Lab 1 - Setting up the User’s Profile Ul

Getting started

This is the first in a series of labs that allow you to develop the MyRuns App. The
goal of the app is to capture and display (using maps) walks and runs using your
Android phone.

The first lab simply focuses on developing a simple Ul for capturing your profile;
that is, your name, email, phone number, gender and major. The work flow is as
follows: you present the user with a view that allows them to input and save their
profile. When the App is opened again the profile as saved should be displayed,
allowing the user to change any field.

We assume that you have installed the environment (use Android 2.3.3) and
completed the Hello World tutorial. Before you start this lab complete the View
Tutorial (see the class webpage for details) and read as much as chapter 3 and 4 as
you can - you can use the book as reference but it’s also very readable. Chapter 3
introduces the Ul, views and layouts and Chapter 4 goes into a lot more detail on
your Ul using views.

This lab mainly deals with activities and views, which we talked about in lecture 2.
Here is a summary of the code and what you have to do: 1) create project; 2) build
the layout; 3) add event handling to handle user input of the profile; 4) save the
profile as persistent data; and 5) restore the profile to the view/screen. In fact, 5 will
come before 4 in the flow but the first time through the code there will be no saved

context.

Because this is the first Android lab I provide a number of code snippets from the
solution I showed you in class.

OK. Let’s get started.

Create a project

Create a project named MyRuns with a main activity called “ActivityProfile”. We will
add to this project as we go along; that is, each new lab will add code to this project.
This week we will create a single activity and screen (view).

Now let’s discuss the screen layout for the UI.

Design the Layout

The Ul in Android is controlled by xml file in res/layout. Typically, each activity will
be associated with a layout xml file. When the activity is created the onCreate
event is fired and setContentView executed:

30 /** Called when the activity is first created. */
31 @0verride
a 37 public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Figure 1 Using findViewByld() and ID to get a reference

setContentView renders the layout declared in main.xml to the screen. If you run
the app at this point it will display the title only.

Android does provide a “drag and drop” method as part of the graphical layout -- so
you can us the xml or the graphical approach for your layout, or both -- I like to use
both: you can easily switch between both modes -- for example, to see how the xml
code you have written renders graphically.

The xml layout file consists of a simple linear or hierarchical list of widgets and
layouts. If you have done the Views tutorial you are familiar with different types of
layouts - from simple to more complex. You can specify the properties of each item
in the xml, such id, size, position, color, alignment, padding, margin, etc.

Figure 1 shows the layout you need to “code” up using xml and/or the graphical tool.

& oal B 1216 % ol B 12:23 E 12:25

Name Name Name

Your name here Andrew T. Campbell Andrew T. Campbell

Email Email Email

Your email here campbell@cs.dartmouth.edy campbell@cs.dartmouth.edu

Phone Phone Phone

Your phone here Your phone here 802-9999999

(®)Male (_) Female (@) (OLES (")Female

ajor Major

Your major here i Mechanical Engineering
S

Figure 1(a): Profile layout design Figure 1(b): User enters data Figure 1 (c): Now click save or cancel

The book and tutorial will provide enough background to code up (xml) the layout
in Figure 1(a). A screen comprises a layout with views - a view is a widget that has
an appearance on the screen such as the TextView used for the phone, email and
name in Figure 1(a). Other widgets are the RadioGroup for male and female. One
or more views as in Figure 1(a) can be grouped together into a ViewGroup (e.g.,
LinearLayout which is a view itself) to provide the layout allowing you to order
the appearance and sequence of views.

All views are in Figure 1(a) are in a root vertical linear layout; the views we use
include TextView (i.e., Name, Email, Phone and Major), the editable boxes
EditText used to enters data for name, email, etc. And, the gender RadioButton
is grouped into a RadioGroup. Because the java code has to read in user input
from the EditText and RadioButton views (which are presented as objects by the
running code) it needs to get a reference to the view i.e., widget object - it does this
by using the name of the ID that you provide in the xml of the view e.g., (android:id =
"@+id/buttonSave") shown in Figure 2, which, again, you will refer to in your code
when you want to read or restore the name of the user. It’s not necessary to give
every view an ID such as TextViews (which are hard code labels that do not change).
You do need references to objects that your code needs to read and write to - and as
the programmer you name and create these IDs - “buttonSave” in Figure 2.

As shown in Figure 1 we use “hints” to tell the user what to input: “your email here”.
Hints can be added to EditText views by using the “android:hint property.

Note, that all view properties can be specified programmatically but that is
burdensome. Just use the xml or graphical layout to do this in a declarative manner.
It is more maintainable to do the Ul like this.

There are many tweaks to the position of widgets (e.g., Button view used for save
and cancel) relative to each other. In the case of the save and cancel buttons they are
“weighted” in proportion; you can do this by right clicking (see Figure 3) on the save
and cancel widgets in the graphical layout mode or add the property directly to the
xml, as show in Figure 2. Using right click you can change almost anything to do
with the layout/view properties. Try changing some of the properties in the
graphical layout - margins, gravity, etc. - have fun. Again, make a change in the
graphical domain and checkout the xml representation. Once you get familiar with
layouts and views you can simply write the xml directly. But until then the graphical
mode is useful to learn representations of views.

<LinearLayout
android:id="@+id/linearLayoutl”
android:layout_width="match_parent"
android:layout_height="wrap_content" >

<Button
android:
android:
android:
android:
android:
android:

<Button
android:
android:
android:
android:
android:
android:

</LinearLayout>

id="@+id/buttonSave"
layout_width="wrap_content"”
layout_height="wrap_content"
layout_marginLeft="40dp"
layout_weight="1"
text="@string/save" />

id="@+id/buttonCancel”
layout_width="wrap_content"”
layout_height="wrap_content"
layout_marginRight="40dp"
layout_weight="1"
text="@string/cancel"” />

Figure 2: xml button views and their properties

From Figure 2 you can see that both buttons have the same weight:
android:layout weight="1".Play with the weights and other properties
directly in the xml and switch to graphical layout to see the results. Note, in the
examples in Figure 2 I have give the objects the IDs:

android:id="@+id/buttonCancel"” and android:id="@+id/buttonSave"

[can refer to the button’s in my java

o)
code to see if the user has clicked save or

cancel (discussed below). Also note, that because the two buttons are side by side
we use a separate LinearLayout just for these two buttons - therefore this layout is
embedded in the parent or root layout.

Your name here

Email

Your email here

Edit Text...
Edit ID...
Edit Style...

Layout Width
Layout Height

Recent 4
Extract Include... Inherited from TextView 4
Extract Style... Inherited from View >
Wrap in Container... .
Remove Container... Layout Parameters » Layout Gravity >
" Layout Margin...
Change Widget Type...

9 get Ty All By Name > Layout MarginBottom...
linearLayout1 > Layout MarginLeft...
LinearLayout > Layout MarginRight...

Layout MarginTop...
Select > Layout Weight...
of Cut %X T
= Copy #C
Paste
X Delete ®

wion | & Console 38 & pjay Animation
Show Included In

Figure 3 Right Click on a view to ch

v

ange properties: in this case the “layout weight”

Once you have completed the layout shown in Figure 1 you can “run” your code. The
java code will render the layout to the screen. You can write to (e.g., enter your
name) or click (e.g., click save) any view on the screen - alas, nothing will happen,
that is, if you entered you profile details and click save, nothing will be saved - there
is no code set up to deal with the user’s event - e.g., data entry and click save.

We need some event handling code - next section.

Event handling

Once the user clicks the “save” button we need to store all the information input by the
user from all the view objects to persistent storage — we will discuss how we store
context in the next section. But first we need an event handler or call back to deal with
the user’s action once they click save or cancel. Assume for now the user hit the save
button. Let’s discuss that how we do that.

The code set up for creating an event handler is shown in Figure 4. Remember that all
initial code should go in the OnCreate () event. We create a handler to handle the
event when either the save or cancel buttons are clicked — take a close look at the code
snippet in Figure 4.

30 /** Called when the activity is first created. */
31 @0verride
a 37 public void onCreate(Bundle savedInstanceState) {
33 super.onCreate(savedInstanceState);
setContentView(R.layout.main);

36 Button btn = ((Button) findViewById(R.id.buttonSave));
// EVENT HANDLING PART: If Save button hit create handler to save the data

40 View.OnClickListener myListener = new View.OnClickListener() {
41 @0verride
o 47 public void onClick(View v) {
43 saveProifleFromScreenToSharedPreferences();
44 Toast.makeText(getApplicationContext(),
45 "Profile saved.", Toast.LENGTH_SHORT).show();
46 // Close the activity
47 finish(Q);
}
49 I

51 btn.setOnClickListener(myListener);

53 loadProfileFromSharedPreferencesToScreen();

Figure 4 Code snippet for event handling

First we get a reference to the save button object using £indviewById() using
the id of the button that we specified in the xml when we created the widget. We
reference the object usingR.id.buttonSave.

After that we call the button’s setOnClickListener method, which takes a
View.OnClickListener object as the initialization argument; that is, we create a
new temporary View.OnClickListener on the fly by just calling “new”. Next,
we need to override the default onC1ick function so we can call our new method
(we insert our own code to execute when the event fires); that is,
saveProifleFromScreenToSharedPreferences () - we need to implement
this method to save all the user input (see next section).

We also use a Toast to inform the user what is going on “Profiled saved”. Toastis a
way to “flash” a feed back message to the user - it floats over the screen for a second
or two (defined by LENGTH_SHORT) and then disappears. Finally, the method
finish() is called to exist the handler.

The onCreate() method also calls loadProfileFromSharedPreferencesToScreen(),
which is used to reload the stored profile (assuming the application has run before
and the user input and hit the save button). But first let’s consider when the user clicks
save and we need to store the input data in the views; the work will be done by the
code you write for the saveProifleFromScreenToSharedPreferences () method
— discussed next.

Shared Preference

Android provides handy mechanisms for storing user data; checkout the note on “using
shared preference” for background information:

http://developer.android.com/guide/topics/data/data-storage.html#tpref

Shared preference is a simple way to save the user profile for this lab. The code in the
goggle notes is similar to the code you will need to write to store and restore the user’s
profile data. Shared preference is a key-value method for saving small amounts of
program content — other techniques such as SQLite can be used for more heavy duty
storage needs; we will discuss SQLite in a future lab.

The code snippet shown in Figure 5 is from the solution and while not trying to give
everything away shows how shared preference is used to get the users name (e.g.,
Andrew T. Campbell) from the screen and store it initially in an editor. Once all data is

captured in the editor it needs to be committed to be stored. Here is the snippet
saveProifleFromScreenToSharedPreferences()

bs

69 Log.d(TAG, "entered saveProifleFromScreenToSharedPreferences");
0
SharedPreferences prefs = getSharedPreferences(PREFS_NAME, MODE_PRIVATE);

SharedPreferences.Editor editor = prefs.edit();
, editor.putString(PROFILE_NAME, ((EditText) findViewById(R.id.editTextName)).getText().toString());
76
Figure 5 Code snippet for saving the profile

The SharedPreferences class in the snippet allows you to save and store primitive data,
e.g., strings this case. Note, that data will persist. To store data the code uses edit ()
to get a SharedPreferences.Editor. Then adds the name the user has input
using putString(). Finally, you need to commit the new values using commit ()
method — not shown in the snippet.

We also need to implement the code to restore any stored data. Here is a snippet from
loadProfileFromSharedPreferencesToScreen() .To read values, use
SharedPreferences methods getString().Ihave explained most of the
major design and coding issues for the assignment. You will have to fill in some gaps.

00 SharedPreferences prefs = getSharedPreferences(PREFS_NAME, MODE_PRIVATE);
02 // hints are not text stored in object

104 prefItemStr = prefs.getString(PROFILE_NAME, "");

)5 if (prefItemStr.length() > @) {
106 ((EditText) findViewById(R.id.editTextName)).setText(prefItemStr);
X }

)

Figure 6 Code snippet for restoring data

Restarting your App

Once you have saved your profile you should be able to simple start the app again
and it should display your saved profile as shown in Figure 7.

= ml B 12:27 & oml B 12:28
Name

& E @

Custom Dev Tools Downloads Email
Locale

Email

E E . . campbell@cs.dartmouth.edu

Gallery Gestures Hello, HelloLinear
Builder Android Phone

. sy . g 802-9999999

HelloListVie\ Lab1 LinearLayou Messaging (;)M | (R) |
(ale (_)Female

Major
-
Music ~ MyCompass MyHello OtherLayou Mechanical Engineering

— Save Cancel

1)

Figure 7 Once you save the profile the app with exit. Start the app again. It displays the saved profile

Tips

Style: Always code defensively; for example, the first time your code runs there is no
profile saved. How do you code for this event?

Layout: You can set different keyboard layouts for numerical and text input so that for
instance the code presents a right keyboard type for the right input. Figure 2(b) shows
the keyboard for email entry.

You should remove the title bar.

Check cancel works too.

Debugging: You can use Log.d () in android and TAG that you can display in the
LogCat. Checkout

http://developer.android.com/reference/android/util/Log.html

When you run the debugger and filter on TAG you can see all your Log.d() print outs. It
allows you to print objects out and see the control flow through the code. The text
book has a good section on using Log. () and setting filters on TAGs. Check it out.
Note, it will take a little time — and many different bugs — to feel comfortable with
debugging Android.

If your program crashed, don’t panic. Look at the system log in the LogCat, it will print
details of the function and line (in red) associated with the crash.

