms of

patients, and how well the system reflects the current symptoms and risk experienced

by outpatients living out in the community. In what follows, we provide insights into

the lives of three patients at the time our system indicates increasing symptoms. We

show through anecdotal information from research staff and the clinical team when

reaching out to patients when the prediction system indicates rising risk.

The first patient is a 55 year-old African American male diagnosed with schizophre-

nia, paranoid type. He was clinically flagged on August 22, 2016 based on an elevated

predicted 7-item BPRS score of 12.86. When our research staff at the hospital con-

tacted the patient on August 24, 2016, he endorsed symptom increases over the past

three months with increasing intensity over the past three weeks. He discussed neg-

ative thoughts he’d had about his deceased mother who had passed away five years

earlier. He said that he sees images of his mother in his mind when she was in her

30s. However, she was in her 70s when she passed away. The patient also said he

believed these thoughts were present to make him feel “emotionally sick.” The on-site

researcher (who is located at the hospital) and patient discussed coping mechanisms,

such as, relating these thoughts in therapy to support persons, positive self-talk, and
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writing his thoughts down on chapter as a reality check. Once the researcher deter-

mined that the patient was not in any imminent danger, the researcher encouraged

him to share all these symptoms with his treatment team and then brought the call

to an end.

As the study protocol dictates, once a researcher reaches out to a patient, the

researcher then contacts the clinical team to inform them of the CrossCheck prediction

assessment and the symptoms reported by the patient. In this case, the patient’s

psychiatrist reviewed the new information and told the researcher that the patient had

been experiencing difficulty scheduling his next outpatient medication management

appointment. Because of this new information provided by the CrossCheck team the

psychiatrist immediately reached out to the patient’s case manager to coordinate an

in-person visit, which occurred less than a week after the initial research outreach.

The psychiatrist determined during the clinical visit that the patient was below his

baseline level of functioning and adjusted his medication accordingly. This case shows

the predictive system, outreach and clinical assessment all concur strongly.

The next patient is a 63 year-old caucasian male diagnosed with schizophrenia.

He was clinically flagged on October, 17 2016 based on an increase in predicted BPRS

score. Although the predicted 7-item BPRS score was 10.63, which fell short of the

12 point cut-off marker, the BPRS score represented an increased of 16% over the

previous week. In addition, self-reported EMAs indicated deteriorating symptoms

and the passive sensing data signaled limited sleep. On October 18, 2016 the patient

was contacted by phone by a member of the research staff. During the conversation,

the patient reported he’d told his therapist the day before, October, 17 2016 that he

planned to kill himself on December 1, 2016. He endorsed thoughts of killing himself
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several times a day, but he was able to hold off on these thoughts. He said he felt hope-

less and negative about the future. In addition, he said he had disturbed sleep due

to bad dreams and flashbacks, which he experienced several times during the night,

most nights. The researcher and patient discussed ways to manage his thoughts,

including mindfulness, therapy, and attending his day program. He endorsed med-

ication adherence with no disturbances in appetite. The patient’s treatment team,

consisting of his psychiatrist and therapist, were notified immediately after the call

of the patient’s mental status and symptom exacerbation. The patient informed his

therapist the day prior to his plan to commit suicide on a specified date, and together

they were able to complete a safety assessment, which included working on coping

skills in treatment. Through the care coordination efforts by the research team and

clinical team, the patient was placed on a high-risk list and monitored more closely

by his treatment providers.

The researcher assessed the patient for safety and determined he was not in immi-

nent danger to self or others. The researcher and patient discussed ways to manage

his thoughts, including mindfulness, therapy, and attending his day program. He en-

dorsed medication compliance with no disturbances in appetite. The patient’s treat-

ment team, consisting of his psychiatrist and therapist, were notified immediately

after the call of the patient’s mental status and symptom exacerbation. The patient

informed his therapist the day prior to his plan to commit suicide on a specified date,

and together they were able to complete a safety assessment, which included working

on coping skills in treatment. Through the care coordination efforts by the research

team and clinical team, the patient was placed on a high risk list and monitored

more closely by his treatment providers. This case represents an example where the
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predicted score was just below the risk threshold but the weekly percentage change

was significant to flag the patient as potentially at risk.

The final patient is a 19 year-old Asian male diagnosed with psychosis not other-

wise specified. On November 1, 2016, our research staff noticed his predicted BPRS

score was 16.71, which was a 12.7% increase from the last predicted score. The

researcher was able to reach the participant for a verbal check-in on November 2,

2016. During the call, the patient denied all symptoms to the researcher, including

any sleep disturbances, changes in eating behaviors, or auditory/visual hallucina-

tions. He said that he was socializing well with his friends and family and endorsed

medication adherence, denying any thoughts of self-harm or harm to others. The

patient reported that he felt tired that morning and was unable to attend school

that day. The researcher thanked the patient for his time and encouraged him to

share any symptoms with his treatment provider. After several weeks of this pa-

tient rescheduling his weekly session with his therapist, on November 29, 2016, the

therapist confirmed symptom increases. The therapist told the researcher, that the

patient was symptomatic, experiencing psychosis in the form of auditory hallucina-

tions, poor concentration, and distractibility. This case shows our system predicting

increased symptoms, the patient not concurring with this assessment, but clinical

experts confirming the prediction.

5.6 Conclusion

The CrossCheck system discussed in this chapter shows promise in using mobile

phones and passive sensing to predict symptoms of schizophrenia for people living

out in the community. The system and models show good performance using passive
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sensing and self-reports as well as just using passive sensing. A system based purely

on passive sensing opens the way for continuous assessment of symptoms and risk as

people go about their everyday lives.

We also recognize limitations of our work. We only had 116 BPRS clinician scored

surveys to train our model. Typically, in the lifetime of the study clinicians administer

BRPS once per month on average for each patient – 12 per year for each patient. In our

on-going study, outpatients do not experience severe symptoms often and thus mostly

report lower 7-item BPRS scores. Therefore, the current dataset is unbalanced and

skews toward lower BPRS scores, as discussed earlier in the chapter. The unbalanced

dataset causes our prediction models to underestimate the BPRS scores of patients

with higher clinician rated BPRS scores. However, we show that clinicians can adjust

the score cutoff for symptom deterioration and leverage the changes in predicted

BPRS scores to reduce the false negatives. To further improve BPRS prediction, we

need to collect more data, especially from patients with more severe symptoms. We

would also need to apply re-sampling techniques, such as SMOTE [52], to balance the

dataset. While our initial results are promising we plan to address these limitations

at the end of the CrossCheck randomized controlled trial.

Another possible limitation is that all patients live in a large dense city and the

models may not generalize to other locations, such as, patients living in rural com-

munities. Study adherence is also an issue. Patients break, loose, lend, and neglect

to use or charge their phones. In some cases they experience persistent cellular or

WiFi coverage issues for our system to successfully upload their data in a timely

manner (i.e., once per day when they are charging their phones and under cellular

or WiFi). We continually try to think of innovative ideas to deal with these issues
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and currently rely on technical outreach (as distinct from outreaches associated with

increased symptoms) and removing incomplete data if we do not have sufficient per

day (i.e., at least 19 hours per day as discussed in Section 5.3 for reasons of model

performance. Finally, we discussed three case studies that showed the predicted sys-

tem correctly reflected increasing risk; that is, the CrossCheck symptom prediction

system accurately captured the changing conditions of these patients as reported by

the research and clinical teams that reached out to them or interacted with them

during subsequent clinical visits, respectively. These results look very promising.

Ultimately, we aim to develop a system capable of not just indicating rising risk,

but rather, to develop a model and associated systems to accurately predict relapse

and through intervention and treatment adjustment keep patients healthy and out

of hospital. In the next Chapter, we evaluate different methods and design consid-

erations to use the smartphone data to predict whether or not a patient is going to

relapse.
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Chapter 6

Predicting Relapses in

Schizophrenia using Mobile

Sensing

6.1 Introduction

In Chapter 4 and Chapter 5, we discussed using passive sensing data from smart-

phones to assess schizophrenia patients’ symptom. In this chapter, we take one step

forward predicting whether or not a patient is going to relapse using smartphone data

from the CrossCheck study. A participant relapses if one of the following 7 events

happens [63]: 1) psychiatric hospitalization, 2) increased frequency or intensity of

services, 3) increased dosage / additional medication and 25% increase in BPRS (the

brief psychiatric rating scale) [151] from baseline/last assessment, 4) suicidal ideation,

5) homicidal ideation, 6) self-injury, and 7) violent behavior resulting in damage to

property or person. Relapses are determined by trained clinical assessors using partic-
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ipants’ clinical records. A relapse date and reason for relapse are recorded by trained

clinical assessors. In this chapter, we focus on the relapse date and predict whether

or not a participant is going to relapse the next day.

There are two main challenges of predicting schizophrenia relapses in the Cross-

Check study participants: 1) the relapse cases are rare: out of 61 participants over

a year, we identify 27 relapses from 20 participants; and 2) the CrossCheck relapse

dataset is imbalanced. Considering predicting whether or not a patient is going to

relapse every 30 days with our dataset, there are in total 430 predictions (i.e., predic-

tion windows) to be made in our dataset. Only 19 of the predictions (i.e., 4.42% of all

predictions) are labeled by clinical assessors as relapse. The definition of prediction

windows is defined in Section 6.2.3. Most standard classification algorithms assume a

relatively balanced class distribution and equal misclassification costs. An imbalanced

dataset violates such an assumption, which leads to poor classification performance.

We apply various techniques to address the challenges. First, we applying resampling

methods combining oversampling relapse examples and undersample non-relapse ex-

amples to the training dataset such that the number of relapse and non-relapse ex-

amples are the same. Second, we impute missing sensing data to make sure we have

enough data to train the classifiers. Third, to avoid over-fitting, we apply feature

selection (e.g., L1 regularization) and feature transformation (i.e., PCA) to reduce

the feature dimensionality. Finally, we present a new 2-level 3-fold stratified cross

validation to incorporate training data resampling in relapse prediction evaluation.

In this chapter, we investigate the efficacy of using passive sensing data and/or

self-report EMAs to predict relapses. We present classification performance from us-

ing only EMA or sensing data, and a combination of EMA and sensing data. We
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investigate what would be the best time window to predict relapse. A relapse pre-

diction time window is the number of days’ data we use to predict relapse. We

explore using PCA to transform the feature space and reduce the dimensionality for

classification. Reducing the dimensionality helps training the prediction model more

efficiently and removes multicollinearity (i.e., predictors are correlated). We present

features that are the most predictive of impending relapse.

We find the best relapse prediction result (i.e., the highest F1 score) using the

first 100 principle components (PCs) from both passive sensing and EMA with 30-

day prediction windows (precision=26.8%, recall=28.4%). If we demand the recall to

be greater than 50%, we find the best result using 25 PCs from both passive sensing

and EMA with 30-day prediction windows (precision=15.4%, recall=51.6%). In what

follows, we discuss our results in detail.

The study has been approved by the Committees for the Protection of Human

Subjects at Dartmouth College and Human Services and the Institutional Review

Board at Zucker Hillside Hospital. Participant recruitment and the consent procedure

are described in Section 4.3.

6.2 Method

We aim to predict whether or not a CrossCheck participant relapses during the span

of the study using the smartphone passive sensing data and self-report EMAs. In

what follows, we discuss the relapse dataset, data preprocessing, behavioral features

computed from the passive sensing data, and prediction models in detail.

167



6.2 Method

6.2.1 Dataset

By the end of the CrossCheck study, we recruited 61 participants in the smartphone

arm. 26 of the 61 participants are female and 35 male. There are 24 African American,

5 Asian, 2 Multiracial, 29 Caucasian and 1 Unknown. The average number of days a

participant is in the study is 322 days (SD = 93, min=22, median=361, max=522).

We identify 27 relapses from 20 participants, in which 16 participant relapse once, 1

participant relapse twice, and 3 participants relapse three times each. We collect a

wide range of passive sensing data from smartphones and self-report EMAs, which

are discussed in detail in Chapter 4 and 5.

Specifically, we collect physical activities, locations, ambient sound levels, voice/noise

labels, number of calls and text messages, application usage, screen lock/unlock, and

ambient light intensity. We compute features from the passive sensing data on a

daily basis, which describe participant’s behaviors (e.g., duration of different physi-

cal activities in a day, conversation duration and frequency, different types of places

visited, app usage). We do not collect the content of any phone calls, text messages

or applications, and we do not record any raw audio data.

We administer a 10-item EMA every Monday, Wednesday, and Friday. The EMA

asks participants to score themselves on been feeling calm, social, bothered by voices,

seeing things other people can’t see, feeling stressed, worried about people trying to

harm them, sleeping well, able to think clearly, depressed, and hopeful about the

future. The detailed questions are list in Table 4.1.
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6.2.2 Behavioral Features

We incorporate passive sensing features proposed in previous work [195, 199] in

which the features are predictive of self-reported and clinician-administered symp-

toms among schizophrenia patients. The features are computed on a daily basis

and also broken down into four epochs of the day: morning (6am-12pm), afternoon

(12pm-6pm), evening (6pm-12am) and night (12am-6am). These epoch features al-

low us to model people’s behaviors during different parts of the day (e.g., walking in

the morning, sleeping in the afternoon, not socially engaged in the evening, using the

phone a lot during the night period).

Specifically, we compute the following features. To measure physical activities, we

compute duration for different activities (e.g., on foot, still, in vehicle, and on bicycle),

and in order to measure mobility, we compute the number of locations visited and

distance traveled. To measure sleep patterns, we infer sleep duration, sleep start,

and end time from sensing data, and to measure ambient environmental context, we

compute the amplitude of ambient sound and ambient light. We also compute face-to-

face conversations features which consist of conversation frequency and duration, and

smartphone-usage features including the number of phone calls, SMS, and lock/unlock

frequency and duration.

Semantic location. We aim to assign semantics to places where participants visit.

Specifically, we consider the following places: home, food, travel, art&entertainment,

nightlife, education, parks&outdoors, library, shop, gym, medical and residence. We

compute the time spent at these places every day.

We first identify significant locations where a participant dwells for a significant

amount of time of the day. We find significant locations by clustering the GPS coor-
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dinates collected in a day using density-based spatial clustering of applications with

noise (DBSCAN) [136]. The centroid of each cluster is considered a significant loca-

tion. We assume participants are usually at their homes sleeping between 2am to 6am.

Therefore, we label a significant location as home where a participant spends most

of the time between this period of the night. We then use the Foursquare API [80]

to label the other significant locations. The Foursquare API takes a GPS coordinate

and a radius as input and returns a list of location entities. Each location entity is as-

sociated with name, coordinates, and categories (e.g., food, art&entertainment). We

heuristically set the radius to 50 meters. A location may be associated with multiple

different categories. We compute the dwell duration at a location for all associated

location categories. For instance, if the API returns “food” and “art&entertainment”

categories for a given significant location. We include the dwell duration at this

significant location to both “food” and “art&entertainment” places. This is an ap-

proximation given that there is error in location coordinates. We do not simply select

a single returned location entity closest to the significant location coordinate because

as mentioned GPS data is noisy [74] and different types of location may reside in the

same building (e.g., food, office).

6.2.3 Data preprocessing

In what follows, we describe our data preprocessing procedure, which include ag-

gregating daily features in different relapse prediction time windows, data cleaning,

missing data imputation, and feature space transformation and dimensionality reduc-

tion.
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Relapse prediction time window. We define the relapse prediction window as

the number of days before the day identified as the start of a relapse. Studies find

that most patients with schizophrenia experience symptoms 30 days before relapse

[40, 103, 102, 181]. Therefore, we evaluate relapse prediction using four different time

windows: 7 days, 14 days, 21 days, and 30 days. We summarize the daily features

within the prediction window as the average value of each of the features. The

prediction time window construction is illustrated in Fig. 6.1. Specifically, suppose

the prediction window size is 7 days, we first identify the date of the first relapse, then

we group the 7 days before the relapse day into a 7-day block and label the block as

1 (relapse). We compute the average value of every feature within the 7-day block.

Then we groups 7 days before the first day of the relapse block into a 7-day block

and label the block as 0 (non-relapse). We repeat until reaches the beginning of the

study. If the last block is shorter than 7 days, we discard the block. We discard 30

days of data after each relapse because the participants may be hospitalized and do

not have phones with them while in hospital. We repeat the above steps to group

and label prediction windows for the rest of the data.

0 0 1 0 1

day of the first relapse day of the second relapse

shorter than the window, discard. shorter than the window, discard.30 day cooldown period.

Figure 6.1: Prediction window construction. Each window is labeled as 0 (non-
relapse) or 1 (relapse in the following day). We introduce a 30 day cooldown period
after a relapse (shaded area), which we exclude from the prediction. The cooldown
period is when a patient experiencing relapse (e.g., hospitalized), which should not be
used to predict future relapses. We exclude window with fewer days than the target
window length (shaded area).
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Data cleaning and imputation. We compute behavioral features on a daily

basis. Poor daily data quality may skew the behavioral features, therefore, we exclude

poor quality data from our analysis. We define poor quality daily data as days in

which more than 5 hours of data are missing. We use this threshold across this

thesis because we find lowering the threshold (e.g., missing 10 hours of data) does

not include significantly more data whereas the data quality is poorer. Specifically,

we compute the number of hours of data we have received for each passive sensing

data. We label the sensing data as missing if less than 19 hours of data are collected

in that day. We also control the data quality for aggregated time window features.

We label the average feature values as missing if the feature misses over 70% of the

days in the time window. We exclude time windows with more than 70% of feature

values that are missing from our analysis. We heuristically pick the threshold to

balance the data quality and make sure we have enough data for our analysis. The

number of non-relapse and relapse cases are presented in Table 6.1. To handle missing

values, we use a Singular Value Decomposition (SVD) based method SVDimpute[186]

to impute missing values. SVDimpute is a robust and sensitive method for missing

value estimation surpassing the commonly used row average method [186].

Per-participant standardization. We use per-participant standardization to

remove between-individual differences from the behavioral features. We hypothe-

size that different people may have different behavioral baselines. For example, a

construction worker might be more physically active than an office worker whereas

they have the same mental health outcomes (e.g., relapse). However, the within-

individual differences in behaviors might be more inductive of changes in mental

health. Per-participant standardization removes the between-individual behavioral
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differences and keeps only within-individual behavioral differences. We test our hy-

pothesis in Chapter 6.3.

Per-participant standardization transforms a participant’s passive sensing features

and EMA responses according to their first 30 days’ data. Specifically, we first com-

pute the mean µ30 and standard deviation σ30 for each of the features in the first 30

days, then we transform the feature as follows: vt = (v−µ30)/σ30, where v is the orig-

inal feature vector and vt is the transformed feature vector. We apply per-participant

standardization before aggregating features into prediction windows. We evaluate

relapse prediction performance with or without per-participant standardization.

Feature space transformation and dimensionality reduction. We use princi-

ple components analysis (PCA) [168] to transform the feature space and reduce the

feature dimensionality. PCA transforms a set of observations of possibly correlated

variables (i.e., features) into a set of values of linearly uncorrelated variables called

principal components. The principle components are defined in a way that the first

principal component accounts for as much of the variability in the data as possible,

and each succeeding component in turn account for as much of the rest of the variabil-

ity in the data as possible. The resulting principle components are an uncorrelated

orthogonal basis set. The original observation (i.e., the feature values in a prediction

window) can be reconstructed by a linear combination of the principle components.

We use the weights of each PC as transformed features. We can use a smaller number

of PCs to reconstruct the original observation, which leads to a smaller number of

features (i.e., reduce the feature space dimensionality). Each PC can be interpreted

as a behavioral pattern. For example, if a PC has large positive weight in the compo-

nent for phone unlock duration and phone call duration features, and large negative
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weight for still duration, we would interpret this PC represents a high phone usage

and high sedentary behavioral pattern.

We evaluate relapse prediction for different PCA setups. We first use the raw

feature values to predict relapses. Then, we experiment with using different number

of PCs to predict relapse. Specifically, we test using the first 1, 2, 5, 10, 25, 50, and

100 PCs, which explain 28.9%, 45.1%, 69.5%, 80.1%, 90.2%, 96.9%, and 99.9% of the

variance in sensing and EMA data combined, to predict relapses.

6.2.4 Relapse Prediction as Binary Classification

Relapse prediction is a binary classification problem, i.e., we classify a n-day time

window as non-relapse or relapse. We evaluate four popular classifiers: logistic re-

gression, SVM with linear kernel [61], SVM with radial basis function kernel (RBF

kernel) [51], and random forest [44, 104]. The classifiers include linear classifiers (i.e.,

logistic regression, linear SVM), non-linear classifiers (i.e., RBF SVM, random forest),

and non-parametric classifier (i.e., random forest). We apply elastic net regulariza-

tion [210] on logistic regression and linear SVM to avoid over-fitting. The elastic net

linearly combines the L1 and L2 penalties of the lasso and ridge methods. We use

grid search to find the best model hyper-parameters. We aim to find how different

types of classifier perform in predicting relapses.

There are two major challenges in predicting relapses. First, we do not have a

large amount of data to train a classification model. We have the most examples

with 7-day prediction window, in which 1641 windows are non-relapses and 16 are

relapses. Second and more importantly, our participants do not relapse frequently,

therefore, our dataset is imbalanced. For example, only 0.97% of the 7-day predic-
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tion windows are labeled as relapse. Training the classifiers without augmenting the

dataset results in 0% of recall. Prediction in an imbalanced dataset require a large

dataset. For example, credit card fraud detection is a similar prediction problem:

fraud transactions are only a tiny part of all transactions. A real-world credit card

transaction dataset [64] contains a subset of online transactions that occurred in two

days, where 492 out of the 284,807 transactions are fraud. Although the dataset is

extremely imbalanced, we can still achieve good prediction performance without any

data preprocessing. A future work could collect a much larger dataset over many

years to help building a reliable relapse predictor. In what follows, we discuss our

method to address the challenges in detail.

Resample the training data. To reduce the data bias in the dataset (i.e., more non-

relapses than relapses), we apply data resampling techniques to balance the dataset.

Resampling techniques are widely used to address the bias in an imbalanced datasets

(i.e., majority cases have higher weight than minority cases). We use Synthetic Mi-

nority Over-sampling Technique (SMOTE) [52] to balance the training set by over-

sampling the minority class (i.e., relapse) and under-sampling the majority class (i.e.,

non-relapse). Instead of over-sample the minority classes by replication, SMOTE cre-

ates “synthetic” minority examples. The synthetic minority examples are generated

from k-nearest neighbors of the existing minority examples [52]. We use 5-nearest

neighbors to generate synthetic minority examples. SMOTE has shown to be more

effective than simple under-sampling and over-sampling methods.

2-level 3-fold stratified cross validation and model selection. We design a

new 2-level 3-fold stratified cross validation (CV) to evaluate the relapse prediction

performance. The top level CV evaluates the prediction performance and the second
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level CV selects model hyper-parameters.

In the top level CV, we first randomly partition the dataset into three folds, each

fold has the same non-relapse to relapse ratio. We iteratively select one fold for

testing and the other two folds for training the model. We use the second level CV on

the training data to identify the optimal set of hyper-parameters that maximize the

prediction performance metric - Precision Recall area under curve (PR AUC) [135].

PR AUC is a more informative metric than the ROC AUC when evaluating binary

classifiers on imbalanced datasets [165].

In the second level CV, we use another 3-fold stratified cross validation on the

training data from the top level CV to grid search the model hyper-parameter space.

We resample the training data from the second level CV before training the model.

We evaluate the trained model on the test data from the second level CV that have not

been resampled and compute the PR AUC. Once a set of optimal hyper-parameters is

identified, we apply the optimal hyper-parameters to train the classifier using the re-

sampled training data from the top level CV and evaluate the prediction performance

using the test data from the top level CV.

The 2-level 3-fold stratified cross validation has the following advantages. First,

each fold in the cross validation has the same relapse to non-relapse ratios. Second,

it separates test data from the model training and selection process. The prediction

performance metrics are obtained in the top level CV with the original test data

(i.e., not been resampled), whereas the model is trained with the resampled training

data. Finally, the proposed cross validation method incorporated hyperparameter

grid search in the model selection process.

We report the average precision, recall, F1 score, and PR AUC from each fold.
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In order to avoid selecting a random seed that lead to impractically high or low

prediction performance, we repeat the 2-level 3-fold stratified cross validation 5 times

and report the average prediction performance metrics.

6.3 Results

In what follows, we discuss our relapse prediction results in detail. We first define our

relapse prediction baseline, followed by the best results from each of the four classifiers

(i.e., logistic regression, SVM with linear kernel, SVM with RBF kernel, and random

forest). We then discuss how different classifier design considerations (i.e., using raw

feature or standardized features, different data types, prediction window length, and

PCA) affect prediction performance. Finally, we present features that are important

to predict relapses.

6.3.1 Relapse prediction baseline

Because there is no prior work on using passive sensing to predict relapses in schizophre-

nia patients, we use random guessing as our prediction baseline. Specifically, we ran-

domly label a case with either relapse or non-relapse with the same probability. Other

simple prediction baselines (e.g., assign the same label to all examples) produce either

100% or 0% in recall, which is not informative than random guessing in this case be-

cause precision and recall are both important metrics in predicting relapses. We then

compute precision (i.e., tp/(tp + fp), where tp is the number of true positives and fp

is the number of false positives), recall (i.e., tp/(tp + fn), where fn is the number of

false negatives), and F1 score (i.e., 2 · (precision · recall)/(precision + recall)) for the
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random labeled cases. The baseline performance is presented in Table 6.1.

Table 6.1: Relapse prediction baseline according to random guessing for a classifica-
tion.

window length number of non-relapse number of relapse precision recall F1

7 1641 16 0.010 0.500 0.019
15 861 18 0.020 0.500 0.039
21 578 20 0.033 0.500 0.063
30 411 19 0.044 0.500 0.081

6.3.2 Results overview

In what follows, we present the best prediction results (i.e., highest F1 score) from

the four classifiers obtained using grid search. Table 6.2 shows corresponding the

prediction windows length, the number of principle components, precision, recall,

F1 score, and PR AUC that are associated with best prediction performance from

each of the classifiers. Interestingly enough, all classifier achieve best F1 score using

non-standardized data with 30-day prediction time window. We suspect behavioral

patterns over a longer period (e.g., 30 days) are more indicative of future relapses.

SVM with RBF kernel achieves the best F1 score amongst the four classifier using

the first 100 principle components obtained from both sensing and EMA data. The

precision is 26.8% and the recall is 27.4%. To put these numbers into perspective,

there are 411 cases in the 30-day dataset, 19 of which are relapses. The classifier

predicts 19 cases that are relapses, 5 of which are correct and 14 are incorrectly

identified as relapse. 14 relapses are misclassified as non-relapse. Logistic regression

and SVM with linear kernel achieve slightly worse F1 scores but higher recall. The

logistic regression model achieves 35.8% of recall and 21.4% of precision. The SVM
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with linear kernel achieves 32.6% of recall and 23.3% of precision. The random forest

model achieves the worst F1 score, with 18.9% of recall and 28.1% of precision. All

the four classifiers beat the baseline in term of the F1 score and precision. However,

the recall is worse than the baseline.

Table 6.2: Best prediction results according to the F1 score

data type classifier
window
length

number
of PCs

precision recall F1
PR
AUC

sensing+ema svm rbf 30 100 0.268 0.284 0.274 0.192

sensing+ema
logistic
regression

30 50 0.214 0.358 0.265 0.224

sensing+ema
svm
linear

30 50 0.233 0.326 0.262 0.225

sensing
random
forest

30 25 0.281 0.189 0.223 0.178

In summary, SVM with RBF kernel, SVM with linear kernel, and logistic regres-

sion achieves similar relapse prediction performance whereas random forest achieves

the worst performance. 30 days is the best time window to predict relapse. Com-

bining passive sensing data from smartphones and self-report EMA responses helps

predicting relapses. Standardizing every participant’s data does not help improving

the prediction performance. On the contrary, we get worse performance with stan-

dardized data. Using PCA to combine features and reduce the feature dimensionality

helps improving the performance. We will discuss how using different data as pre-

dictors, prediction window, and PCA affects prediction performance in the following

sections.
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6.3.3 Prioritizing the recall

In the previous section, we present the best prediction results in term of the F1

score. The F1 score is the harmonic average of the precision and recall, which gives

the same weight to precision and recall. However, misclassifying relapse as non-

relapse may have severe consequences compared with misclassifying non-relapse as

relapse. Misclassifying a relapse as non-relapse may lead to non-action (e.g., fail

to deliver intervention) and miss the best opportunity to treat the patient, whereas

misclassifying a non-relapse as relapse may lead to unnecessary clinical visits thus

increased cost. In what follows, we present prediction results with the constraint that

recall ≥ 50%. The results are presents in Table 6.3.

Table 6.3: Best prediction results according to the F1 score with recall ≥ 50%

data type classifier
window
length

number
of PCs

precision recall F1
PR
AUC

sensing+ema
svm
linear

30 25 0.154 0.516 0.236 0.194

sensing+ema svm rbf 30 50 0.140 0.537 0.208 0.184

sensing+ema
logistic
regression

30 2 0.068 0.505 0.118 0.093

ema
random
forest

21 1 0.055 0.562 0.100 0.059

SVM with linear and RBF kernels, and logistic regression achieve best F1 scores

when recall ≥ 50% using both sensing and EMA data with 30-day time window

whereas random forest achieves best result with 21-day window EMA data. All

models beat the baseline in term of precision, recall, and F1 score. The random

forest model achieves best F1 score using only EMA data as predictors with 21-day

prediction window. However, the performance is only slightly better than the 21-day
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window baseline.

We discuss the result from SVM with linear kernel in detail. The precision of

the model is 15.4% and the recall is 51.6%. The classifier predicts 64 cases that are

relapses, 10 of which are correct and 54 are incorrectly identified as relapse. 9 relapses

are misclassified as non-relapse. Compared with the result with the best F1 score,

the model correctly identifies more relapses with the cost of more false positives.

The result shows that in practice, we can bias our models to be more sensitive to

relapses with the cost of more false positives. To do so, we could tweak our models by

assigning different weights to precision and recall thus obtain a more desirable relapse

prediction model.

6.3.4 Prediction performance analysis.

In what follows, we discuss how different model decisions affect the relapse prediction

performance. Specifically, we focus on whether or not we standardize each partici-

pant’s features, what types of data are included in the prediction model (i.e., EMA,

sensing, and both EMA and sensing), what prediction window we use (i.e., 7-day,

14-day, 21-day, or 30-day), and whether or not we apply PCA to transform the data

and how many PCs we should use if PCA is applied.

Per-participant standardization transforms a participant’s passive sensing fea-

tures and EMA responses according to their first 30 days’ data. Specifically, we first

compute the mean µ30 and standard deviation σ30 for each of the features in the

first 30 days, then we transform the feature as follows: vt = (v − µ30)/σ30, where v

is the original feature vector and vt is the transformed feature vector. Figure 6.2(a)

shows the best F1 scores obtained from four classifiers with or without per-participant

181



6.3 Results

raw standardized
0.00

0.05

0.10

0.15

0.20

0.25

0.30
f1

 sc
or

e
lr svm linear svm rbf rf

(a) standardization.

ema sensing sensing+ema
0.00

0.05

0.10

0.15

0.20

0.25

0.30

f1
 sc

or
e

lr svm linear svm rbf rf

(b) data types.

7 14 21 30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

f1
 sc

or
e

lr svm linear svm rbf rf

(c) prediction window length.

1.0 2.0 5.0 10.0 25.0 50.0 100.0 inf
0.00

0.05

0.10

0.15

0.20

0.25

0.30

f1
 sc

or
e

lr svm linear svm rbf rf

(d) number of PCs. inf: no PCA applied.

Figure 6.2: Predictin F1 score from different models.

standardization. Applying per-participant standardization leads to worse F1 scores.

Logistic regression and SVM models show overall similar F1 scores, where the F1

scores decrease from about 0.256 to 0.169 after applying per-participant standard-

ization. The results show that per-participant standardization does not improve the

prediction performance. We suspect the absolute behavioral levels (e.g., sleep dura-

tion), which are eliminated by standardization, are helpful in predicting relapse.

Data types. We inspect how EMA responses and passive sensing data help predict-

ing relapses. Figure 6.2(b) shows the best F1 scores obtained from four classifiers

with three settings: predict using only EMA responses, predict using only passive
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sensing data, and predict using both EMA responses. All classifiers perform poorly

using only EMA responses, where the F1 scores are around 0.1. However, the F1

scores significantly improve when we use passive sensing data for prediction, where

SVM with RBF kernel achieves the best performance with F1 = 0.222, precision =

22.2%, recall = 23.2%. Random forest achieves similar prediction performance. Logis-

tic regression and SVM with linear kernel, however, perform worse than RBF SVM

and random forest. We suspect the non-linearity of the RBF kernel and random

forest helps reducing under-fitting. We achieve the best prediction performance by

combining both EMA and passive sensing. SVM with RBF kernel achieves the best

performance with F1 = 0.274, precision = 26.8%, recall = 28.4%. Logistic regression

and linear SVM achieve slightly worse performance whereas random forest achieve a

worse F1 score compared with using only sensing data. In summary, we can predict

relapses more accurately using passive sensing data compared with only using self-

report EMA. Combining passive sensing data and EMA self-reports further improves

the prediction performance.

Prediction window length. Figure 6.2(c) shows the best F1 scores obtained from

four classifiers with four different prediction window settings: 7-day, 14-day, 21-day,

and 30-day. The F1 scores increase for all classifiers as we increase the window length

from 7 days to 30 days. We suspect behavioral patterns over a longer period are more

indicative of future relapses. Therefore, we find better prediction results with longer

prediction windows. However, increasing the prediction window length reduces the

number of examples available for training and testing prediction models. Take the

RBF SVM as an example, the classifier achieves F1 = 0.053 with 7-day window, which

is 0.034 higher than the baseline shown in Table 6.1, whereas it achieves F1 = 0.274
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with 30-day window, which is 0.193 higher than the baseline. We suspect summarizing

behavioral features in shorter windows leads to more noise in the feature data because

of the short term behavior changes whereas longer windows smooth the behavioral

data so that the features captures participants’ behaviors more accurately.

PCA. Figure 6.2(d) shows the best F1 scores obtained from four classifiers with

different PCA settings. As we include more principle components (PCs) in the pre-

dictions, the F1 scores increase for all classifiers. Two linear classifiers, linear SVM

and logistic regression, achieve best F1 scores when using 50 PCs, which is higher

than using the raw feature data without PCA transformation. RBF SVM achieves

best F1 score when using 100 PCs, which again is higher than using the raw feature

data. Random forest achieves the best F1 score when using 25 PCs, however, the

prediction performance of random forest is worse than other three classifiers. The

results show transforming the features using PCA reduces the feature dimensional-

ity and generates more useful features by combining different features together. We

discuss particular PCs in later sections.

6.3.5 Useful Features.

In what follows, we present features selected by L1 regularization in logistic regres-

sion training. We do not transform the features using PCA so that we can interpret

how features are related to relapse. We choose to present logistic regression coeffi-

cients instead of other classifiers because it is easier to interpret parameters in logistic

regression - positive coefficients indicate positive correlations whereas negative coeffi-

cients indicate negative correlations. We first present features selected by the model

using both sensing and EMA data, then we present features selected by the model
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using only sensing data. The selected features and their regression coefficients are

presented in Table 6.4.

Table 6.4: L1 regularization selected features in logistic regression.

sensing+EMA sensing
precision=22.6%, recall=36.8% precision=12.5%, recall=42.1%

feature coeff feature coeff

conversation duration morning 2.631 conversation duration morning 0.659
on foot duration evening 2.553 number of voice frames night -0.319
number of voice frames morning 2.540 number of calls made -0.251
visit education places -2.139 on foot duration evening 0.193
number of visited places evening -1.952 visit parks and outdoors places 0.084
EMA item median response time 1.876 duration of calls made in the morning -0.008
EMA seeing things -1.650
audio amplitude afternoon -1.620
visit travel places -1.597
visit residence places -1.506

Sensing and EMA. The logistic regression model achieves 22.6% of precision and

36.8% of recall using both sensing and EMA data. The prediction window is 30 days.

The l1 regularization selects 81 out of 144 features in training. We present the top

10 features with the largest absolute coefficients. We find that participants who have

more conversations in the morning, walk more in the evening but visit fewer places in

the evening, visit less educational, travel, and residential places, report lower score in

seeing things, but spend more time responding to EMAs are more likely to relapse.

Please note, the L1 regularization also selects 5 EMA items (i.e., depressed, calm,

voices, think, harm) and positive scores to predict relapses. Specifically, participants

who report higher scores in depressed, voices, and harm items, and lower scores in

calm, think, and positive score are more likely to relapse.
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Sensing only. The logistic regression model achieves 12.5% of precision and 42.1%

of recall using both sensing and EMA data. The prediction window is 30 days. The l1

regularization selects 6 out of 130 features in training. Specifically, participants who

have more conversations in the morning, spend more time walking in the evening, visit

more parks and outdoor places, makes fewer phone calls are more likely to relapse.

6.3.6 Behavioral Principle Components

In what follows, we present the top 5 PCs with the largest absolute logistic regression

coefficients. The top 5 PCs, their regression coefficients, and characteristics.

PC 1 describes a behavioral pattern in which participants spend less time respond-

ing to EMAs, report lower scores in all EMA items, and makes more phone calls.

Participants whose behaviors are more similar to PC 1 are less likely to relapse.

PC 19 describes a behavioral pattern in which participants visit more places, spend

less time at nightlife, arts and entertainment, parks and outdoor, and gym places,

spend more time at residence, medical and education places, receive more phone calls

but do not make many calls, have more conversation during the evening, and spend

more time responding to EMA questions. Participants whose behaviors are more

similar to PC 19 are more likely to relapse.

PC 7 describes a behavioral pattern in which participants make and receive more

calls, have less conversation in the morning but visit more places in the evening.

Participants whose behaviors are more similar to PC 19 are less likely to relapse.

PC 36 describe a behavioral pattern in which participants visit less places related to

medical, gym, library but visit more places relate to arts and entertainment, home,
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Table 6.5: Characteristics of principle components with largest absolute regression
coefficients. A positive coefficient indicate the principle component is positively cor-
related with relapses (i.e., larger PC weight indicates higher probability of relapse).

PC coefficient features

1 -437.7
low EMA item scores, respond EMAs fast,
more phone calls especially in the evening
and night, ride bikes

19 395.8

visit more places; visit less places relate to
nightlife, arts and entertainment, parks and
outdoor, and gym; visit less places relate to
residence, medical and education; respond
EMAs slow; receive more phone calls but
make fewer phone calls in the afternoon;
have more conversations in the evening

7 -348.0

make and receive more calls, have less
conversation in the morning, visit more
places in the evening, ambient light is
bright at night.

36 307.0

visit less places relate to medical, gym, and
library; visit more places relate to arts and
entertainment, home, and residence; report
higher EMA score in items including
hearing voices, harm, and feel less hopeful

8 305.7

visit more places relate to medical; more
SMS use at nigh; more conversation at
night; fewer phone calls in the morning;
bright at night; more phone use at night;
wake up late.

residence. They report high scores in hearing voices, harm, and feel less hopeful.

Participants whose behaviors are more similar to PC 19 are more likely to relapse.

PC 8 describe a behavioral pattern in which participants visit more places related to

medical, have more SMS use, phone use, and conversations at night, less calls in the
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morning, bright at night, and wake up late. Participants whose behaviors are more

similar to PC 19 are more likely to relapse.

6.4 Discussion and Conclusion

The CrossCheck system discussed in this thesis shows promise in using mobile phones

and passive sensing to predict schizophrenia relapses. In what follows, we discuss our

results, limitations, and future work.

6.4.1 Relapse classifier design considerations.

Our results show that per-participant standardization fails to improve the prediction

performance. The standardized feature values indicate how many standard deviations

the true value is from the feature mean value, which measures the within-individual

behavior differences. Applying per-participant standardization for relapse prediction

assumes similar deviations from a participant’s average behaviors across all partici-

pants account for relapse. However, our results show that applying per-participant

standardization leads to poorer prediction performance, which may indicate that the

between-individual differences are more predictive of relapse than within-individual

differences.

We find the 30-day time window is the best time window to predict relapse.

Summarizing behavioral features in shorter windows leads to more noise in the feature

data because of the short term behavior changes whereas longer windows smooth the

behavioral data. Also, the pre-relapse behavioral changes might be gradual and the

behavioral changes may start many days before the relapse. A shorter time window
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may lead to lower resolution of changes in behaviors (i.e., behaviors in consecutive

time windows are similar despite one is relapse the the other one is not) thus more

challenging for the classifiers to identify relapse signals.

We show that using passive sensing data greatly improves the prediction perfor-

mance compared with using only self-report EMA. Combining both passive sensing

and EMA further improves the prediction performance. Our results indicate that

passive sensing data has the potential to unobtrusively monitor and predict relapse in

the future.

Semantic location features, phone calls, and conversational features are good pre-

dictors of relapse. Transforming the behavioral feature space using PCA provides

interpretable behavioral patterns. Our findings show that behavioral features that

are more interpretable are more likely to be indicative of relapses. Future work should

focus on designing features that are interpretable and capture people’s higher level

behaviors (e.g., go to work, socializing with friends, exercising) by combining different

sensor streams. Exploring behavioral patterns (e.g., behavioral principle components)

would further gives more insight to relapse. It is important that the results are in-

terpretable by clinicians.

Misclassifying relapse as non-relapse may have severe consequences compared with

misclassifying non-relapse as relapse. Misclassifying a relapse as non-relapse may lead

to non-action (e.g., fail to deliver intervention in time) and miss the best opportunity

to treat the patient, whereas misclassifying a non-relapse as relapse may lead to

unnecessary clinical visits thus increased cost. We show that our models achieve

53.7% of recall with the cost of lower precision, which is still better than the baseline

defined in Section 6.3.1. For practical use, we need to carefully evaluate the precision
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recall tradeoff and select the best prediction model that maximize recall (i.e., identify

as many patients at risk as possible) while minimizing the unnecessary cost due to

misclassifying non-relapses as relapses.

6.4.2 Limitations, future work and conclusion remark

The CrossCheck relapse prediction system presented in this thesis shows promise in

using mobile phones and passive sensing to predict schizophrenia relapses. The system

and models show reasonable performance using passive sensing and self-reports as well

as just using passive sensing. A system based purely on passive sensing opens the

way for continuous assessment of schizophrenia relapses.

We also recognize limitations of our work. Our dataset only had 27 relapses

from 20 participants. Therefore, the current dataset is small and imbalanced. Our

small dataset poses many challenges to build a relapse predictor. First, over-fitting

the training data becomes much harder to avoid. Because the data was collected

from a small number of participants (i.e., 61 participants) over short period (i.e.,

1 year), there could be high correlations between examples. Therefore, the model

could also over-fit to the test data as well. Second, outliers become much more

dangerous because they have more weight (higher outliers to normal data points

ratio) to skew the model. Any noise in general becomes a real issue because we might

have enough data to filter out the noise in training. The imbalanced nature of our

relapse dataset makes building the prediction model even more challenging because

prediction models have even less data to learn the schizophrenia relapse behavioral

characteristics. To address such limitations, we applied re-sampling and missing data

imputations. However, any data augmentation would introduce bias to the dataset.
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We carefully designed a 2-level 3-fold crossvalidation to account for the potential

bias introduced by the re-sampling and imputation, however, we need to validate our

method on more data to reaffirm our findings.

Another possible limitation is that all patients live in a large dense city and the

models may not generalize to other locations, such as, patients living in rural com-

munities. Study adherence is also an issue. Patients break, loose, lend, and neglect

to use or charge their phones. In some cases they experience persistent cellular or

WiFi coverage issues for our system to successfully upload their data in a timely

manner (i.e., once per day when they are charging their phones and under cellular or

WiFi). We continually try to think of innovative solutions to deal with these issues

and currently rely on technical outreach (as distinct from outreaches associated with

increased symptoms) and removing incomplete data if we do not have sufficient per

day for reasons of model performance.

Future work may improve predicting relapse in schizophrenia patients in the fol-

lowing areas. First, future studies could aim to collect data from more patients over

a much longer time (e.g., 5 years). Therefore, we would have more data to build a

more robust relapse predictor. Second, future studies could incorporate new sensing

technologies in assessing relapse risk. For example, researchers could include wear-

able in the study to measure patients’ physiological signals, which might be more

indicative of impending relapses. Finally, researchers could look into other relapse

modeling techniques. For example, researchers could treat relapse prediction as an

anomaly detection problem. That is, a relapse manifest itself as a significant change

in behavioral norms. Anomaly detection treat the data as time series. Each partic-

ipant has their own behavioral data time series. Anomaly detection usually learns
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the time series patterns and make prediction on the same time series. Therefore,

such modeling technique require a large longitudinal dataset. Researchers also need

to consider how to incorporate data from different individuals to build the prediction

model.

We presented and evaluated different prediction model design considerations and

found that linear models (e.g., logistic regression and linear SVM) using PCA-transformed

passive sensing and self-report EMA features best predict relapses with 30-day time

window. We discussed features and behavioral patterns that are predictive with re-

lapses. Although our prediction performance might not be good enough to use in

clinical practices, our results show promises in using passive sensing to help clinicians

better identifying patients at risks of relapses.
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Conclusion

We have witnessed a growing number of studies using smartphones to study men-

tal health. Smartphones provide a feasible and unobtrusive method to continuously

collect behavioral data from people. Mental health and psychology researchers have

begun to use smartphones to assess depression, bipolar disorders, anxiety, schizophre-

nia, post traumatic stress disorders, and personality. In the first part of this thesis,

we built the StudentLife sensing system and used the system to collect data from

college students. We showed that we could use the smartphone data collected by the

StudentLife sensing system to predict academic performance and mental health. We

inferred a number of behaviors that are closely related to students’ life on campus.

These behaviors are closely related to students’ academic performance and mental

health. The results from the StudentLife study encouraged us to apply the same

mental health sensing technology in a more challenging community: people with se-

rious mental illnesses. In the second part of this thesis, we presented the CrossCheck

study, a RCT aims to track schizophrenia patients’ symptoms and predict impending

relapses. We built the CrossCheck sensing system based on the StudentLife sensing
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system and deployed the system to people with schizophrenia. During the study, we

used the smartphone data to identify and reach out to patients at-risk.

7.1 Insights

This thesis addressed a number of technical challenges related to mental health sens-

ing. We built power efficient smartphone sensing systems, modeled human behaviors

from the sensing data, built behavioral features that capture students’ life and de-

pression symptoms, built schizophrenia symptom prediction system, and evaluated

models to predict schizophrenia relapses. We focused on finding relationship between

passive sensing data and mental health, and used smartphone sensing data to pre-

dict people’s mental wellbeing. We explored new research questions that were not

addressed before, specifically: 1) How can we infer college students’ on campus ac-

tivities (e.g., studying, partying, been distracted) from smartphone data? 2) Can we

learn college students’ term behavioral trends from their smartphone data? 3) How

to use smartphone sensing to assess college students’ mental health, and academic

performance? 4) What depression symptom features can we derive from smartphone

sensor streams? 5) How to use smartphones to assess schizophrenia patients’ symp-

toms, and how can we use the data for reaching out patients at risk, and 6) Can we

predict impending schizophrenia relapses?

The contribution of this thesis are summarized as follows:

First, we presented the StudentLife Android sensing system and a longitudinal

study using the system to assess mental health, academic performance and behav-

ioral trends of a student body. We collected a large number of smartphone data,

a number of validated mental health measurements, and GPAs from 48 Dartmouth
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students over a 10-week term in 2013. We discussed behavioral features that are

specifically designed to capture students’ life on campus. The features incorporate

multiple sensor streams from smartphones and our knowledge about the campus.

We observed trends in the sensing data, termed the Dartmouth term lifecycle. The

trends show how students’ stress, positive affect, conversation levels, sleep, and daily

activity patterns change as the term progresses and the workload increases. We iden-

tified correlations between automatic sensing data and a broad set of well-known

mental well-being measures. We proposed for the first time a model that can predict

a student’s cumulative GPA using automatic behavioral sensing data from smart-

phones. The results showed great potential in assessing people’s mental health using

smartphones. We presented a follow-up study, in which we upgraded the StudentLife

sensing system to support iPhones and Microsoft Band 2. We collected smartphone

and wearable data from 83 undergraduate student across two 9-week terms during the

winter and spring term in 2016. We proposed a set of passive sensor based symptom

features derived from phones and wearables that we hypothesized proxy 5 out of the

9 major depressive disorder symptoms defined in DSM-5. We identified a number of

correlations between the symptom features and PHQ-8, and we showed that we could

predict PHQ-4 and PHQ-8 using the proposed symptom features.

Second, we presented CrossCheck, a year long randomized control trial (RCT)[50]

conducted in collaboration with a large psychiatric hospital in New York City, NY,

which aimed to track symptoms in people with schizophrenia and predict impending

relapses. We recruited 61 participants in the smartphone arm from 2014 to 2016,

in which participants carried study phones with our sensing app built on the Stu-

dentLife core sensing system. The data collection phase concluded in June 2017.
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We identified meaningful associations between passively tracked data and indica-

tors or dimensions of mental health in people with schizophrenia (e.g., stressed, de-

pressed, calm, hopeful, sleeping well, seeing things, hearing voices, worrying about

being harmed) to better understand the behavioral manifestation of these measures.

We presented and evaluated models that predict participants’ aggregated ecologi-

cal momentary assessment (EMA) scores that measure several dynamic dimensions

of mental health and functioning in people with schizophrenia. We found that by

leveraging knowledge from a population with schizophrenia, it is possible to train

personalized models that require fewer individual-specific data to quickly adapt to a

new user. We built the CrossCheck symptom prediction system, which was the first

system capable of tracking schizophrenia patients’ symptom scores measured by the

7-item BPRS using passive sensing and self-report EMA from phones. The system

enables clinicians to track changes in psychiatric symptoms of patients without eval-

uating the patient in person. The CrossCheck symptom prediction system predicted

participants’ BPRS scores each week and sent the predictions to our research staff.

Our research staff used the predictions to determine whether or not a participant

is at risk and reach out when a participant is determined as at-risk. We investi-

gated the feasibility of using passive sensing data and/or self-report EMAs to predict

relapses. We discussed the challenges to build a relapse prediction system and solu-

tions to the challenges. We evaluated different methods to predict relapses, including

different prediction window setups, feature space transformations, training data re-

sampling, missing data imputation, and four different binary classifiers (i.e., linear

SVM, RBF SVM, logistic regression, and random forest). We presented a new 2-level

3-fold cross-validation method, which combines training data resampling and hyper-
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parameter selection. The 2-level 3-fold cross-validation method is a robust method

to evaluate relapse predictions. We showed that we can predict whether or not a par-

ticipant is going to relapse with precision = 26.8%, recall = 28.4%. We also showed

that we could tweak the model to maximize recall with a slightly reduced precision

with precision = 15.4%, recall = 51.6%. Our results show potentials in using mobile

phones and passive sensing to predict schizophrenia relapses. However, there are still

a lot of work to be done to make the schizophrenia relapse prediction system a viable

tool for clinicians. For example, a major challenge of developing an accurate relapse

predictor is that we do not have a large dataset that contains enough relapse cases.

Future studies could aim to collect data from more patients over a much longer time

(e.g., 5 years). If a large dataset is available, researchers could apply other relapse

modeling techniques. For example, researchers could treat relapse prediction as an

anomaly detection problem. That is, a relapse manifest itself as a significant change

in behavioral norms. Anomaly detection treat the data as time series. Each partic-

ipant has their own behavioral data time series. Anomaly detection usually learns

the time series patterns and make prediction on the same time series. Therefore,

such modeling technique require a large longitudinal dataset. Researchers also need

to consider how to incorporate data from different individuals to build the prediction

model.

Finally, we released the StudentLife dataset to the research community and we

will release our StudentLife core sensing system to help future studies in assessing

mental health using smartophones.
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7.2 Future Work

There are many ways our work can be improved and extended. In what follows, we

discuss what areas future studies could work on.

Large scale studies with more diverse populations. The scale of our studies

is small. The studies presented in this thesis recruited fewer than 100 participants.

Furthermore, our participants are either college students from the same university or

schizophrenia patients living in the same urban area. Smaller number of participants

(i.e., small sample size) decreases statistical power, which may lead to more false

negative findings (i.e., Type II errors, failing to reject a false null hypothesis). Find-

ings from studies with homogeneous participants may not apply to a more general

population. We need to conduct larger scale studies with more diverse participants

(e.g., people live in different regions, different occupation) to confirm our findings.

Consolidating the sensing technology. The research community and the indus-

try have made a lot of progress in advancing sensing technology. However, more

work can be done to further consolidate the sensing technology. Microphone is a

power sensor on the phone. We use microphone to infer whether or not a user is

around conversations. However, we cannot determine whether the user is involved in

the conversation or not. Future work could improve conversation detection to detect

whether the user is speaking (i.e., speaker identification), how many people the user

talked to, and the user’s emotion (i.e., emotion detection from speech). Future work

could also work on detecting a user’s acoustic surroundings (e.g., speech, music, fac-

tory). Future researchers could also incorporate new technology (e.g., wearables) for

mental health sensing. Wearables provide better ways to measure physical activities,

sleep, and physiological signals. However, wearables from different vendors may gen-
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erate measurements with different accuracy. Researchers in the future could work on

building systems that make consistent measurements across different wearables.

Behavioral modeling. Making sense of the inferred behaviors is the key to mental

health sensing. Clinicians need to be able to interpret the meaning of features. In

this thesis, we presented many daily features derived from the smartphone data in-

ferred behaviors. Future researchers could focus on modeling people’s behaviors from

different angels. For example, we could compute behavioral lifestyles (e.g., people

who are early to bed, early to rise and have a regular day schedule) using multiple

sensor streams. Such behavioral patterns/features are more interpretable and may

be stronger indicators of mental health.

Mental health prediction models. A lot of work need to be done to advance ma-

chine learning models that predict mental health from smartphone and wearable data.

In this thesis, we focus on traditional prediction models (e.g., logistic regression, ran-

dom forest, SVM, gradient boosting). We would also explore applying deep learning

models for mental health prediction. Deep learning models have revolutionized many

fields (e.g., computer vision, speech recognition). Its capability of learning good fea-

ture representations automatically from the data and make accurate predictions is the

perfect fit for mental health prediction from smartphone sensing, where we have high

dimensional data and feature engineering is challenging. However, we need to address

challenges in applying deep learning models for mental health prediction. First, deep

learning models need large data sets are needed to make sure the models are trained

properly (i.e., achieve good prediction performance). Therefore, we need to conduct

large scale studies with a large number of participants. The studies should last long

enough to guarantee enough data needed for training the models. Furthermore, it
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is difficult to determine how much data is needed to properly train a deep learning

model. Typically, the volume of data required is determined by the complexity of the

model (e.g., how many layers in the model, the number of input features, the number

of classes). Second, training a deep learning model usually require high-performance

hardware and the deep learning models might not be able to run on the phone. Fi-

nally, Deep learning models are essentially a blackbox. It is difficult to interpret the

predictions made by the models (e.g., why the model determines a person is going to

relapse).

New mental health classification paradigm. There are different approaches

that can be taken to address the mental health classification and detection problem.

The National Institute of Mental Health (NIMH) has launched the Research Domain

Criteria (RDoC) [110, 120] project to create a framework for studying mental dis-

orders. The RDoC framework centers around dimensional psychological constructs

that are relevant to human behavior and mental disorders [110, 120]. The psycholog-

ical constructs include negative valence systems, positive valence systems, cognitive

systems, systems for social processes, arousal/regulatory systems. RDoC proposes

to measure the systems using molecular, genetic, neurocircuit and behavioral assess-

ments [110, 120]. We imagine that future mobile sensing approaches for mental health

assessment could focus on developing new sensing modalities and physiological and

behavioral features to predict the RDoC constructs.

Technology acceptance by clinicians. We need to collaborate more with clin-

icians to best understand how our system could inform treatment. We need to ad-

vance sensing and mental health prediction technology to provide robust and accurate

mental health predictions. Clinicians should be able to interpret the mental health
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outcome predictions and understand what behavioral changes lead to such predic-

tions.

Mental health interventions. The ultimate goal of mental health sensing using

smartphones is to keep people healthy and prevent mental illness relapse. Future

researcher could investigate behavioral changes that are precursor to worse mental

health states. Researchers could develop realtime symptom monitoring systems and

provide interventions when adverse behaviors are observed. But researcher should

develop validated intervention constructs first. For example, what behavioral changes

and inferred symptom changes warrant interventions, and what interventions should

be applied. Our work on weekly BPRS prediction and reaching out to participant-

at-risk is a step toward this goal.

7.3 Final Comment

The contributions made by this thesis push the boundaries of how researchers would

use smartphones to continuously and unobtrusively monitor people’s mental health.

The chapters of this thesis collectively provide a picture of the potential for modeling

human behaviors from smartphone and wearable sensing data. Through the contribu-

tions of the StudentLife study and CrossCheck study, we have laid a solid foundation

for further exploration of applying smartphone sensing in mental health and other dis-

ciplines. Since the StudentLife study described in Chapter 2 published in 2014, there

are a growing number of studies applied the similar methodology described in this

thesis to investigate using smartphones to assess mental illnesses, personality traits,

mood, academic performance, and work performance. The CampusLife project aims

to collect data from campus communities. The project collects data from mobile and
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wearable devices and social media. The goal of the CampusLife project is to under-

stand wellness for young adults, as well as how to perform such experimentation. We

hope this thesis not only provides building blocks for future research but also acts as

a useful guide to identify new directions in mental health sensing using smartphones.

We still have a long way to go to make mental health sensing using smartphone

phones a reality. Our research will turn people’s smartphones and wearable devices

into mental health monitors and keep people mentally health. I strongly believe that

smartphones sensing technology will eventually evolve into facilitate better mental

health care. In this thesis, we have presented some early steps toward this goal.
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Refereed Publications as a Ph.D.
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My refereed publications as a Ph.D. candidate are listed below. Work in preparation

and technical reports are omitted.

Conference/Workshop Publications

Chuang-Wen You, Nicholas D. Lane, Fanglin Chen, Rui Wang, Zhenyu Chen, Thomas

J. Bao, Martha Montes-de-Oca, Yuting Cheng, Mu Lin, Lorenzo Torresani, and An-

drew T. Campbell. 2013. CarSafe app: alerting drowsy and distracted drivers using

dual cameras on smartphones. In Proceeding of the 11th annual international con-

ference on Mobile systems, applications, and services (MobiSys ’13). ACM, New

York, NY, USA, 13-26.

Zhenyu Chen, Mu Lin, Fanglin Chen, Nicholas D. Lane, Giuseppe Cardone, Rui

Wang, Tianxing Li, Yiqiang Chen, Tanzeem Choudhury, and Andrew T. Campbell.

2013. Unobtrusive sleep monitoring using smartphones. In Proceedings of the 7th

203



Refereed Publications as a Ph.D. Candidate

International Conference on Pervasive Computing Technologies for Healthcare (Per-

vasiveHealth ’13). ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 145-152.

Rui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari, Stefanie

Tignor, Xia Zhou, Dror Ben-Zeev, and Andrew T. Campbell. 2014. StudentLife:

assessing mental health, academic performance and behavioral trends of college stu-

dents using smartphones. In Proceedings of the 2014 ACM International Joint Con-

ference on Pervasive and Ubiquitous Computing (UbiComp ’14). ACM, New York,

NY, USA, 3-14.

Fanglin Chen, Rui Wang, Xia Zhou, and Andrew T. Campbell. 2014. My smart-

phone knows i am hungry. In Proceedings of the 2014 workshop on physical analytics

(WPA ’14). ACM, New York, NY, USA, 9-14.

Rui Wang, Gabriella Harari, Peilin Hao, Xia Zhou, and Andrew T. Campbell. 2015.

SmartGPA: how smartphones can assess and predict academic performance of col-

lege students. In Proceedings of the 2015 ACM International Joint Conference on

Pervasive and Ubiquitous Computing (UbiComp ’15). ACM, New York, NY, USA,

295-306.

Rui Wang, Andrew T. Campbell, and Xia Zhou. 2015. Using opportunistic face log-

ging from smartphone to infer mental health: challenges and future directions. In

Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive

and Ubiquitous Computing and Proceedings of the 2015 ACM International Sym-

posium on Wearable Computers (UbiComp/ISWC’15 Adjunct). ACM, New York,

NY, USA, 683-692.

204



Refereed Publications as a Ph.D. Candidate

Sophia Haim, Rui Wang, Sarah E. Lord, Lorie Loeb, Xia Zhou, and Andrew T.

Campbell. 2015. The mobile photographic stress meter (MPSM): a new way to

measure stress using images. In Adjunct Proceedings of the 2015 ACM International

Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the

2015 ACM International Symposium on Wearable Computers (UbiComp/ISWC’15

Adjunct). ACM, New York, NY, USA, 733-742.

Rui Wang, Min S. H. Aung, Saeed Abdullah, Rachel Brian, Andrew T. Campbell,

Tanzeem Choudhury, Marta Hauser, John Kane, Michael Merrill, Emily A. Scherer,

Vincent W. S. Tseng, and Dror Ben-Zeev. 2016. CrossCheck: toward passive sensing

and detection of mental health changes in people with schizophrenia. In Proceed-

ings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous

Computing (UbiComp ’16). ACM, New York, NY, USA, 886-897.

Gabriella M. Harari, Weichen Wang, Sandrine R. Müller, Rui Wang, and Andrew T.

Campbell. 2017. Participants’ compliance and experiences with self-tracking using

a smartphone sensing app. In Proceedings of the 2017 ACM International Joint

Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017

ACM International Symposium on Wearable Computers (UbiComp ’17). ACM, New

York, NY, USA, 57-60.

Rui Wang, Weichen Wang, Min S. H. Aung, Dror Ben-Zeev, Rachel Brian, Andrew

T. Campbell, Tanzeem Choudhury, Marta Hauser, John Kane, Emily A. Scherer,

and Megan Walsh. 2017. Predicting Symptom Trajectories of Schizophrenia using

Mobile Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3,

Article 110 (September 2017), 24 pages.

205



Refereed Publications as a Ph.D. Candidate

Rui Wang, Weichen Wang, Alex daSilva, Jeremy F. Huckins, William M. Kelley,

Todd F. Heatherton, and Andrew T. Campbell. 2018. Tracking Depression Dynam-

ics in College Students Using Mobile Phone and Wearable Sensing. Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol. 2, 1, Article 43 (March 2018), 26

pages.

Journal Publications

Ben-Zeev D, Scherer EA, Wang R, Xie H, Campbell AT. Next-generation psychi-

atric assessment: Using smartphone sensors to monitor behavior and mental health.

Psychiatric rehabilitation journal. 2015 Sep;38(3):218.

Harari, G. M., Gosling, S. D., Wang, R., and Campbell, A. T. (2015) Capturing

Situational Information with Smartphones and Mobile Sensing Methods. Eur. J.

Pers., 29: 509–511.

Ben-Zeev, D., Scherer, E.A., Wang, R., Xie, H. and Campbell, A.T., 2015. Next-

generation psychiatric assessment: Using smartphone sensors to monitor behavior

and mental health. Psychiatric rehabilitation journal, 38(3), p.218.

Ben-Zeev, D., Wang, R., Abdullah, S., Brian, R., Scherer, E.A., Mistler, L.A.,

Hauser, M., Kane, J.M., Campbell, A. and Choudhury, T., 2015. Mobile behav-

ioral sensing for outpatients and inpatients with schizophrenia. Psychiatric services,

67(5), pp.558-561.

Harari, G.M., Lane, N.D., Wang, R., Crosier, B.S., Campbell, A.T. and Gosling,

S.D., 2016. Using smartphones to collect behavioral data in psychological science:

206



Refereed Publications as a Ph.D. Candidate

opportunities, practical considerations, and challenges. Perspectives on Psychologi-

cal Science, 11(6), pp.838-854.

Harari, G.M., Gosling, S.D., Wang, R., Chen, F., Chen, Z. and Campbell, A.T.,

2017. Patterns of behavior change in students over an academic term: A prelimi-

nary study of activity and sociability behaviors using smartphone sensing methods.

Computers in Human Behavior, 67, pp.129-138.

Ben-Zeev, D., Scherer, E.A., Brian, R.M., Mistler, L.A., Campbell, A.T. and Wang,

R., 2017. Use of multimodal technology to identify digital correlates of violence

among inpatients with serious mental illness: a pilot study. Psychiatric services,

68(10), pp.1088-1092.

Harari, G.M., Müller, S.R., Mishra, V., Wang, R., Campbell, A.T., Rentfrow, P.J.

and Gosling, S.D., 2017. An Evaluation of Students’ Interest in and Compliance

With Self-Tracking Methods: Recommendations for Incentives Based on Three

Smartphone Sensing Studies. Social Psychological and Personality Science, 8(5),

pp.479-492.

Ben-Zeev, D., Brian, R., Wang, R., Wang, W., Campbell, A.T., Aung, M.S., Merrill,

M., Tseng, V.W., Choudhury, T., Hauser, M. and Kane, J.M., 2017. CrossCheck:

Integrating self-report, behavioral sensing, and smartphone use to identify digital

indicators of psychotic relapse. Psychiatric rehabilitation journal, 40(3), p.266.

Book Chapter

Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev,

D. and Campbell, A.T., 2017. StudentLife: Using smartphones to assess mental

207



Refereed Publications as a Ph.D. Candidate

health and academic performance of college students. In Mobile Health (pp. 7-33).

Springer, Cham.

208



Bibliography

[1] CS65 Smartphone Programming, http://www.cs.dartmouth.edu/~campbell/

cs65/cs65.html.

[2] Dartmouth College Weekly Schedule Diagram, http://oracle-www.

dartmouth.edu/dart/groucho/timetabl.diagram.

[3] Depression, http://www.nimh.nih.gov/health/topics/depression/index.

shtml.

[4] funf-open-sensing-framework, https://code.google.com/p/

funf-open-sensing-framework/.

[5] PACO, https://code.google.com/p/paco/.

[6] StudentLife Dataset 2014, http://studentlife.cs.dartmouth.edu/.

[7] SurveyMonkey, https://www.surveymonkey.com/.

[8] Saeed Abdullah, Mark Matthews, Ellen Frank, Gavin Doherty, Geri Gay, and

Tanzeem Choudhury, Automatic detection of social rhythms in bipolar disorder,

Journal of the American Medical Informatics Association 23 (2016), no. 3, 538–

543.

209



BIBLIOGRAPHY

[9] Saeed Abdullah, Mark Matthews, Elizabeth L Murnane, Geri Gay, and

Tanzeem Choudhury, Towards circadian computing: early to bed and early to

rise makes some of us unhealthy and sleep deprived, Proceedings of the 2014

ACM international joint conference on pervasive and ubiquitous computing,

ACM, 2014, pp. 673–684.

[10] Saeed Abdullah, Elizabeth L Murnane, Mark Matthews, and Tanzeem Choud-

hury, Circadian computing: sensing, modeling, and maintaining biological

rhythms, Mobile health, Springer, 2017, pp. 35–58.

[11] Nadav Aharony, Wei Pan, Cory Ip, Inas Khayal, and Alex Pentland, Social

fMRI: Investigating and shaping social mechanisms in the real world, Pervasive

and Mobile Computing 7 (2011), no. 6, 643–659.

[12] Carolyn M Aldwin, Stress, coping, and development: An integrative perspective,

Guilford Press, 2007.

[13] Sharifa Alghowinem, Roland Goecke, Michael Wagner, Julien Epps, Matthew

Hyett, Gordon Parker, and Michael Breakspear, Multimodal depression detec-

tion: Fusion analysis of paralinguistic, head pose and eye gaze behaviors, IEEE

Transactions on Affective Computing (2016).

[14] American College Health Association, American college health association-

national college health assessment ii: Reference group executive summary fall

2016, Hanover, MD: American College Health Association (2016).

[15] Apple, Core motion, 2017, https://developer.apple.com/reference/coremotion.

210



BIBLIOGRAPHY

[16] Haya Ascher-Svanum, Baojin Zhu, Douglas E Faries, David Salkever, Eric P

Slade, Xiaomei Peng, and Robert R Conley, The cost of relapse and the predic-

tors of relapse in the treatment of schizophrenia, BMC psychiatry 10 (2010),

no. 1, 2.

[17] Daniel Ashbrook and Thad Starner, Using gps to learn significant locations and

predict movement across multiple users, Personal and Ubiquitous computing 7

(2003), no. 5, 275–286.

[18] American Psychiatric Association et al., Diagnostic and statistical manual of

mental disorders (dsm-5 R©), American Psychiatric Pub, 2013.

[19] Min Aung, Faisal Alquaddoomi, Cheng-Kang Hsieh, Mashfiqui Rabbi, Longqi

Yang, JP Pollak, Deborah Estrin, and Tanzeem Choudhury, Leveraging multi-

modal sensing for mobile health: a case review in chronic pain, IEEE Journal

of Selected Topics in Signal Processing 10 (2016), no. 5, 1–13.

[20] Sunlee Bang, Minho Kim, Sa-Kwang Song, and Soo-Jun Park, Toward real time

detection of the basic living activity in home using a wearable sensor and smart

home sensors, Engineering in Medicine and Biology Society, 2008. EMBS 2008.

30th Annual International Conference of the IEEE, IEEE, 2008, pp. 5200–5203.

[21] Nikola Banovic, Tofi Buzali, Fanny Chevalier, Jennifer Mankoff, and Anind K

Dey, Modeling and understanding human routine behavior, Proceedings of the

2016 CHI Conference on Human Factors in Computing Systems, ACM, 2016,

pp. 248–260.

211



BIBLIOGRAPHY

[22] Ling Bao and Stephen S Intille, Activity recognition from user-annotated accel-

eration data, International Conference on Pervasive Computing, Springer, 2004,

pp. 1–17.

[23] Ian Barnett, John Torous, Patrick Staples, Luis Sandoval, Matcheri Keshavan,

and Jukka-Pekka Onnela, Relapse prediction in schizophrenia through digital

phenotyping: a pilot study, Neuropsychopharmacology (2018), 1.

[24] P Bech, N-A Rasmussen, L Raabæk Olsen, V Noerholm, and W Abildgaard,

The sensitivity and specificity of the major depression inventory, using the

present state examination as the index of diagnostic validity, Journal of affective

disorders 66 (2001), no. 2, 159–164.

[25] Aaron T Beck, David Guth, Robert A Steer, and Roberta Ball, Screening for

major depression disorders in medical inpatients with the beck depression in-

ventory for primary care, Behaviour research and therapy 35 (1997), no. 8,

785–791.

[26] Aaron T Beck, Robert A Steer, Gregory K Brown, et al., Beck depression

inventory, (1996).

[27] Dror Ben-Zeev, Mobile technologies in the study, assessment, and treatment of

schizophrenia, Schizophrenia bulletin (2012), sbr179.

[28] Dror Ben-Zeev, Christopher J Brenner, Mark Begale, Jennifer Duffecy, David C

Mohr, and Kim T Mueser, Feasibility, acceptability, and preliminary efficacy

of a smartphone intervention for schizophrenia, Schizophrenia bulletin (2014),

sbu033.

212



BIBLIOGRAPHY

[29] Dror Ben-Zeev, Kristin E Davis, Susan Kaiser, Izabela Krzsos, and Robert E

Drake, Mobile technologies among people with serious mental illness: oppor-

tunities for future services, Administration and Policy in Mental Health and

Mental Health Services Research 40 (2013), no. 4, 340–343.

[30] Dror Ben-Zeev, Susan M Kaiser, Christopher J Brenner, Mark Begale, Jen-

nifer Duffecy, and David C Mohr, Development and usability testing of focus:

A smartphone system for self-management of schizophrenia., Psychiatric reha-

bilitation journal 36 (2013), no. 4, 289.

[31] Dror Ben-Zeev, Gregory J McHugo, Haiyi Xie, Katy Dobbins, and Michael A

Young, Comparing retrospective reports to real-time/real-place mobile assess-

ments in individuals with schizophrenia and a nonclinical comparison group,

Schizophrenia bulletin 38 (2012), no. 3, 396–404.

[32] Dror Ben-Zeev, Stephen M Schueller, Mark Begale, Jennifer Duffecy, John M

Kane, and David C Mohr, Strategies for mhealth research: Lessons from 3

mobile intervention studies, Administration and Policy in Mental Health and

Mental Health Services Research (2014), 1–11.

[33] Dror Ben-Zeev, Rui Wang, Saeed Abdullah, Rachel Brian, Emily A Scherer,

Lisa A Mistler, Marta Hauser, John M Kane, Andrew Campbell, and Tanzeem

Choudhury, Mobile behavioral sensing for outpatients and inpatients with

schizophrenia, Psychiatric services 67 (2015), no. 5, 558–561.

[34] Dror Ben-Zeev, Michael A Young, and Patrick W Corrigan, DSM-V and the

stigma of mental illness, Journal of Mental Health 19 (2010), no. 4, 318–327.

213



BIBLIOGRAPHY

[35] Yoav Benjamini and Yosef Hochberg, Controlling the false discovery rate: a

practical and powerful approach to multiple testing, Journal of the royal statis-

tical society. Series B (Methodological) (1995), 289–300.

[36] Yoav Benjamini and Daniel Yekutieli, The control of the false discovery rate in

multiple testing under dependency, Annals of statistics (2001), 1165–1188.

[37] Randall J Bergman, David R Bassett Jr, and Diane A Klein, Validity of 2

devices for measuring steps taken by older adults in assisted-living facilities.,

Journal of physical activity & health 5 (2008).
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[93] Nils Y. Hammerla and Thomas Plötz, Let’s (not) stick together: Pairwise sim-

ilarity biases cross-validation in activity recognition, Proceedings of the 2015

ACM International Joint Conference on Pervasive and Ubiquitous Computing

(New York, NY, USA), UbiComp ’15, ACM, 2015, pp. 1041–1051.

[94] James A Hanley and Barbara J McNeil, The meaning and use of the area under

a receiver operating characteristic (roc) curve., Radiology 143 (1982), no. 1, 29–

36.

[95] Gabriella M Harari, Nicholas D Lane, Rui Wang, Benjamin S Crosier, Andrew T

Campbell, and Samuel D Gosling, Using smartphones to collect behavioral data

in psychological science: opportunities, practical considerations, and challenges,

vol. 11, Sage Publications Sage CA: Los Angeles, CA, 2016, pp. 838–854.

[96] C Haring, R Banzer, A Gruenerbl, S Oehler, G Bahle, P Lukowicz, and O May-

ora, Utilizing smartphones as an effective way to support patients with bipolar

disorder: Results of the monarca study, European Psychiatry 30 (2015), 558.

[97] Treniece Lewis Harris and Sherry Davis Molock, Cultural orientation, family

cohesion, and family support in suicide ideation and depression among african

american college students, Suicide and Life-Threatening Behavior 30 (2000),

no. 4, 341–353.

222



BIBLIOGRAPHY

[98] Steven A Harvey, Elliot Nelson, John W Haller, and Terrence S Early, Lat-

eralized attentional abnormality in schizophrenia is correlated with severity of

symptoms, Biological Psychiatry 33 (1993), no. 2, 93–99.

[99] Graeme Hawthorne, Measuring social isolation in older adults: development and

initial validation of the friendship scale, Social Indicators Research 77 (2006),

no. 3, 521–548.

[100] HealthRhythms, Healthrhythms, 2018, https://www.healthrhythms.com/.

[101] James Hedlund, The brief psychiatric rating scale (bprs): A comprehensive

review, 1980.

[102] Yoshinosuke Henmi, Prodromal symptoms of relapse in schizophrenic outpa-

tients: retrospective and prospective study, Psychiatry and clinical Neurosciences

47 (1993), no. 4, 753–775.

[103] Marvin I Herz and Charles Melville, Relapse in schizophrenia., The American

Journal of Psychiatry (1980).

[104] Tin Kam Ho, Random decision forests, Document analysis and recognition,

1995., proceedings of the third international conference on, vol. 1, IEEE, 1995,

pp. 278–282.

[105] Sepp Hochreiter and Jürgen Schmidhuber, Long short-term memory, Neural

computation 9 (1997), no. 8, 1735–1780.

[106] Jin-Hyuk Hong, Julian Ramos, and Anind K Dey, Toward personalized activ-

ity recognition systems with a semipopulation approach, IEEE Transactions on

Human-Machine Systems 46 (2016), no. 1, 101–112.

223



BIBLIOGRAPHY

[107] Jin-Hyuk Hong, Julian Ramos, Choonsung Shin, and Anind K Dey, An activ-

ity recognition system for ambient assisted living environments, International

Competition on Evaluating AAL Systems through Competitive Benchmarking,

Springer, 2012, pp. 148–158.

[108] Peter J Huber et al., Robust estimation of a location parameter, The Annals of

Mathematical Statistics 35 (1964), no. 1, 73–101.

[109] Joel W Hughes and Catherine M Stoney, Depressed mood is related to high-

frequency heart rate variability during stressors, Psychosomatic medicine 62

(2000), no. 6, 796–803.

[110] Thomas Insel, Bruce Cuthbert, Marjorie Garvey, Robert Heinssen, Daniel S

Pine, Kevin Quinn, Charles Sanislow, and Philip Wang, Research domain cri-

teria (rdoc): toward a new classification framework for research on mental dis-

orders, 2010.

[111] Oliver P John and Sanjay Srivastava, The big five trait taxonomy: History,

measurement, and theoretical perspectives, Handbook of personality: Theory

and research 2 (1999), 102–138.

[112] Richard Kadison and Theresa Foy DiGeronimo, College of the overwhelmed:

The campus mental health crisis and what to do about it., Jossey-Bass, 2004.

[113] Andrew H Kemp and Daniel S Quintana, The relationship between mental and

physical health: insights from the study of heart rate variability, International

Journal of Psychophysiology 89 (2013), no. 3, 288–296.

224



BIBLIOGRAPHY

[114] Maximilian Kerz, Amos Folarin, Nicholas Meyer, Mark Begale, James Mac-

Cabe, and Richard J Dobson, Sleepsight: a wearables-based relapse prevention

system for schizophrenia, Proceedings of the 2016 ACM International Joint

Conference on Pervasive and Ubiquitous Computing: Adjunct, ACM, 2016,

pp. 113–116.

[115] David Kimhy, Inez Myin-Germeys, Jasper Palmier-Claus, and Joel Swendsen,

Mobile assessment guide for research in schizophrenia and severe mental disor-

ders, Schizophrenia bulletin (2012), sbr186.

[116] Laurence J Kirmayer, James M Robbins, Michael Dworkind, and Mark J Yaffe,

Somatization and the recognition of depression and anxiety in primary care.,

The American journal of psychiatry (1993).

[117] Ron Kohavi et al., A study of cross-validation and bootstrap for accuracy esti-

mation and model selection, Ijcai, vol. 14, Stanford, CA, 1995, pp. 1137–1145.

[118] Alex Kopelowicz, Joseph Ventura, Robert Paul Liberman, and Jim Mintz, Con-

sistency of brief psychiatric rating scale factor structure across a broad spectrum

of schizophrenia patients, Psychopathology 41 (2007), no. 2, 77–84.

[119] S.B. Kotsiantis and P.E. Pintelas, Predicting students marks in hellenic open

university, Advanced Learning Technologies, 2005. ICALT 2005. Fifth IEEE

International Conference on, July 2005, pp. 664–668.

[120] Michael J Kozak and Bruce N Cuthbert, The nimh research domain criteria

initiative: background, issues, and pragmatics, Psychophysiology 53 (2016),

no. 3, 286–297.

225



BIBLIOGRAPHY

[121] Kurt Kroenke and Robert L Spitzer, The phq-9: a new depression diagnostic

and severity measure, Psychiatric Annals 32 (2002), no. 9, 509–515.

[122] Kurt Kroenke, Robert L Spitzer, and Janet BW Williams, The phq-9, Journal

of general internal medicine 16 (2001), no. 9, 606–613.

[123] Kurt Kroenke, Robert L Spitzer, Janet BW Williams, and Bernd Löwe, An
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