Lab 2 — Extending the Ul with Multiple
Activities and Intents

Getting started

This is the second in a series of labs that allow you to develop the MyRuns App. The
goal of the app is to capture and display (using maps) walks and runs using your
Android phone.

The second lab introduces extensions to the Ul (e.g., new views such as tabs and
ActivityPeference and category), expands the number of activities to deal with the
new screens we design, and importantly, exposes us to intents and interaction with
built-in apps. The new version of the MyRuns App will invoke built-in apps such as
the browser, camera and galley. Our activities will use intents as a means to pass
information between activities; for example we will “fire” the android built-in web
browser to display our class project page; use intents to fire the camera app which
will pass back an image to the calling activity.

This lab extends lab 1. So to start with create a copy of lab 1 and rename/refactor it
and call it lab 2. That way you can extend the code in lab 2 and keep your lab 1
untouched.

We are going to start this lab by having you download the lab 2 app from my
website and install it on your emulator. Once you install it you can run it and play
with the app. You can get a good sense of what is needed since your code will have
to functionally be the same - you can change the style or do more things but the
downloaded app serves as a baseline for the design of your lab 2.

This is a challenging programming exercise. You will have to do some digging and
self-learning using the book and web to craft your solution.

OK. Let’s get started.

Play with the real app

You can run lab 2 by downloading the .apk file using the browser on your emulator and installing
it. Here are detailed set of instructions and screen shots to work your way through the installation
—once done it's a breeze the next time.

1) Run your emulator and go to the home screen (you can do this by clicking the home
button on the emulator) as shown in Figure 1(b).

2)

4)

First go to Settings and select Applications Settings and select unknown sources — you
do this so you can download the app over the network (from my website) to your phone
(well your emulator) — in the next step.

Hit the home button again as Figure 1(b). You should see the Google search box. Type in
the following URL into Google: www.cs.dartmouth.edu/~campbell/lab2.apk and the hit the
Go key, as shown in Figure 1(c). The app should download. You should see the
download icon in the status bar appear, as shown in Figure 1(c).

= ol & 1143

VAplecatIon settings

Quick launc or. r Home s
Set keyboard shortcu tions app in the
a

Manage applications

Manage and remove installed applications

ngservices e - R
ke]
— o Tt o T 1 Do [

qweir tyuiop
a s dif ghlj k'

4 z/x cvibnmea

Development
Set options for application development 2 e 2 723 © Go

Figure 1 (a) set unknown sources; (b) hit home button; (c) enter the URL hit Go

Now go to the download directory as shown in Figure 1(d) and you will see the
downloaded file called lab2.apk. Click on the icon of the file to install as shown in Figure
1(e). It might prompt you for some answers, hit install. After the app is installed you will
get a screen like Figure 1(f).

You can click done and go fine the app called MyRunsLab2 and click it or just hit open to
start the app. Assume you hit done. Now hit the home button again and you will go back
to home as shown in Figure 1(b). Now you want to find the app MyRunsLab2 to start it.
Click on the button between the phone and browser icons — looks like a matrix of dots.
That brings you to a view of all the apps on your phone. Now tab down on that screen
and you will find you MyRunLab2 app.

5554:AndroidEmu_ @) 5554:AndroidEmu

E3 11:45 | § 1
=l W % all @ 1209 % ul B 12213

3 - = ‘ . MyRunsLab2

(#) Today

APIDemos Bluetooth ~ Browser Calculator
Chat

S r
Camera Chapter 3

To-do List

v Application installed
Dev Tools Downloads

Gestures Hello, HelloLinear
Builder Android

in anl ntar (e rasl dd

Figure 1 (d) go to downloads; (e) click on lab2.apk icon to install; (f) hit done or open

5) Click MyRunLab2 to start the app. You can now run the actual lab 2 and understand in
detail what the Ul is and how the components work together. This is a great way to start
designing and coding up your app — sort of reserve engineering the app. We will add lots of
details for helping you do the lab as well.

[Ye¥e 5554:AndroidEm € O 5554:AndroidEm

ol B 12:29 & ul @ 12:30

ﬁ' ﬁ" i g Start

Custom Dev Tools Downloads Email This is start tab. TODO in the later labs
Locale

- 5 B B

Gallery Gestures Hello, HelloLinear
Builder Android

HelloListViev LinearLayou Messaging Music

MyCompass MyHello [WGORHELYA OtherLayou

a
Figure 1 (g) navigate to the app; (h) start it - no play with it

Create a new lab

We will create multiple activities to handle the extended UI - the figure 2 below
shows the names of all the activities we need to code. The diagram also shows that
we ill be creating some new layout and xml files - we will come back to those.

Slab2
§Bsrc
edu.dartmouth.cs.myruns
[7) ActivityMainPortal java
1J] ActivityProfile.java
[J] ActivityTabHistory.java
[J] ActivityTabSettings.java
[4) ActivityTabStart java
\J] Globals.java
2 gen ate
=) Android 2.3.3
&= assets
& bin
L res
(= drawable-hdpi
(= drawable-Idpi
(= drawable-mdpi
= layout
:X| main.xml|
X| mainportal.xml
(= values
X strings.xml
= xml
X| settings.xml
A AndroidManifest.xml
proguard.cfg
[2) project.properties

Figure 2: Lab 2 Project Files

Create the tab activities

Create an activity to manage the main portal that implements the tabs as shown in
Figure 3 below.

= ull @ 10:38

istory

We will code History in the Lab 3

Figure 3: The ActivityMainPortal used three tabs

Setting up tabs in similar to the views tutorial (but in that case nice icons were used
for the tabs - you can do that if you wish). Checkout the tutorial again:

http://developer.android.com/resources/tutorials/views /hello-tabwidget.html

This activity will render the tab layout captured in mainportal.xml, as shown below.
mainportal.xml uses a TabHost and a TabWidget to create a tabbed Ul. TabHost

must be the root node for the layout. It contains TabWidget for displaying the tabs
and a FrameLayout for displaying the tab content. Feel free to use the xml below,
which is the same as in the tutorial, linked above. You will need to create the
mainportal.xml in layouts.

|| Lab2 Manify 1) ActivityMainPortal java fal
1 <7?xml version="1.0" encoding="utf-8"7>
2= <TabHost xmlns:android="http://schemas.android.com/apk/res/android"
3 android:id="@android:id/tabhost"
4 android:layout_width="fill_parent"
5 android:layout_height="fill_parent">
6 <LinearLayout
7 android:orientation="vertical"”
8 android:layout_width="fill_parent"
9 android:layout_height="fill_parent"”
10 android:padding="5dp">
11 <TabWidget
12 android:id="@android:id/tabs"
13 android:layout_width="fill_parent"
14 android:layout_height="wrap_content"” />
15 <FrameLayout
16 android:id="@android:id/tabcontent"
17 android:layout_width="fill_parent"
18 android:layout_height="fill_parent"
19 android:padding="5dp" />
20 </LinearLayout>
21 </TabHost>

Figure 4: mainportal.xml shows the TabHost

As mentioned above you create 3 activities one to manage each tab:
ActivityTabHistory, ActivityTabSettings and ActivityTabStart. To create these
activities we need to update the Manifest, as below. Note that each of these activities
is defined in the Manifest.

d i 1] ActivityMainPortal java |l mainportal.xml
1 <?xml version="1.8" encoding="utf-8"7>
2= <manifest xmlns:android="http://schemas.android.com/apk/res/android"
3 package="edu.dartmouth.cs.myruns"
4 android:versionCode="1"
5 android:versionName="1.0" >
6
7 <uses-sdk android:minSdkVersion="10" />
8
9e <application
10 android:icon="@drawable/ic_launcher"”
11 android:label="@string/app_name" >
12& <activity android:name=".ActivityProfile" >
13 </activity>
142 <activity
15 android:name=".ActivityMainPortal'|
16 android:label="@string/app_name"
17 android:theme="@android:style/Theme.NoTitleBar" >
18@ <intent-filter>
19 <action android:name="android.intent.action.MAIN" />
20
21 <category android:name="android.intent.category.LAUNCHER" />
22 </intent-filter>
23 </activity>
24 <activity android:name=".ActivityTabStart" >
25 </activity>
26= <activity android:name=".ActivityTabHistory" >
27 </activity>
28 <activity android:name=".ActivityTabSettings" >
29 </activity>
30 </application>
31
32 </manifest>

Figure 5: Setting up multiple activities in the Manifest

There is also an entry for the ActivityMainPortal - which is the MAIN activity that is
the first activity launched when the application is run by the android system.

You need to create new classes for each activity. For this lab we simply create the
ActivityTabHistory and ActivityTabStart activities and simply get these activities to
display a message if the use clicks these tabs, as shown in the Ul diagram above.

ActivityMainPortal

The ActivityMainPortal will have to render the tab views when it starts up. It will
also have to create three additional activities - one for managing each view.

The heavy lifting for this lab occurs in the ActivityTabSettings activity. This activity
will do a number of complex Ul interactions including linking in with the
ActivityProfile that we created in Lab 1 (note we extend this activity in a fairly
significant manner) and creating a settings screen (which will include a number of
new concepts). So create new classes for all these activities. A good idea is to use a
Log.d() at the start of OnCreate for these activities.

Note, that some of these activities extend other root classes than the base Activity
class used for ActivityProfile; for example, the ActivityMainPortal extends
TabActivity - makes sense because it handles the tab widget layout, as shown in the
Figure below.

{7 *ActivityMainPortal. 83 . (| mainportal.xml | [J] ActivityTabSettings. | [J) ActivityTabHistory. <l main.xml
1 package edu.dartmouth.cs.myruns;

4 3®import android.app.TabActivity;[]

) public class ActivityMainPortal extends TabActivity {
)
11 @Qverride
217 protected void onCreate(Bundle savedInstanceState) {
3 7/ Auto-generated method stub
14 super.onCreate(savedInstanceState);
S setContentView(R.layout.mainportal);

(3

TabHost tabHost = getTabHost(); // The activity TabHost
TabHost.TabSpec spec; // Resusable TabSpec for each tab

20 Intent intent; // Reusable Intent for each tab
// Create an Intent to launch an Activity for the tab (to be reused)
intent = new Intent().setClass(this, ActivityTabStart.class);

// Initialize a TabSpec for the start tab and add it to the TabHost

spec = tabHost.newTabSpec("start").setIndicator("Start")
.setContent(intent);
30 tabHost.addTab(spec);

GIESE

intent = new Intent().setClass(this, ActivityTabSettings.class);

TORE

// Initialize a TabSpec for settings tab and add it to the TabHost

spec = tabHost.newTabSpec("settings").setIndicator("Settings")
.setContent(intent);
tabHost.addTab(spec);

SER|

40 lintent = new Intent().setClass(this, ActivityTabHistory.class);

// Initialize a TabSpec for the history tab and add it to the TabHost
spec = tabHost.newTabSpec("history").setIndicator("History")

45 .setContent(intent);

tabHost.addTab(spec);

// lets highlight the history tab

tabHost.setCurrentTab(1);

Figure 6: The ActivityMainPortal updates the spec of the TabHost object with intents to start each
activity

Things to note about the code snippet: first, it renders the view from mainportal
and then creates a TabHost and a spec for each of the three tabs. An intent is created
to fire each activity. This means that if the user clicks a certain tab then the intent
that is set up during initialization -- in OnCreate when the ActivityMainPortal is
created -- will be used to start the respective activity stored in the spec added to the
TabHost object. There are three specs added to the object and each activity name is
added by name so it can be correctly fired.

ActivityTabSettings

The layout design for settings.xml that uses ActivityPreference and category is
shown in Figure 7 below. We need to use the xml file to code up the preferences for
the settings Ul shown in Figure 1. In this section, we will first discuss how to design
the screen and then discuss each of the user input options in turn.

& ul & 1:50

%

Posting your records anonymously ——

& wl @ 1137

Settings

Account Preferences

. Additioinal Setti
User Profile b

Name, Email, Class, etc.

Privacy settings

Posting your records anonymously
Additional Settings

Unit Preferences

Select the unit in which you would
like to see distance

Leave a comment
Any suggestions about the course?
Misc

Class homepage

http://www.cs.dartmouth.edu/~campbell/
smartphonesensing.html

Unit Preference

PO ()
Select the units in which youwould _“/
like to see distance values

Leave your comment &";)
Any suggestion to this course? —

Misc

Class homepage
http://www.cs.dartmouth.edu/~campbell

About MyRuns

Figure 7: Settings view using preference category

Setting up preferences: Looking at the settings.xml below you can build your
screen using the structure or xml views. In structure you can build your categories
by adding PreferenceCategory to the PreferenceScreen. On the right you fill in the
key, title and summary. The key is used to refer to the particular category for
example prefKeyProfile. You can use that key to for example fire an activity if the

user selects the category

J] *ActivityMainPortal. [g mainportal.xm| ‘ [J] ActivityTabSettings. [g main.xml] ActivityProfile.java o 2 =0

%' Android Xml
Xml Elements @ ® E] Az Attributes for @string/prefKeyProfile (Preference)

(P) Base attributes available to Preference.

v [P]PreferenceScreen

'[B PreferenceCategory Key @string/prefKeyProfile Browse...
f@"'@szring/preikeyProﬁle (Preference) N
= Titl Profill
©@s(ring/prefKeyPrivacy (CheckBoxPreference) itle User Profile M

V@PreferenceCa(egory Summary Name, Email, Class, etc. Browse...
@@stringlprefKeyUni! (ListPreference)

Order

® @string/prefKeyComment (EditTextPreference)

v [P]PreferenceCategory Layout Browse...

® @string/prefKeyHomepage (Preference)

(P) @string/prefkeyAbout (Preference) Widget layout Browse...
(P) @string/prefkeyVersion (Preference)
Enabled -

€3

Figure 8: structure view of settings.xml: you can create a view by added different preferences

1] *ActivityMainPortal. [16 mainportal.xml | [3] ActivityTabSettings. [161 main.xml \m ActivityProfile.java &
1 kzxml version="1.0" encoding="utf-8"7>
2= <PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >
3
4e <PreferenceCategory android:title="Account Preferences"” >
5 <Preference
6 android:key="@string/prefKeyProfile"
7 android:summary="Name, Email, Class, etc."
8 android:title="User Profile" />
9
10 <CheckBoxPreference
1 android:defaultValue="false"
12 android:key="@string/prefKeyPrivacy"
13 android:summary="Posting your records anonymously"
14 android:title="Privacy settings" />
15 </PreferenceCategory>
162 <PreferenceCategory android:title="Additional Settings" >
17 <ListPreference
18 android:entries="@array/distanceMeasuredNameArray"
19 android:entryValues="@array/distanceMeasuredValueArray”
20 android:key="@string/prefKeyUnit"
21 android:summary="Select the unit in which you would like to see distance"”
22 android:title="Unit Preferences” />
23
24 <EditTextPreference
25 android:key="@string/prefKeyComment"
26 android:summary="Any suggestions about the course?"
27 android:title="Leave a comment"” />
28 </PreferenceCategory>
299 <PreferenceCategory android:title="Misc” >
30 <Preference
31 android:key="@string/prefKeyHomepage"
32 android:summary="@string/projectURL"
33 android:title="Class homepage" />
34 <Preference
35 android:ki tring/prefKeyAbout"
36 android:tit "About Runs" />
37 <Preference
38 android:key="@string/prefKeyVersion"
39 android:summary="0.0.0"
40 android:title="Version" />
41 </PreferenceCategory>
42
43 </PreferenceScreen>

Figure 9: the xml view of the structure view for settings.xml

If you flip from structure to xml view of settings.xml you can see the code
representation - shown in Figure 8 and Figure 9.

For details on ActivityPreference and PreferenceCategory see:

http://developer.android.com /reference/android/preference/PreferenceActivity.h
tml

In preference activity, Android allows you to incorporate normal preference for
firing another activity, special preferences like CheckBoxPreference,
EditTextPreference and ListPreference.

Preferences allow us to design more sophisticated Uls - they are different from
layout views. We need to define preferences in the xml and then add code in
activities to make the Ul usable. The tutorial doesn’t cover everything -- you can
save typing quite a lot of java code by using a few tips - see Figure 10; for example,
to use the preference format of creating resources you should select “preference”
instead of “layout” in the Resource Type field in the dialog box when you select a
“New Android XML File” when creating the settings.xml. In the same creation dialog
box select “PreferenceScreen” as the root element to complete the creation of
setting.xml. The setting.xml file opens in the structure viewpoint (you can switch
between structure and setting.xml modes. In the structure view you can now add
the necessary preferences for the ActivityTabSetting view.

8.0.0, New Android XML File

New Android XML File
i, The destination file already exists \ |

Resource Type: | Preference —¢]

Project Lab2 2]

File settings

Root Element
(© CheckBoxPreference
(® EditTextPreference
(DistPreference
(P)Preference

(P) PreferenceCategory
(P)PreferenceScreen
(P)PreferenceScreen
(®RingtonePreference

©) Ba (Next>) ((cancel) (- Finisho)

Figure 10: Creating the settings.xml file

In the “Structure” view of the generated file, you can add different type of
preferences entries.

The user can select from a number of different inputs on the settings page. For
example, if the user clicks on User Profile the ActivityTabSetting simply activates the
ActivityProfile to handle that screen. With the exception of the Class Homepage
(which invokes the android web browser) all control stays within the
ActivityTabSetting activity.

Let’s discuss each of the user input options.

= ul B 2n ol @ 213 % oal B 218

Unit Preference

Leave your comment About MyRuns

Metric (meters) @

Imperial (feet) Q 7
’ OK ‘ ’ Cancel ‘ oK
Cancel

Figure 11: Unit preference; Leave a comment; About my runs

Privacy settings: This is simply a click box where the user click to set or unset the
state of the box. The activity maintains this value - no need to save as context. The
settings.xml has to set up CheckBoxPreference to manage this.

Unit Preference: This allows the user to enter the units of distance - km or miles. It
uses a ListPreference as shown in Figure 11.

Class homepage: The ActivityTabSettings also fires the Android web browser to
display the class homepage - you could use your own homepage. This is an example
of our code invoking a built-in app, as shown in Figure 12.

M Ehttp://www.cs.dartmout... I4

Settings
Account Preferences

User Profile

smartphone sensing and programmin;
Name, Email, Class, etc. 3 prog g

Privacy settings
Post I recore nonymously

Additional Settings

Unit Preferences

e unit in whic|
li ee distance

Leave a comment

Any suggestions about the course?
Misc

Class homepage

http: cs.dartmouth.edu/~campbell/
smartphonesensing.html

Figure 12 Display a homepage using built-in browser

ActivityTabSettings (code snippet shown in Figure 13) uses an intent to pass the
URL of the class home page to the browser to display. It creates an intent and then
explicitly starts the browse using startActivity(). As discussed in class there are a
number of ways to start activities depending on what you want them to do. Intents
are the glue that connects activities: they allow one activity to link to another; they
allow you to pass between activities; and they allow you to call other activities e.g.,
our activities or built in apps/activities (camera, browser, etc.)

[J] ActivityMainPortal.j <1 mainportal.xml [J] *ActivityTabSettings 53 < main.xml 1] ActivityProfile.j.

35

55 // Setup listener for class home page to be renbered
56

57 pref = findPreference(getString(R.string.prefKeyHomepage));

preflListerner = new Preference.OnPreferenceClickListener() {

61 @0verride
- 62 public boolean onPreferenceClick(Preference preference) {
63
64 Intent i = new Intent(android.content.Intent.ACTION_VIEW,
65 Uri.parse(getString(R.string.projectURL)));
66 startActivity(i);
67
68 return true;
69 }

70 b

pref.setOnPreferenceClickListener(preflListerner);

Figure 13: ActivityTabSettings uses an intent and startActivity to render the class homepage

About My Runs: A dialog is created (see the discussion below on date picker dialog)
and onCreateDialog customizes the dialog as shown in the code snippet below.

@0verride
protected Dialog onCreateDialog(int id) {

AlertDialog dialog;
/7

114 switch (id) {
5 case DIALOG_ABOUT_ID:

// Create listener
DialogInterface.OnClickListener myListener;
myListener = new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {
dialog.dismiss(Q);
}
}
// Create dialog
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setMessage(getString(R.string.about));
builder.setTitle("About MyRuns");

// execute onClick if users clicks "OK"

[puilder .setNeutralButton("0K", myListener);

dialog = builder.create();
139 break;

140 default:

141 dialog = null;

return dialog;

Figure 14 Code snippet from ActivityTabSettings for About MyRuns

Version: Version is used to simply present the current version of the application
code as shown in the code snippet below.

88 // When user clicks on Version setting

String version = "";

try {
PackageManager manager = this.getPackageManager();
PackageInfo info = manager.getPackageInfo(

94 this.getPackageName(), @);

95 version = info.versionName;

96 } catch (Exception e) {

97 Log.e(Globals.TAG, "Error getting version");

99 pref = (Preference) findPreference(getString(R.string.prefKeyVersion));
100 // write the summary in the preference item

101 pref.setSummary(version);

Figure 15 Code snippet from ActivityTabSettings for Version

ActivityProfile

Part of this lab requires that you extend the ActivityProfile that you created in lab 1;
specifically, we need to add:

Birthday input using a dialog and date picker for input. Your birthday needs
to be then written to the screen as shown in Figure 16.

Profile image where you can take a picture or select a photo from the galley
and render it. This requires the ActivityProfile to invoke built-in apps such as
the camera and the galley. In addition, the image provided by the camera and
galley needs to be cropped to fit the dimensions of the image on the screen.
The view for the ActivityProfile screen is scrollable (which means that the
use can scroll up and down through the various views - the birthday to the

type of major). However, the save and cancel buttons remain static at the
bottom of the screen, as shown in Figure 16.

% all B 12:08

£
T e s —————— —--—_—-——_|
\
Click to change
cAndrew T. Campbell
2

73
Name
age
mail
. Click to change campbell@cs.dartmouth.edu

Birthday

02/18/2012

profi

Phone

802-9999999

(®)Male (")Female

Andrew T. Campbell

!
campbell@cs.dartmouth.edu

Major
Mechanical Engineering
Phone

Figure 16: ActivityProfile UI defined in main.xml: The user can select and image and input their birthday

Birthday UI: Figure 17 below shows the Ul design for birthday input. The snippet of
main.xml show that a text view and button is defined. When the user clicks on Click
to change the catches the event and displays the dialog. ShowDialog() is used to set
this on in the on click listener code.

<LinearLayout
28 android:id="@+id/linearLayout3"
13 . 29 android:layout_width="match_parent"
= il 12:20 30 android:layout_height="wrap_content" >
32 <TextView

android:id="@+id/dateDisplay"

34 android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="20dp"
android:layout_weight="1"
android:text="Large Text"
android:textAppearance="?android:attr/textAppearancelarge” />

41 <Button
42 android:id="@+id/buttonPickDate"

G Saturday, February 18, 2012

android:layout_width="wrap_content"
android:layout_height="wrap_content"”

android:layout_margin="5dp"

+ + + » android:text="@string/buttonBirthday" />
48 </LinearLayout>

Feb § 18 § 2012

} Set “ Cancel ’ 98 btn.setOnClickListener(myListener);

) // handling the event of inputing the date -- clicking the date button

02 btn = ((Button) findViewById(R.id.buttonPickDate));

04 myListener = new View.OnClickListener() {
05 @0verride
0¢ public void onClick(View v) {
0 showDialog(DIALOG_BDATE_ID);
}

09 }
;j btn.setOnClickListener(myListener);
Figure 17: Birthday UI, snippet on main.xml and listener code

When the showDialog() method executes it calls onCreateDialog(), which renders
the picker and saves and updates the birthday input using updateBirthday(), which
you also have to code up.

// when showDialod is executed it will execute this -- the ID defines what
// is done

@0verride
protected Dialog onCreateDialog(int id) {

// Override onDateSet method, save date into member variables and update
// brithday textveiw
switch (id) {
case DIALOG_BDATE_ID:
// if set is clicked on the picker date widget the onDateSet
DatePickerDialog.OnDateSetListener myListerner = new DatePickerDialog.OnDateSetListener() {
@0verride
public void onDateSet(DatePicker view, int year,
int monthOfYear, int dayOfMonth) {
mYear = year;
mMonth = monthOfYear;
mDay = dayOfMonth;
updateBirthdayDisplay();

}
b

DatePickerDialog myDialog = new DatePickerDialog(this, myListerner,
mYear, mMonth, mDay);
return myDialog;

return super.onCreateDialog(id);
16 }
16

Figure 18: OnCreatDialog() for DatePicker

Image Profile UI: A very cool part of Android is using intents to invoke built-in apps
to work with our application. Here we use the camera and the chooser (galley) to
provide services: that is, the user can take a picture or select a picture from their
stored photos/images and use the image for their profile.

We discussed how activities use intents to invoke other activities. In this case we
want to pass information between activities and in the case of the camera and galley
information is passed back from the built-in apps - that is the image. So we need to
write the code to invoke built-ins and get data back from them.

Note, this part of the lab is the trickiest and will require you to apply effort to get
it to work correctly.

Here is a link to a resource that is very useful:

http://www.londatiga.net/featured-articles /how-to-select-and-crop-image-on-

android/

= oul B 1221

Select profile image

Take from camera

Select from gallery

Figure 19 the dialog allows the user to select options - e.g., the camera

The camera and galley (and crop activity that is also use) pass data back to the
calling activity - that is ActivityProfile; for example, the galley activity needs to pass
back the chosen picture to the ActivityProfile activity -- here is the setup with
startActivityForResults()

33 // Select from gallery
34 Intent intent = new Intent();
35 intent.setType(IMAGE_UNSPECIFIED);
36 intent.setAction(Intent.ACTION_GET_CONTENT);
3 // Start a gallery choosing activity
38 // REQUEST_CODE_SELECT_FROM_GALLERY is an integer tag you
) // defined to
) // identify the activity in onActivityResult() when it
1 // returns
2 startActivityForResult(Intent.createChooser(intent,
"Complete action using"),
44 REQUEST_CODE_SELECT_FROM_GALLERY);

B

Figure 20 startActivityForResult() used for galley

You have to implement an onActivityResult method to get data back from the called
activity; for example, the galley passes back a data object (the image), which we crop
to size. The code snippet below from ActivityProfile is a single entry (or callback)
from activities that are started by ActivityProfile - that is, camera, galley and crop.
The code shows how onActivityResults() deals with the call back from these built-in

apps.

// Handle date after activity returns -- camera and galley

@0verride
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
if (resultCode != RESULT_OK)
return;

switch (requestCode) {

case REQUEST_CODE_TAKE_FROM_CAMERA:
// Send image taken from camera for cropping
cropImage();
break;

case REQUEST_CODE_SELECT_FROM_GALLERY:
// Send selected image from gallery for cropping
mImageCaptureUri = data.getData();
cropImage();
break;

case REQUEST_CODE_CROP_PHOTO:
// Update image view after image crop
Bundle extras = data.getExtras();
// Set the profile image in UI
if (extras != null) {
mImageView
.setImageBitmap((Bitmap) extras.getParcelable("data"));

// Delete temporary image taken by camera after crop
File f = new File(mImageCaptureUri.getPath());

158 if (f.exists())

159 f.delete();

160 break;

Figure 21 Snippet from ActivityProfile for handling call backs from built-in apps
Tips
Don’t miss this step: Download the real app to your emulator and play with it

Use command shift f to correctly format your code
Use command shift o to import classes automatically

Reading: The links in the lab are important to read plus read chapter two in the book on
Intents:

- Read Intents and Intent filters on the dev site
- http://developer.android.com/guide/topics/intents/intents-filters.html

Again, to complete these assignments you will need to sort a number or problems out
and self-learning is needed.

Debugging: Use Log.d() as printf style debugging to start with. It helps answer the
obvious problems. You can print out data using Log.d(). More sophisticated debugging
would help in addition start getting use to the messages printed out on LogCat.

